New General Models for Evaluating Interactions in Non-Regular Solutions and Adsorption Energies Based on Both Hansen's and Drago's Parameters

Authors

  • Michel Buchmann Institute of Pharmaceutical Analysis, School of Pharmacy, University of Lausanne, B. E. P., CH-1015 Lausanne
  • Nam-Tran Ho Institute of Pharmaceutical Analysis, School of Pharmacy, University of Lausanne, B. E. P., CH-1015 Lausanne
  • Roger Lamartine ICBMS UMR CNRS 5246, Equipe Chimie Supramoléculaire Appliquée, Université de Lyon, Université Lyon 1, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne
  • Isabelle Bonnamour ICBMS UMR CNRS 5246, Equipe Chimie Supramoléculaire Appliquée, Université de Lyon, Université Lyon 1, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne

DOI:

https://doi.org/10.6000/jascm.v5i2.3895

Keywords:

Internal energy, molecular interaction, solubility parameters, solvent, magnetic field, electric field, Drago's parameters

Abstract

This study aims at providing a model for the internal mixing energy of two liquids. The concerned variables are the solute molar volume V (cm3/mol.), the cohesion parameters and the Drago's parameters. The model is based on the following fundamental novelties:

The fragmentation of molar cohesive energy ∆Ecoh (kJ/mol) into two distinct categories. Indeed, the dispersive and polar cohesion energies are magnetic and electrical in nature, and the cohesive energy of the chemical bonds (Hydrogen Bond) is due to charge transfer and orbital overlap. The origins of these two categories of energy are different, requiring two different treatments in use.

For the first time, a relationship has been established between the cohesive energy from chemical bonds ∆Eh (kJ/mol) and Drago's parameters Ea, Eb, Ca, and Cb (KJ1/ 2mol-1/2).

A simple equation has been proposed for the salvation energy of a gaseous solute in a liquid solvent. This equation contains a term for the perturbation energy of the solvent in the presence of the solute, namely the cavity formation energy, and different types of interaction energies between the solvent and the solute at infinite dilution.

Based on calorimetric data published, the proposed model is compared with the classic model in terms of the mixing energy. The result shows a clear advantage of the new model over the old or conventional one.

Clearly, this new model should provide a new method to determine the interaction parameters or interaction capacities of complex pharmaceutical molecules using a series of simple and well-chosen solvents.

References

Hansen CM. 50 years with solubility parameters-past and future. Prog Org Coat 2014; 51: 77-84. http://dx.doi.org/10.1016/j.porgcoat.2004.05.004

Hansen CM. Hansen Solubility parameters. A user's Handbook, 2nd ed, Boca Raton: CRC Press; 2013.

Machui F, Abbott S, Walls D, Koppe M, Barabc CJ. Determination of solubility parameters for organic semiconductor formulations. Macromo Chem Physic 2011; 212: 2159-65. http://dx.doi.org/10.1002/macp.201100284

Stefanis E, Panayiotou C. Prediction of Hansen Solubility Parameters with a New Group-Contribution Method. Int J Thermophys 2008; 29: 568-585. http://dx.doi.org/10.1007/s10765-008-0415-z

Zeng W, Du Y, Xue Y, Frisch HL. Solubility Parameters, Physical Properties of Polymer, Hand book, Springer Link, 2007; 289-303.

Ghebremeskel AN, Vemavarapu C, Lodaya M. Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: Selection of polymer-surfactant combinations using solubility parameters and testing the processability. Int J Pharma 2007; 328: 119-129. http://dx.doi.org/10.1016/j.ijpharm.2006.08.010

Just S, Sievert F, Thommes M, Breitkreutz J. Improved group contribution parameter set for the application of solubility parameters to melt extrusion. Eur J Pharm and Biopharm 2013; 85: 1191-9. http://dx.doi.org/10.1016/j.ejpb.2013.04.006

Eichie FE, Okor RS, Groning R. Application of solubility parameters to the formulation of acrylate methacrylate film coating systems. J Appl Polym Sci 2003; 87: 1339-44. http://dx.doi.org/10.1002/app.10301

Eichie FE, Okor RS, Groning R. Limitation in the application of solubility parameters-Formulation of biopol polymeric coating system as a case study. Trop J Pharmaceut Res 2005; 4: 255-362.

Eastman MP, Hughes RC, Yelton G, Ricco AJ, Patel SV, Jenkins MW. Application of the solubility parameter concept to the design of chemiresistor arrays. J Electrochemist Soc 1999; 146: 3907-13. http://dx.doi.org/10.1149/1.1392571

Mohammad MA,Alhalaweh A, Velaga SP. Hansen solubility parameter as tool to predict cocrystal formation. Int J Pharm 2011; 407: 63-71. http://dx.doi.org/10.1016/j.ijpharm.2011.01.030

Greenhalgh DJ, William AC, Timmins P, York P. Solubility parameters as predictors of miscibility in solid dispersions. J Pharm Sci 1999; 88: 1182-90. http://dx.doi.org/10.1021/js9900856

Just S, Sievert F, Thommes M, Breitkreutz J. Improved group contribution parameter set for application of solubility parameters to melt extrusion. Eur J Pharm Biopharm 2013; 85(3 Part B): 1191-9. http://dx.doi.org/10.1016/j.ejpb.2013.04.006

Bustamante P, Pena MA, Barra J. The modified extended Hansen method to determine partial solubility parameters of drugs containing single hydrogen bonding group and their sodium derivatives: Benzoic acid/Na and ibuprofen/Na. Int J Pharm 2000; 194: 117-24. http://dx.doi.org/10.1016/S0378-5173(99)00374-9

Adamska K, Voelkel A. Inverse gas chromatographic determination of solubility parameters of excipients. Int J Pharm 2005; 304: 11-7. http://dx.doi.org/10.1016/j.ijpharm.2005.03.040

Adamska K, Voelkel A, Héberger K. Selection of solubility parameters for characterization of pharmaceutical excipients. J Chromatogr A 2007; 1171: 90-7. http://dx.doi.org/10.1016/j.chroma.2007.09.034

Kitak T, Dumicic A, Planinsek O, Sibanc R and Srcic S. Determination of solubility parameters of ibuprofen and ibuprofen lysinate. Molecules 2015; 20: 21549-68. http://dx.doi.org/10.3390/molecules201219777

Vay K, Scheler S, Frieß W. Application of Hansen solubility parameters for understanding and prediction of drug distribution in microspheres. Int J of Pharm 2011; 407: 63-71. http://dx.doi.org/10.1016/j.ijpharm.2011.06.047

Lorena P, Potier G, Abbott S, Coronas J. Using Hansen solubility parameters to study the encapsulation of caffeine in MOFs. Org Biomol Chem 2015; 13: 1724-31. http://dx.doi.org/10.1039/C4OB01898B

Vay K, Scheler S, Friess W. Application of Hansen solubility parameters for understanding and prediction of drug distribution in microspheres. Int J of Pharm 2011; 416: 202-9. http://dx.doi.org/10.1016/j.ijpharm.2011.06.047

Tong C, Fan K, Niu L, et al. Application of solubility parameters in a D-sorbitol-based organogel in binary organic mixtures. Soft Matter 2014; 10: 767-72. http://dx.doi.org/10.1039/C3SM52676C

Hancock BC, York P, Rowe RC. The use of solubility parameters in pharmaceutical dosage form design. Int J Pharm 1997; 148: 1-21. http://dx.doi.org/10.1016/S0378-5173(96)04828-4

Archer WL. Hansen solubility parameters for selected cellulose ether derivatives and their use in the pharmaceutical industry. Drug Dev Ind Pharm 1992; 18: 599- 616. http://dx.doi.org/10.3109/03639049209043713

Hansen CM, Andersen BH. The affinities of organic solvents in biological systems. Am Ind Hyg Assoc J 1988; 49: 301-8. http://dx.doi.org/10.1080/15298668891379783

Reuteler-Faoro D, Ruelle P, Hô N-T, et al. A new equation for calculating partial cohesion parameters of solid substances from solubilities. J Phys Chem 1988; 92: 6144-8. http://dx.doi.org/10.1021/j100332a058

Rey-Mermet C, Ruelle P, Hô N-T, Buchmann M, Kesselring UW. Significance of partial and total cohesion parameters of pharmaceutical solids determined from solids dissolution calorimetric measurements. Pharm Res 1991; 8: 636-42. http://dx.doi.org/10.1023/A:1015865025862

Gander B, Merkle HP, Nguyen VP, Hô N-T. A new thermodynamic model to predict protein encapsulation efficiency in poly(lactide) microspheres. J Phys Chem 1995; 99: 16144-8. http://dx.doi.org/10.1021/j100043a066

Gander B, Johansen P, Hô N-T, Merkle HP. Thermodynamic approach to protein microencapsulation into poly(D,L-lactide) by spray drying. Int J Pharm 1996; 129: 51-61. http://dx.doi.org/10.1016/0378-5173(95)04240-7

D'Amelia RP, Tomic JC, Nirode WF. The determination of the solubility parameter () and the Mark-Houwink constants (K & ) of food grade polyvinyl acetate (PVAC). J Polym Biopolym Phys Chem 2014; 2: 67-92.

Bordes C, Freville V, Ruffin E, et al. Determination of poly( - caprolactone) solubility parameters: application to solvent substitution in a microencapsulation process. Int J Pharm 2010; 383: 236-43. http://dx.doi.org/10.1016/j.ijpharm.2009.09.023

Hô N-T. A New Model for Evaluating Interactions in Liquids, J Phys Chem 1994; 98: 5362-5367. http://dx.doi.org/10.1021/j100071a029

Drago RS. Applications of Electrostatic-Covalent Models in Chemistry. Gainesville: Surfside Scientific Publishers; 1994.

Naren K, Sudhamsa B, Babu MS, Krishna TS. Study of molecular interaction in binary mixture of diethyl carbonate + benzene derivatives at different temperatures. J App Sol Chem 2015; 4: 119-27.

Fuch R, Peacock LA, Stephenson WK. Enthalpies of interaction of polar and non-polar molecules with aromatic solvents. Can J Chem 1982; 60: 1953-8. http://dx.doi.org/10.1139/v82-273

Stephanson WK, Fuchs R. Enthalpies of interaction of hydroxylic solutes with organic solvents. Can J Chem 1985; 63: 2529-34. http://dx.doi.org/10.1139/v85-418

Sinanoglu O. Microscopic surface tension down to molecular dimensions and microthermodynamic surface areas of molecules or clusters. J Chem Phys 1981; 75: 463-8. http://dx.doi.org/10.1063/1.441807

Moura-Ramos JJ, Dionisio MS, Gonçalves RC, Diogo H. A further view on the calculation of the enthalpy of cavity formation in liquids. The influence of the cavity size and shape. Can J Chem 1988; 66: 2894-902. http://dx.doi.org/10.1139/v88-448

Dionísio MS, Moura-Ramos JJ, Gonçalves RM. The enthalpy and entropy of cavity formation in liquids and corresponding states principle. Can J Chem 2011; 68: 1937-49. http://dx.doi.org/10.1139/v90-299

Moura-Ramos JJ. Molecular shape and orientational order. Effects in the energy of cavity formation in liquids. J Solution Chem 1989; 18: 957-75. http://dx.doi.org/10.1007/BF00647896

Fujisawa M, Yasukuni T, Ikeda H, Yukawa M, Aki H, Kimura T. Global interaction energy analysis for drug-cyclodextrin inclusion complexes in aqueous solutions. J App Sol Chem 2012; 1: 132-8.

Barton AF. Applications of solubility parameters and other cohesion parameters in polymer science and technology. Pure Appl Chem 1985; 57: 905-12. http://dx.doi.org/10.1351/pac198557070905

Bagley EB, NelsonTP, Barlow W, Chen AA. Internal pressure measurements and liquid-state energies. Ind Eng Chem Fund 1970; 9: 93-7. http://dx.doi.org/10.1021/i160033a015

Keller RA, Karger BL, Snyder LE. Use of the solubility parameter in predicting chromatographic retention and eluotropic strength. Gas Chromatogr Proc Int Symp Eur 1970; 8: 125-40.

Barton AFM. Handbook of Solubility Parameters and Other Cohesion Parameters, 2nd ed.

Downloads

Published

2016-05-30

How to Cite

Buchmann, M., Ho, N.-T., Lamartine, R., & Bonnamour, I. (2016). New General Models for Evaluating Interactions in Non-Regular Solutions and Adsorption Energies Based on Both Hansen’s and Drago’s Parameters. Journal of Applied Solution Chemistry and Modeling, 5(2), 57–70. https://doi.org/10.6000/jascm.v5i2.3895

Issue

Section

General Articles