Nanostructures and Thermal Properties of the Binary Mixture of DNA and a Zwitterionic Phospholipid in the Bulk

Authors

  • Ching-Mao Wu Industrial Technology Research Institute, Chutung, Hsin-Chu
  • Szu-Yin Lin Industrial Technology Research Institute, Chutung, Hsin-Chu

DOI:

https://doi.org/10.6000/1929-5030.2012.01.02.1

Keywords:

DNA-lipid complex, Phospholipid, Zwitterionic lipid, DNA condensation, Correlation function

Abstract

The mixtures of polyanionic DNA and zwitterionic phospholipids (ZL) have recently received much attention because of their potential for use as vectors in gene therapy or as a template for nanostructure construction. The past few studies on DNA-ZL system were carried out in their aqueous solutions and it was reported that a small fraction of DNA was capable of binding to zwitterionic lipids. However, it is still not known whether, as in the aqueous state, the DNA will be still intercalated between lipid bilayers in the bulk state. In the present study, we examined the DNA-ZL interactions in the bulk state by investigating a binary system composing of DNA and a zwitterionic lipid, 1,2-di(cis-9-octadecenoyl)-sn-glycero-3-phosphocholine (DOPC). The nanostructures and thermotropic phase behavior of this system were investigated using small angle X-ray scattering (SAXS) and differential scanning calorimeter (DSC), respectively. Our SAXS with one-dimensional correlation function results revealed that, as in the aqueous state, the DNA/DOPC bulk mixture forms a multilamellar phase, where the DNA was confined between the DOPC lipid bilayers. The thickness of the hydrophobic layers composed of lipids tails was greater in the DNA-DOPC mixture than in the pure DOPC. However, interestingly, the thickness of the hydrophilic layer composed of lipid headgroups in the DNA-DOPC mixture was same as in the pure DOPC even though in the former DNA was intercalated in this layer. Furthermore, according to the DSC endotherms we also observe that DNA induced a significant depression of gel-to-liquid crystalline phase transition temperature of DOPC bilayer. A thermodynamic model was presented that described the experimentally observed morphological and thermotropic phase behavior.

Author Biographies

Ching-Mao Wu, Industrial Technology Research Institute, Chutung, Hsin-Chu

Material and Chemical Research Laboratories

Szu-Yin Lin, Industrial Technology Research Institute, Chutung, Hsin-Chu

Material and Chemical Research Laboratories

References


[1] Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M et al. Lipofection: A highly efficient, lipid-mediated DNAtransfection procedure. Proc Natl Acad Sci USA 1987; 84: 7413-7. http://dx.doi.org/10.1073/pnas.84.21.7413
[2] Miller AD. Cationic liposomes for gene therapy. Angew Chem Int Ed 1998; 37: 1768-85. http://dx.doi.org/10.1002/(SICI)1521- 3773(19980803)37:13/143.0.CO;2-4
[3] Lasic DD, Strey H, Stuart MCA, Podgornik R, Frederik PM. The structure of DNA-liposome complexes. J Am Chem Soc 1997; 119: 832-3. http://dx.doi.org/10.1021/ja962713g
[4] Rädler JO, Koltover I, Salditt T, Safinya CR. Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 1997; 275: 810-4. http://dx.doi.org/10.1126/science.275.5301.810
[5] Koltover I, Salditt T, Rädler JO, Safinya CR. An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science 1998; 281: 78- 81. http://dx.doi.org/10.1126/science.281.5373.78
[6] Tanaka K, Okahata Y. A DNA-lipid complex in organic media and formation of an aligned cast film. J Am Chem Soc 1996; 118: 10679-3. http://dx.doi.org/10.1021/ja9617855
[7] Okahata Y, Kobayashi T, Tanaka K, Shimomura M. Anisotropic electric conductivity in an aligned DNA cast film. J Am Chem Soc 1998; 120: 6165-6. http://dx.doi.org/10.1021/ja980165w
[8] Ikkala O, ten Brinke G. Functional materials based on selfassembly of polymeric supramolecules. Science 2002; 295: 2407-9. http://dx.doi.org/10.1126/science.1067794
[9] Fukushima T, Hayakawa T, Inoue Y, Miyazaki K, Okahata Y. Intercalation behavior and tensile strength of DNA–lipid films for the dental application. Biomaterials 2004; 25: 5491-7. http://dx.doi.org/10.1016/j.biomaterials.2004.01.006
[10] Cui L, Miao J, Zhu L. Spacer length controlled obliquecolumnar to lamello-columnar mesophase transition in liquid crystalline DNA-discotic cationic lipid complexes. Macromolecules 2006; 39: 2536-45. http://dx.doi.org/10.1021/ma060001x
[11] Chesnoy S, Huang L. Structure and function of lipid-DNA complexes for gene delivery. Annu Rev Biophs Biomol Struct 2000; 29: 27-47. http://dx.doi.org/10.1146/annurev.biophys.29.1.27
[12] Wu CM, Liou W, Chen HL, Lin TL, Jeng US. Self-assembled structure of the binary complex of DNA with cationic lipid. Macromolecules 2004; 37: 4974-80. http://dx.doi.org/10.1021/ma049541p
[13] Wu CM, Chen CY, Lin SY, Chen HL. Effect of divalent cations on DNA condensed on the surface of rigid cationic membrane. React Funct Polym 2011; 71: 266-71. http://dx.doi.org/10.1016/j.reactfunctpolym.2010.09.009
[14] Tarahovsky YS, Khusainova RS, Gorelov AV, Nicolaeva TI, Deev AA, Dawson AK et al. DNA initiates polymorphic structural transition in lecithin. FEBS Lett 1996; 390: 133-6. http://dx.doi.org/10.1016/0014-5793(96)00643-6
[15] Pott T, Roux D. DNA intercalation in neutral multilamellar membranes. FEBS Lett 2002; 511: 150-4. http://dx.doi.org/10.1016/S0014-5793(01)03315-4
[16] Pott T, Colin A, Navailles L, Roux D. DNA intercalation in neutral multilamellar membranes: Experiments and theory. Interface Sci 2003; 11: 249-57. http://dx.doi.org/10.1023/A:1022139115433
[17] Francescangeli O, Stanic V, Gobbi L, Bruni P, Iacussi M, Tosi G et al. Structure of self-assembled liposome-DNAmetal complexes. Phys Rev E 2003; 67: 011904. http://dx.doi.org/10.1103/PhysRevE.67.011904
[18] McManus JJ, Rädler JO, Dawson KA. Does calcium turn a zwitterionic lipid cationic. J Phys Chem B 2003; 107: 9869- 75. http://dx.doi.org/10.1021/jp034463d
[19] McManus JJ, Rädler JO, Dawson KAJ. Phase behavior of DPPC in a DNA-calcium-zwitterionic lipid complex studied by small-angle X-ray scattering. Langmuir 2003; 19: 9630-7. http://dx.doi.org/10.1021/la034878q
[20] McManus JJ, Rädler JO, Dawson KAJ. Observation of a rectangular columnar phase in a DNA-calcium-zwitterionic lipid complex. J Am Chem Soc 2004; 126: 15966-7. http://dx.doi.org/10.1021/ja046105+
[21] Uhríková D, Hanulová M, Funari SS, Khusainova RS, er e
F, Balgav P. The structure of DNA–DOPC aggregates formed in presence of calcium and magnesium ions: A smallangle synchrotron X-ray diffraction study. Biochim Biophys Acta 2005; 1713: 15-28. http://dx.doi.org/10.1016/j.bbamem.2005.05.006
[22] Gromelski S, Brezesinski G. DNA condensation and interaction with zwitterionic phospholipids mediated by divalent cations. Langmuir 2006; 22: 6293-301. http://dx.doi.org/10.1021/la0531796
[23] Monnard P, Berclaz N, Conde-Frieboes K, Oberholzer T. Decreased solute entrapment in 1-palmitoyl-2-oleoyl-snglycero-3-phosphocholine liposomes prepared by freeze/thaw in the presence of physiological amounts of monovalent salts. Langmuir 1999; 15: 7504-9. http://dx.doi.org/10.1021/la990068w
[24] Malghani MS, Yang J. Stable binding of DNA to zwitterionic lipid bilayers in aqueous solutions. J Phys Chem B 1998; 102: 8930-33. http://dx.doi.org/10.1021/jp982413g
[25] Wu CM, Chen HL, Liou W, Lin TL, Jeng US. DNA-induced aggregation of zwitterionic oligolamellar liposome. Biomacromolecules 2004; 5: 2324-28. http://dx.doi.org/10.1021/bm0495396
[26] Wu CM, Chen HL, Lin TL, Liou W, Lin JS. A two-state model for the multilamellar structure of a DNA/cationic lipid complex in the bulk. Langmuir 2004; 20: 9432-6. http://dx.doi.org/10.1021/la0488856
[27] Nagle JF, Tristram-Nagle S. Structure of lipid bilayers. Biochim Biophys Acta 2000; 1469: 159-95. http://dx.doi.org/10.1016/S0304-4157(00)00016-2
[28] Pereira-Lachataignerais J, Pons R, Amenitsch H, Rappolt M, Sartori B, Lpez O. Effect of sodium dodecyl sulfate at different hydration conditions on dioleoyl phosphatidylcholine bilayers studied by grazing incidence X-ray diffraction. Langmuir 2006; 22: 5256-60. http://dx.doi.org/10.1021/la053207k
[29] Roe RJ. Methods of X-ray and Neutron Scattering in Polymer Science. New York: Oxford University Press 2004.
[30] Ornstein LS, Zernike F. Accidental deviations of density and opalescence at the critical point of a single substance. Proc Acad Sci Amsterdam 1914; 17: 793-806.
[31] Porod G. Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden systemen. Kolloid-Z 1951; 124: 83- 114. http://dx.doi.org/10.1007/BF01512792
[32] Porod G. Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden systemen. Kolloid-Z 1952; 125: 51- 122. http://dx.doi.org/10.1007/BF01519615
[33] Strobl GR, Schneider M. Direct evaluation of the electron density correlation function of partially crystalline polymers. J Polym Sci Polym Phys Ed 1980; 18: 1343. http://dx.doi.org/10.1002/pol.1980.180180614
[34] Debye P, Bueche AM. Scattering by an inhomogeneous solid. J Appl Phys 1949; 20: 518. http://dx.doi.org/10.1063/1.1698419
[35] Debye P, Anderson J HR, Brumberger H. Scattering by an inhomogeneous solid. II. The correlation function and its application. J Appl Phys 1957; 28: 679-83. http://dx.doi.org/10.1063/1.1722830
[36] Ruland W. Small-angle scattering of two-phase systems: determination and significance of systematic deviations from Porod's law. J Appl Cryst 1971; 4: 70-3. http://dx.doi.org/10.1107/S0021889871006265
[37] Vonk CG. The small-angle scattering of distorted lamellar structures. J Appl Cryst 1978; 11: 541-6. http://dx.doi.org/10.1107/S0021889878013837
[38] Thünemann AF, Lochhass KH. Self-assembly of solid polyelectrolyte-silicon-surfactant complexes. Langmuir 1998; 14: 6220-25. http://dx.doi.org/10.1021/la980229g
[39] Thünemann AF, Schnöller U, Nuyken O, Voit B. Selfassembled complexes of diazosulfonate polymers with low surface energies. Macromolecules 1999; 32: 7414. http://dx.doi.org/10.1021/ma990868d
[40] Nandan B, Chen HL, Liao CS, Chen SA. Self-assembly and crystallization in a supramolecular hairy rod polymer from the complex of polyaniline with
-methoxy poly(ethylene oxide) phosphates. Macromolecules 2004; 37: 9561-70. http://dx.doi.org/10.1021/ma048384r
[41] Koynova R, Caffrey M. Phases and phase transitions of the phosphatidylcholines. Biochim Biophys Acta 1998; 1376: 91- 145. http://dx.doi.org/10.1016/S0304-4157(98)00006-9
[42] Ultrich AS, Sami M, Watts A. Hydration of DOPC bilayers by differential scanning calorimetry. Biochim Biophys Acta 1994; 1191: 225-30. http://dx.doi.org/10.1016/0005-2736(94)90253-4

Downloads

Published

2012-12-31

How to Cite

Wu, C.-M., & Lin, S.-Y. (2012). Nanostructures and Thermal Properties of the Binary Mixture of DNA and a Zwitterionic Phospholipid in the Bulk. Journal of Applied Solution Chemistry and Modeling, 1(2), 79–88. https://doi.org/10.6000/1929-5030.2012.01.02.1

Issue

Section

General Articles