The Effect of Humic Acid on the Formation and Solubility of Secondary Solid Phases of Polyvalent Metal Ions

Authors

  • Stella Antoniou University of Cyprus
  • Ioannis Pashalidis University of Cyprus

DOI:

https://doi.org/10.6000/1929-5030.2012.01.01.5

Keywords:

Polyvalent metal ions, humic acid, solid phase formation, solubility

Abstract

The paper presents and discusses experimental data regarding the effect of natural organic matter (e.g. humic acid) on the formation and solubility of secondary solid phases of polyvalent metal ions (e.g. M(VI), M(IV), M(III)) in aqueous solutions of 0.1 M NaClO4 and under normal atmospheric conditions. The experimental work has been carried out using hexavalent uranium as analogue for M(VI), tetravalent thorium, cerium and zirconium as analogues for M(IV) and trivalent samarium and neodymium as analogues for M(III). The solid phases under investigation have been prepared by alkaline precipitation in the presence and absence of humic acid and characterized by TGA, ATR-FTIR, XRD and solubility measurements. The experimental data obtained indicate generally that the solid phases, which are formed in the absence of humic acid, are stable and remain the solubility limiting solid phases even in the presence of increased humic acid concentration (up to 0.5 g l-1) in solution. Although polyvalent metal ions form very stable complex with humic acid, upon base addition in the M(z)-humic acid system decomplexation of the previously formed M(z)-humate complexes and precipitation of two distinct phases occurs, namely, the inorganic and the organic phase. The latter is adsorbed on the particle surface of the former. However, natural organic matter (humic acid) affects the particle size of the solid phases and may lead to reduction of redox-sensitive species. Generally, increasing humic acid concentration results in decreasing crystallite size of the inorganic solid phase. The extent of the effect depends inversely on the solid phase stability.

Author Biography

Ioannis Pashalidis, University of Cyprus

Department of Chemistry

References


[1] Hernández-Apaolaza L, Lucena JJ. Influence of the soil/solution ratio. J Agric Food Chem 2011; 2493-500.
[2] Regulation (EC) No. 2003/2003. Official Journal of European Union 2003; 46.
[3] Regulation (EC) No 162/2007. Official Journal of European Union 2007; L51: 7-15.
[4] Commission Regulation (EU) No 137/2011. Official Journal of European Union 2011; L43: 1-8.
[5] Commission Regulation (EU) No 223/2012. Official Journal of European Union 2012; L75: 12-23.
[6] Sierra MA, Gómez-Gallego M, Alcázar R, Lucena JJ, Álvarez A, Yunta-Mezquita F. WO 02/00604 Patent 2002.
[7] Gómez-Gallego M, Sierra MA, Alcazar R, et al. Synthesis of o,p-EDDHA. J Agric Food Chem 2002; 50: 6395-9.
[8] López-Rayo S, Hernández D, Lucena JJ. Chemical evaluation. J Agric Food Chem 2009; 57: 8504-13.
[9] López-Rayo S, Hernández D, Lucena JJ. Synthesis. J Agric Food Chem 2010; 58: 7908-14.
[10] Nawrocki A, Stefaniak F, Mrozek-Niecko A, Olszewski R. Preparation o. PCT Int. Appl. WO 2009037235 A1 20090326, 2009.
[11] Yunta F, Sierra MA, Gómez-Gallego M, Alcázar R, GarcíaMarco S, Lucena JJ. Methodology. J Plant Nutr 2003; 26: 1995-8.
[12] Yunta F, García-Marco S, Lucena JJ. Theoretical. J Agric Food Chem 2003; 51: 5391-9. http://dx.doi.org/10.1021/jf034304r
[13] Yunta F, García-Marco S, Lucena JJ, Gómez-Gallego M, Alcazar R, Sierra MA. Chelating agents. Inorg Chem 2003; 42: 5412-21. http://dx.doi.org/10.1021/ic034333j
[14] Allison JD, Brown DS, Novo-Gradak KJ. MINTEQA2/ PRODEFA2. Version 3.0. User’s Manual, Environmental Research Laboratory, U.S. Environmental Protection Agency: Washington, DC.1990.
[15] Gustafsson JP. Visual MINTEQ, Version 3.0 Kungl Tekniska Hogskolan (KTH), Div. of Land Water Resources, 2010, updated 06/21/06. http://www.lwr.kth.se/English/OurSoftware/vminteq/.
[16] Parker DR, Norvell WA, Chaney RL. GEOCHEM-PC. In: Loeppert RH, et al. Eds. Chemical equilibrium and reaction models. Soil Science Society of America, Special Publication 42, Madison 1995; pp. 253-69.
[17] Shaff JE, Shultz BA, Craft EJ, Clark RT, Kochian LV. GEOCHEM-EZ. Plant Soil 2010; 330: 207-14. http://dx.doi.org/10.1007/s11104-009-0193-9
[18] Parkhurst DL. User's guide to PHREEQC. U.S. Geological Survey Water-Resources Investigations Report 1995; 95- 4227, 143 p.
[19] Álvarez-Fernández A, Sierra MA, Lucena JJ. Reactivity. Plant Soil 2002; 241: 129-37. http://dx.doi.org/10.1023/A:1016012513044
[20] Hernández-Apaolaza L, Lucena JJ. Fe(III)-EDDHA. J Agric Food Chem 2001; 49: 5258-64.
[21] Hiemstra T, Van Riemsdijk WH. A Surface. J Colloid Interface Sci1996; 179: 488-508. http://dx.doi.org/10.1006/jcis.1996.0242
[22] Iglesias A, López R, Gondar D, Antelo J, Fiol S, Arce F. Adsorption of MCPA. Chemosphere 2010; 78: 1403-8. http://dx.doi.org/10.1016/j.chemosphere.2009.12.063
[23] Gustafsson JP, Dässman E, Bäckström M. Towards. Appl Geochem 2009; 454-62.
[24] Lindsay WL. Chemical Equilibrium in Soils, Wiley: New York 1979.
[25] López-Rayo S, Correas C, Lucena JJ. Novel. Chem Spec Bioav 2012; 24: 147-58.
[26] Martell AE, Motekaitis RJ. Determination. VCH: New York 1992.
[27] Bailey NA, Cummins D, McKenzie ED, Worthington JM. Iron. Inorg Chim Acta 1981; 50: 111. http://dx.doi.org/10.1016/S0020-1693(00)83729-9
[28] Sierra MA, Gómez-Gallego M, Alcázar R, Lucena JJ, Yunta F, García-Marco S. 2004. Effect. Dalton Trans 2004; 3741-7. http://dx.doi.org/10.1039/b408730e
[29] Ma R, Motekaitis R, Martell AE. Stability. Inorg Chim Acta 1994; 224: 151-5. http://dx.doi.org/10.1016/0020-1693(94)04012-5
[30] L’Eplattenier F, Murase I, Martell AE. New multidentate ligands. JACS 1967; 89: 837. http://dx.doi.org/10.1021/ja00980a019
[31] Hyvönen H, Orama M, Saarinen H, Aksela R. Studies. Green Chem 2003; 5: 410-4.
[32] Mitschker A, Moritz RJ, Nawrocki A. Chelated plant micronutrients. European Patent 1411037 A1 20040421. 2004.
[33] Lucena JJ, Sentís JA, Villén M, Lao T, Pérez-Sáez M. Agron J 2008; 100: 813-8. http://dx.doi.org/10.2134/agronj2007.0257
[34] Villén M, García-Arsuaga M, Lucena JJ. Potential. J Agric Food Chem 2007; 55: 402-7.
[35] Rodríguez-Lucena P, Hernández-Apaolaza L, Lucena JJ. Comparison. J Plant Nutr Soil Sci 2010; 173: 120-6.
[36] Davies CW. Iron Association. Butterworhs, London 1962.
[37] Lucena JJ, García-Marco S, Yunta F, Hernández-Apaolaza L. Theoretical. In: Biogeochemistry of Chelating Agents, ACS Book Series, Springer Verlag: New York 2005; 348-65. http://dx.doi.org/10.1021/bk-2005-0910.ch021
[38] Pesonen H, Aksela R, Laasonen K. Density. J Mol Struct 2007; 804: 101-10.
[39] Orama M, Hyvonen H, Saarinen H, Aksela R. Complexation. J Chem Soc Dalton Trans 2002; 24: 4644-8. http://dx.doi.org/10.1039/b207777a

Downloads

Published

2012-10-15

How to Cite

Antoniou, S., & Pashalidis, I. (2012). The Effect of Humic Acid on the Formation and Solubility of Secondary Solid Phases of Polyvalent Metal Ions. Journal of Applied Solution Chemistry and Modeling, 1(1), 38–45. https://doi.org/10.6000/1929-5030.2012.01.01.5

Issue

Section

General Articles