Combined Approach Using Capillary Electrophoresis and Molecular Modeling for an Understanding of Enantioselective Recognition Mechanisms

Authors

  • Abdalla A. Elbashir University of Khartoum

DOI:

https://doi.org/10.6000/1929-5030.2012.01.02.7

Keywords:

Capillary electrophoresis, chiral separation, Molecular modeling, recognition mechanism

Abstract

Many molecular modeling methods have been recently proposed as powerful tools to obtain information about the emerging interaction of inclusion complexes between chiral selectors and enantiomers and then to elucidate chiral recognition processes. In this review the contribution of chiral capillary electrophoresis in combination with molecular modeling to a better understanding of the chiral recognition mechanisms with CDs as chiral selectors will be discussed.

Author Biography

Abdalla A. Elbashir, University of Khartoum

Faculty of Science, Chemistry Department

References


[1] Nunez-Aguero CJ, Escobar-Llanos CM, Diaz D, Jaime C, Garduno-Juarez R. Chiral discrimination of ibuprofen isomers in -cyclodextrin inclusion complexes: experimental (NMR) and theoretical (MD, MM/GBSA) studies. Tetrahedron 2006; 62: 4162-72. http://dx.doi.org/10.1016/j.tet.2006.02.010
[2] Rizzi A. Fundamental aspects of chiral separations by capillary electrophoresis. Electrophoresis 2001; 22: 3079- 106. http://dx.doi.org/10.1002/1522- 2683(200109)22:15<3079::AID-ELPS3079>3.0.CO;2-F
[3] Jun H. Enantiomer separation of drugs by capillary electrophoresis using proteins as chiral selectors. J Chromatogr A 2000; 875: 235-54. http://dx.doi.org/10.1016/S0021-9673(99)01168-1
[4] Fanli S. Enantioselective determination by capillary electrophoresis with cyclodextrins as chiral selectors. J Chromatogr A 2000; 875: 89-122.
[5] Harris DC. Quantitative Chemical Analysis, 8th ed., W. H. Freeman, New York 2010.
[6] Rizzi AM, Kremser L. pK(a) shift-associated effects in enantioseparations by cyclodextrin- mediated capillary zone electrophoresis. Electrophoresis 1999; 20: 2715-22. http://dx.doi.org/10.1002/(SICI)1522- 2683(19990901)20:13<2715::AID-ELPS2715>3.0.CO;2-E
[7] Chankvetadze B, Linder W, Scriba GKE. Enantiomer separations in capillary electrophoresis in the case of equal binding constants of the enantiomers with a chiral selector: Commentary on the feasibility of the concept. Anal Chem 2004; 76: 4256-60. http://dx.doi.org/10.1021/ac0355202
[8] Chankvetadze B. Enantioseparations by using capillary electrophoretic techniques. The story of 20 and a few more years. J Chromatogr A 2007; 1168: 45-70. http://dx.doi.org/10.1016/j.chroma.2007.08.008
[9] Scriba GKE. Cyclodextrins in capillary electrophoresis enantioseparations - Recent developments and applications. J Sep Sci 2008; 31: 1991-11. http://dx.doi.org/10.1002/jssc.200800095
[10] Chaudhuri S, Chakraborty S, Sengupt PK. Encapsulation of serotonin in -cyclodextrin nano-cavities: Fluorescence spectroscopic and molecular modeling studies. J Mol Struct 2010; 975: 160-65. http://dx.doi.org/10.1016/j.molstruc.2010.04.014
[11] Chakraborty S, Bas S, Lahiri A, Basak S. Inclusion of chrysin in -cyclodextrin nanocavity and its effect on antioxidant potential of chrysin: A spectroscopic and molecular modeling approach. J Mol Struct 2010; 977: 180-8. http://dx.doi.org/10.1016/j.molstruc.2010.05.030
[12] Waibel B, Scheiber J, Meier C, Hammitzsch M, Baumann K, Scriba GKE, et al. Comparison of cyclodextrin-dipeptide inclusion complexes in the absence and presence of urea by means of capillary electrophoresis, nuclear magnetic resonance and molecular modeling. Eur J Org Chem 2007; 18: 2921-30. http://dx.doi.org/10.1002/ejoc.200700052
[13] Wei K, Luo S-W, Fu Y, Liu L, Guo Q-X. A theoretical study on bond dissociation energies and oxidation potentials of monolignols. J Mol Struct: Theochem 712: 197-205; 60: 815- 20.
[14] Carofiglio T, Fornasier R, Jicsinszky L, Saielli G, Tonellato U, Vetta R. Capillary electrophoresis, ROESY NMR and molecular modelling study of the inclusion complex - cyclodextrin/lipoic acid. Eur J Org Chem 2002; 7: 1191-96. http://dx.doi.org/10.1002/1099- 0690(200204)2002:73.0.CO;2-I
[15] Yan C, Xiu Z, Li X, Hao C. Molecular modeling study of - cyclodextrin complexes with (+)-catechin and (-)-epicatechin. J Mol Graph Model 2007; 26: 420-28. http://dx.doi.org/10.1016/j.jmgm.2007.01.010
[16] Jullian C, Brossard V, Gonzalez I, Alfaro M, Olea-Azar C. Cyclodextrins-kaempferol inclusion complexes: Spectroscopic and reactivity studies. J Solut Chem 2011: 727.
[17] Deng Y, Huang M-JU. Capillary electrophoretic separation and theoretical study of inclusion complexes of sulfobutyl ether -cyclodextrin with estrogens. Int J Quantum Chem 2004; 100: 746-52. http://dx.doi.org/10.1002/qua.20239
[18] Dos Santos HF, Duarte HA, Sinisterra RD, De Melo Mattos SV, De Oliveria LC, De Almeida WB. Quantum-mechanical study of the interaction of -cyclodextrin with methyl mercury chloride. Chem Phys Lett 2000; 319: 569-75. http://dx.doi.org/10.1016/S0009-2614(00)00087-7
[19] Eid EEM, Bustam AB, Suliman FEO, Sukari MA, Rasedee A, Fatah SS. Characterization of the inclusion complex of zerumbone with hydroxypropyl--cyclodextrin. Carbohydr 2011; 83: 1707-14. http://dx.doi.org/10.1016/j.carbpol.2010.10.033
[20] Bikadi Z, Fodor G, Hazai I, Hari P, Szeman J, Szente L, et al. Molecular modeling of enantioseparation of phenylazetidin derivatives by cyclodextrins. Chromatographia 2010; 71: S21. http://dx.doi.org/10.1365/s10337-009-1461-9
[21] Hameed AJM, Ibrahimb M, ElHaesc H. Computational notes on structural, electronic and QSAR properties of Fulleropyrrolidine-1-carbodithioic acid 2; 3 and 4-substitutedbenzyl esters. J Mol Struct- Theochem 2007; 809: 131-36. http://dx.doi.org/10.1016/j.theochem.2007.01.021
[22] Essa AH, Ibrahim M, Ali Jameel Hameed AJ, Al-Masoudi NA. Theoretical investigation of 3'-subtituted-2'-3'- dideoxythymidines related to AZT QSAR infrared and substituent electronic effect studies"" ARKIVOC (xiii) 2008; 255-65.
[23] Ibrahim M, Saleh NA, Hameed AJ, Elshemey WM, Elsayed Structural and Electronic Properties of new Fullerene Derivatives and their Possible Application as HIV-1 Protease Inhibitors A.A. Spectrochimica Acta Part A 2010; 75: 702- 709. http://dx.doi.org/10.1016/j.saa.2009.11.042
[24] Ibrahim M, Mahmoud AA, Osman O, Abd El-Aal M, Eid M. Molecular Spectroscopic Analyses of Gelatin. Spectrochimica Acta Part A 2011; 81: 724-29. http://dx.doi.org/10.1016/j.saa.2011.07.012
[25] Ibrahim M, Saleh NA, Elshemey WM, Elsayed AA. Fullerene Derivative as anti-HIV Protease Inhibitor: Molecular Modeling and QSAR Approaches. Mini Rev Med Chem 2012; 12: 447- 51. http://dx.doi.org/10.2174/138955712800493762
[26] Li Z, Couzijn EPA, Zhang X. Intrinsic properties of - cyclodextrin complexes with benzoate derivatives in the gas phase: An experimental and theoretical study. J Phys Chem B 2012; 116: 943-50. http://dx.doi.org/10.1021/jp210329a
[27] Li W, Lu B, Chen F, Yang F, Wang Z. Host-guest complex of cypermethrin with -cyclodextrin: A spectroscopy and theoretical investigation. J Mol Struct 2011; 990: 244-52. http://dx.doi.org/10.1016/j.molstruc.2011.01.053
[28] Liu P, Zhang D, Zhan J. Investigation on the inclusions of PCB52 with cyclodextrins by performing DFT calculations and molecular dynamics simulations. J Phys Chem A 2010; 114: 13122-28. http://dx.doi.org/10.1021/jp109306v
[29] Khedkar JK, Gobre VV, Pinjari RV, Gejji SP. Electronic structure and normal vibrations in (+)-catechin and (-)- epicatechin encapsulated -cyclodextrin. J Phys Chem A 2010; 114: 7725-32. http://dx.doi.org/10.1021/jp102304j
[30] Kahle C, Deubner R, Schollmayer C, Scheiber J, Baumann K, Holzgrabe U. NMR spectroscopic and molecular modelling studies on cyclodextrin-dipeptide inclusion complexes. Eur J Org Chem 2005; 8: 1578-89. http://dx.doi.org/10.1002/ejoc.200400673
[31] Stewart JJP. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. J Mol Model 2007; 13: 1173-13. http://dx.doi.org/10.1007/s00894-007-0233-4
[32] Lipkowitz KB. Atomistic modeling of enantioselection: Applications in chiral chromatography. Theor Comput Chem 1998; 5: 329-79. http://dx.doi.org/10.1016/S1380-7323(98)80013-7
[33] Lipkowitz KB. Atomistic modeling of enantioselection in chromatography. J Chromatogr A 2001; 906: 417-42. http://dx.doi.org/10.1016/S0021-9673(00)00946-8
[34] Lammerhofer M. Chiral recognition by enantioselective liquid chromatography: Mechanisms and modern chiral stationary phases. J Chromatogr A 2010; 1217: 814-56. http://dx.doi.org/10.1016/j.chroma.2009.10.022
[35] Bikádi Z, Fodor G, Hazai I, Hári P, Szemán J, Szente L, et al. Molecular modeling of enantioseparation of phenylazetidin derivatives by cyclodextrins. Chromatographia 2010; 71: S21-S28. http://dx.doi.org/10.1365/s10337-009-1461-9
[36] Zhou ZM, Li X, Chen XP, Fang M, Dong X. Separation performance and recognition mechanism of mono(6-deoxyimino)- -cyclodextrins chiral stationary phases in highperformance liquid chromatography. Talanta 2010; 82: 775- 84. http://dx.doi.org/10.1016/j.talanta.2010.05.052
[37] Li X, Zhou ZM, Xu D, Zhang J. Enantiomeric separation in high-performance liquid chromatography using novel - cyclodextrin derivatives modified by R-configuration groups as chiral stationary phases. Talanta 2011; 84: 1080-92. http://dx.doi.org/10.1016/j.talanta.2011.03.023
[38] Shi JH, Ding ZJ, Hu Y. Experimental and theoretical studies on the enantioseparation and chiral recognition of mandelate and cyclohexylmandelate on permethylated -Cyclodextrin chiral stationary phase. Chromatographia 2011; 74: 319-25. http://dx.doi.org/10.1007/s10337-011-2069-4
[39] Shi JH, Ding ZJ, Hu Y. Theoretical study on chiral recognition mechanism of methyl mandelate enantiomers on permethylated -cyclodextrin. J Mol Model 2012; 18: 803- 13. http://dx.doi.org/10.1007/s00894-011-1118-0
[40] Bednarek E, Bocian W, Michalska K. NMR and molecular modeling study, as complementary techniques to capillary electrophoresis method to elucidate the separation mechanism of linezolid enantiomers. J Chromatogr A 2008; 1193: 164-71. http://dx.doi.org/10.1016/j.chroma.2008.04.008
[41] Michalska K, Pajchel G, Tyski S. NMR and molecular modeling study, as complementary techniques to capillary electrophoresis method to elucidate the separation mechanism of linezolid enantiomers. J Chromatogr A 2008; 1180: 179-86. http://dx.doi.org/10.1016/j.chroma.2007.11.110
[42] Huang M-J, Quan Z, Liu Y-M. Computational modeling of inclusion complexes of -cyclodextrin with enantiomers of salsolinol, N-methylsalsolinol, and 1-benzyltetrahydroisoquinoline. Int J Quantum Chem 2009; 109: 81- 90. http://dx.doi.org/10.1002/qua.21852
[43] Kim H, Choi Y, Kim J-I, Jeong K, Jung S. Orientations of Polycrystalline ZnO at the Buried Interface of Oxide Thin Film Transistors (TFTs): A Grazing Incidence X-ray Diffraction Study. Bull Korean Chem Soc 2009; 30: 1373.
[44] Mofaddel N, Adoubel AA, Morin CJ, Desbène P-L, Dupas G. Molecular modeling of complexes between two amino acids and copper(II): Correlation with Ligand Exchange Capillary Electrophoresis. J Mol Struct 2010; 975: 220-6. http://dx.doi.org/10.1016/j.molstruc.2010.04.027
[45] Aït Adoubel A, Morin CJ, Mofaddel N, Dupas G, Desbène PL. Enantioseparation of underivatised amino acids by ligand exchange capillary electrophoresis in a counterelectroosmotic mode. Anal Bioanal Chem 2009; 394: 597- 608. http://dx.doi.org/10.1007/s00216-009-2694-z
[46] Zhang G, Sun Q, Hou Y, Hong Z, Zhang J, Zhao L, et al. New mathematic model for predicting chiral separation using molecular docking: Mechanism of chiral recognition of triadimenol analogues. J Sep Sci 2009; 32: 2401-407. http://dx.doi.org/10.1002/jssc.200900012
[47] Sohajda T, Béni S, Varga E, Iványi R, Rácz A, Szente L, et al. Characterization of aspartame-cyclodextrin complexation. J Pharm Biomed Anal 2009; 50: 737-45. http://dx.doi.org/10.1016/j.jpba.2009.06.010
[48] Elbashir AA, Suliman FEO, Saad B, Aboul-Enein HY. Determination of aminoglutethimide enantiomers in pharmaceutical formulations by capillary electrophoresis using methylated--cyclodextrin as a chiral selector and computational calculation for their respective inclusion complexes. Talanta 2009; 77: 1388-93. http://dx.doi.org/10.1016/j.talanta.2008.09.029
[49] Elbashir AA, Suliman FEO, Saad B, Aboul-Enein HY. Capillary electrophoretic separation and computational modeling of inclusion complexes of -cyclodextrin and 18- crown-6 ether with primaquine and quinocide. Biomed Chromatogr 2010; 24: 393-8.
[50] Elbashir AA, Saad B, Ali ASM, Saleh MI, Aboul-Enein HY. Determination of quinocide as impurity in primaquine tablets by capillary zone electrophoresis. Biomed Chromatogr 2009; 23: 464-71. http://dx.doi.org/10.1002/bmc.1137
[51] Al Azzam KM, Saad B, Adnan R, Saleh MI. Enantioselective determination of modafinil in pharmaceutical formulations by capillary electrophoresis, and computational calculation of their inclusion complexes. Microchimica Acta 2009; 166: 311- 7. http://dx.doi.org/10.1007/s00604-009-0209-4
[52] Al Azzam KM, Saad B, Adnan R, Aboul-Enein HY. Hollow fiber liquid-phase microextraction for the determination of trace amounts of rosiglitazone (anti-diabetic drug) in biological fluids using capillary electrophoresis and high performance liquid chromatographic methods. Anal Chim Acta 2010; 674: 249-55. http://dx.doi.org/10.1016/j.aca.2010.06.046
[53] Holm R, Schönbeck C, Askjær S, Jensen H, Østergaard J. Complexation of tauro- and glyco-conjugated bile salts with -cyclodextrin and hydroxypropyl- -cyclodextrin studied by affinity capillary electrophoresis and molecular modelling. J Sep Sci 2011; 34: 3221-30. http://dx.doi.org/10.1002/jssc.201100479
[54] Elbashir AA, Suliman FO. Computational modeling of capillary electrophoretic behavior of primary amines using dual system of 18-crown-6 and -cyclodextrin. J Chromatogr A 2011; 1218: 5344-51. http://dx.doi.org/10.1016/j.chroma.2011.06.030
[55] Li W, Liu C, Tan G, Zhang X, Zhu Z, Chai Y. Molecular modeling study of chiral separation and recognition mechanism of -adrenergic antagonists by capillary electrophoresis. Int J Mol Sci 2012; 13: 710-25. http://dx.doi.org/10.3390/ijms13010710
[56] Li W, Zhao L, Tan G, Sheng C, Zhang X, Zhu Z, et al. Enantioseparation of the new antifungal drug iodiconazole and structurally related triadimenol analogues by CE with neutral cyclodextrin additives. Chromatographia 2011; 73: 1009-14. http://dx.doi.org/10.1007/s10337-010-1897-y
[57] Li W, Tan G, Zhao L, Chen X, Zhang X, Zhu Z, et al. Computer-aided molecular modeling study of enantioseparation of iodiconazole and structurally related triadimenol analogues by capillary electrophoresis: Chiral recognition mechanism and mathematical model for predicting chiral separation. Analytica Chimica Acta 2012; 718: 138-47. http://dx.doi.org/10.1016/j.aca.2012.01.007
[58] Servais A-C, Rousseau A, Dive G, Frederich M, Crommen J, Fillet M. Combination of capillary electrophoresis, molecular modelling and nuclear magnetic resonance to study the interaction mechanisms between single-isomer anionic cyclodextrin derivatives and basic drug enantiomers in a methanolic background electrolyte. J Chromatogr A 2012; 1232: 59-64. http://dx.doi.org/10.1016/j.chroma.2011.10.010
[59] Suliman FO, Elbashir AA. Enantiodifferentiation of chiral baclofen by -cyclodextrin using capillary electrophoresis: A molecular modeling approach. J Mol Struct 2102; 1019: 43- 49.

Downloads

Published

2012-12-31

How to Cite

Elbashir, A. A. (2012). Combined Approach Using Capillary Electrophoresis and Molecular Modeling for an Understanding of Enantioselective Recognition Mechanisms. Journal of Applied Solution Chemistry and Modeling, 1(2), 121–126. https://doi.org/10.6000/1929-5030.2012.01.02.7

Issue

Section

General Articles