How to Resolve the Problem of Drago's Four Parameters in the Context of Molecular Interactions

Authors

  • Ho Nam Tran Institute d’Analyse Pharmaceutique, École de Pharmacie, Université de Lausanne, B.E.P., CH-1015 Lausanne
  • Buchmann Michel Institute d’Analyse Pharmaceutique, École de Pharmacie, Université de Lausanne, B.E.P., CH-1015 Lausanne

DOI:

https://doi.org/10.6000/1929-5030.2019.08.02

Keywords:

Mixing energy, chemical interaction energy, Hansen's solubility parameters, Drago's interaction parameters, orthogonal matrix of experiments.

Abstract

This study aims to provide a new thermodynamic method for determining the value of Drago's four interaction parameters, namely Ea, Eb, Ca, and Cb (kcal1/2 mol-1/2). The method is based on the following fundamental novelties:

The values of the parameters Ea, Eb, Ca, and Cb are simultaneously determined for seven amphoteric substances. Thus, there are a total of 28 values to be determined, with each set consisting of seven substances. For the seven selected amphoteric substances, there are seven equations of the type:

V∂2h / n = (Ea Eb + Ca Cb)

Next, all possible 2-to-2 combinations of these seven substances are generated. For each 2-to-2 combination, one of the two is selected as a solute (2) and the other as a solvent (1), or vice versa. By measuring the mixing energy, ΔEmix (2.1), of these combinations, the 21 measurements available to extract the energy, ΔEint, of chemical bonds, according to the enclosed Buchmann paper:

ΔEmix (2.1) = (Ea1 Eb2 + Ca1 Cb2) + (Ea2 Eb1 + Ca2 Cb1)

Next, the seven equalities of the type V∂2h / nj = (Eaj Ebj + Caj Cbj) (kJ / mol) with j = 1,7 are put together with 21 equalities of the type ΔEint = (Eaj Ebj+1 + Caj Cbj+1) + (Eaj+1 Ebj + Caj+1 Cbj). This will generate a system comprising 28 equations for 28 unknown parameters. The resolution of this system will afford the 28 sought values of Drago's four parameters Ea, Eb, Ca, Cb for the seven selected substances.

References


[1] Hansen CM, Hansen Solubility parameters. A user’s Handbook, 2nd ed, Boca Raton, CRC Press 2013
[2] Hansen CM. 50 Years with solubility parameters-past and future. Progress in Organic Coatings 2004; 51: 77-84. https://doi.org/10.1016/j.porgcoat.2004.05.004
[3] Drago RS. Applications of Electrostatic-Covalent models in Chemistry. Gainsville, Surfside Scientific Publishers 1994.
[4] Drago RS. An E and C modification of the .beta.-.pi. solvation approach. J Am Chem Soc 1982; 104: 4524-29. https://doi.org/10.1021/ja00381a004
[5] Buchmann M, Ho NT, Lamartin R, Bonnamour I. New General Models for Evaluating Interactions in Non-Regular Solutions and Adsorption Energies Based on Both Hansen’s and
[6] Barton AFM. Handbook of Solubility Parameters and Cohesion Parameters, CRC Press, Boca Raton, Ann Arbor Boston London 1991.
[7] Marquard Donald W. Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation, Technometrics 1970; 12: 591-612. https://doi.org/10.1080/00401706.1970.10488699
[8] Höskuldsson A. PLS regression methods. Journal of Chemometrics 1988; 2: 211-328. https://doi.org/10.1002/cem.1180020306
[9] Afzelius L, Zamora I, Ridderström M, Andersson TB, Karlén A, et al. Competitive CYP2C9 Inhibitors: Enzyme Inhibition Studies, Protein Homology Modeling, and Three-Dimensional Quantitative Structure-Activity Relationship Analysis. Molecular Pharmacology 2001; 59: 909-19. https://doi.org/10.1124/mol.59.4.909
[10] Powell Michael F, Stewart Tracy, Otvos Laszlo Jr, Urge Laszlo, Gaeta Federico C A and al. Peptide Stability in Drug Development II Effect of Single Amino Acid Substitution and Glycosylation on Peptide Reactivity in Human Serum. Pharmaceutical Research 1993; 10: 1269-73. https://doi.org/10.1023/A:1018953309913
[11] Gander B, Johansen P, Ho Nam Tran, Merkle H. Thermodynamic Approach to Protein Microencapsulation into Poly(D, L-Lactide) by Spray Drying. Int J of Pharmaceutics 1996; 129: 51-61. https://doi.org/10.1016/0378-5173(95)04240-7
[12] Nguyen H?u Ph??c, Phan T?n L?u, Munafo A, Ruelle P, Ho Nam Tran and al. Determination of Partial Solubility Parameters of Lactose by Gas-Solid Chromatography. J Pharm Sci 1986; 75: 68-72. https://doi.org/10.1002/jps.2600750116
[13] Mitsuda H, Kawai F, Yamamoto A, Nakajima K. Carbon dioxide-protein interaction in a gas-solid phase. J Nutr Sci Vitaminol (Tokyo) 1975; 21: 151-62. https://doi.org/10.3177/jnsv.21.151
[14] Rowe R. Interactions in the ternary powder system microcrystalline cellulose, magnesium stearate and colloidal. International Journal of Pharmaceutics 1988; 45: 259-261. https://doi.org/10.1016/0378-5173(88)90296-7
[15] Rowe RC. Interactions in the ternary powder system microcrystalline cellulose, magnesium stearate and colloidal silica - a solubility parameter approach 1988; 41: 223-226.
[16] Backensfeld T, Müller BW, Kolter K. Interaction of NSA with cyclodextrins and hydroxypropyl cyclodextrin derivatives. Int J Pharmaceutics 1991; 74: 85-93. https://doi.org/10.1016/0378-5173(91)90225-D
[17] Prasad GK, Singh B, and Vijayaraghavan R. Respiratory Protection Against Chemical and Biological Warfare Agents. Defence Science Journal 2008; 58: 686-697. https://doi.org/10.14429/dsj.58.1692
[18] Lemaire V, Tobin FL, Greller LD, Cho CR, Suva LJ. Modeling the interactions between osteoblast and osteoclast activities in bone remodeling. Journal of Theoretical Biology 2004; 229: 293-309. https://doi.org/10.1016/j.jtbi.2004.03.023
[19] Hansen CM, Andersen BH. The affinities of organic solvents in biological systems. Am Ind Hyg Assoc J 1988; 49: 301- 308. https://doi.org/10.1080/15298668891379783
[20] Wang JC. Interaction between DNA and an Escherichia coliprotein. Journal of Molecular Biology 1971; 55: 523-533. https://doi.org/10.1016/0022-2836(71)90334-2
[21] Chautard E, Thierry-Mieg N, Ricard-Blum S. Interaction networks: From protein functions to drug discovery. A review Les réseaux d'interactions: de la Fonction des protéines à la conception de médicaments. Pathologie Biologie 2009; 57: 324-333. https://doi.org/10.1016/j.patbio.2008.10.004

Downloads

Published

2019-10-02

How to Cite

Tran, H. N., & Michel, B. (2019). How to Resolve the Problem of Drago’s Four Parameters in the Context of Molecular Interactions. Journal of Applied Solution Chemistry and Modeling, 8, 7–15. https://doi.org/10.6000/1929-5030.2019.08.02

Issue

Section

General Articles