Excess Properties and Theoretical Evaluation on Ternary Systems of 1-Pentanol in n-Hexane Solution with some Organic Compounds at 313 K Using Ultrasonic Technique

Authors

  • P.S. Syed Ibrahim Research Scholar, PG and Research Department of Chemistry, Presidency College, Chennai, India
  • J. Edward Jeyakumar Assistant Professor, PERI Institute of Technology, Chennai, India
  • S. Chidambara vinayagam Principal, RV Govt. Arts College, Chenglepet, Tamil Nadu, India

Keywords:

Charge-transfer complex, stability constant, excess acoustic impedance, Chi-square, molecular interactions.

Abstract

The parameters like density(ρ), ultrasonic velocity (U), and viscosity (η) were experimentally measured. The excess parameters like adiabatic compressibility, acoustic impedance, free volume, free length, internal pressure and ultrasonic velocity in addition to K value were computed from the experimental data. The variation of these parameters at a constant temperature for the three ternary systems, namely OMP + 1-pentanol+n-hexane, N, N-DMF + 1-pentanol+n-hexane, and MMP + 1-pentanol+n-hexane, have been discussed in the light of molecular interaction. Further, certain theoretical studies are validated with respect to experimental velocities, and the Chi-square test for the goodness of fit is also applied to check the validity of such theoretical models.

References

Rowlinson JS. Liquid and liquid mixtures. 3rd ed. Butterworth Scientific: London; 1982.

Acree WE. Thermodynamic properties of non-electrolytic solutions. Academic Press: New York; 1984.

Jerry March. Advanced organic chemistry. John Wiley: New York; 1992.

Jayakumar S, Karunanithi N, Kannappan V. Indian J pure applied Phys. 1996; 34: 761-6.

Seiichiro Fujisawa, Mariko Ishihara, Yukio murakami, Toshiko Atsumi, Yoshinori Kadoma, Ichro Yokoe. In vivo 2007; 21: 181 – 8.

Murakami Y, Ito S, Atsumi T, Fujisawa S. InVivo 2005; 19: 1039 - 6.

Hirata Y, Murakami M, Shoji Y, Kadoma Y, Fujisawa S. Anticancer Res. 2005; 25: 3367-8.

Okada N, Hirata A, Murakami Y, Shoji M, Sakagami H, Fujisawa S. Anticancer Res. 2005; 25: 3236-35.

Atsumi T, Murakami Y, Shibuya K, Tonosaki K, Fujisawa S. Anticancer Res. 2005; 25: 4029-8.

Murakami Y, Shoji M, Hirata A, Tanaka S, Yokoe I, Fujisawa S. Arch Biochem Biophys. 2005; 434: 326 -7. https://doi.org/10.1016/j.abb.2004.11.013

Murakami Y, Shoji M, Hirata A, Tanaka S, Hanazawa S, YokoeI, Fujisawa S. Arch Biochem Biophys. 2006; 449: 171-8. https://doi.org/10.1016/j.abb.2006.02.005

Fujisawa S, Atsumi T, Murakami Y, Kadoma Y. Arch Immunol Ther Exp (Warsz). 2005; 53: 28-11.

Atsumi T, Fujisawa S, Tonosaki K. A comparative study of the antioxidant/pro-oxidant activities of eugenol and isoeugenol with various concentrations and oxidation conditions. Toxicol in vitro. 2005; 19: 1025-9. https://doi.org/10.1016/j.tiv.2005.04.012

Fujisawa S, Atsumi T, Ishihara M, Kadoma Y, Cytotoxicity. ROS-generation activity and radical-scavenging activity of curcumin and related compounds. Anticancer Res. 2004; 24: 563-4.

Murakami Y, Shoji M, Hanazawa S, Tanaka S, Fujisawa S. Preventive effect of bis-eugenol, a eugenol ortho dimer, on lipopolysaccharide-stimulated nuclear factor kappa B activation and inflammatory cytokine expression in macrophages. Biochem Pharmacol. 2003; 66: 1061-6. https://doi.org/10.1016/S0006-2952(03)00419-2

Ogiwara T, Satoh K, Negoro T, Okayasu H, Sakagami H, Fujisawa S. Inhibition of NO production by activated macrophages by phenol carboxylic acid monomers and polymers with radical scavenging activity. Anticancer Res. 2003; 23: 1317-7.

Ogiwara T, Satoh K, Kadoma Y, Murakami Y, Unten S, Atsumi T, Sakagami H, Fujisawa S. Radical scavenging activity and cytotoxicity of ferulic acid. Anticancer Res. 2002; 22: 11-7.

Fujisawa S, Atsumi T, Satoh K, Sakagami H. Interaction between 2-ethoxy benzoic acid (EBA) and eugenol, and related changes in cytotoxicity, J Dent Res. 2003; 82: 43-5. https://doi.org/10.1177/154405910308200110

Fujisawa S, Atsumi T, Kadoma Y, Sakagami H. Antioxidant and prooxidant action of eugenol-related compounds and their cytotoxicity. Toxicology. 2002; 177: 39-6. https://doi.org/10.1016/S0300-483X(02)00194-4

Fujisawa S, Atsumi T, Satoh K et al. Radical generation, radical-scavenging activity, and cytotoxicity of eugenol-related compounds, In Vitr Mol Toxicol. 2000; 13: 269-12.

Holder AH. Rational design of dental materials using computational chemistry. Transactions of the Fourth International Congress of Dental Materials, Academy of Dental Materials and Japanese Society for Dental Materials and Devices Transaction. 2002; 16: 55-17,

Syed Ibrahim PS, Senthil Murugan J, Chidambaravinayagam S, Edward Jeyakumar J. International Journal of Innovative Technology and Exploring Engineering. 2019; 8(10S):99-7.

National Library of Medicines.

[home page on the internet]

[cited 2020 March 14]. Available from: https://pubchem.ncbi.nim.nih.gov/

Vogel AL. Textbook of Practical organic chemistry. 5th ed. John Wiley: New York; 1989.

Redlich O, Kister AT. Ind Eng Chem. 1948; 40: 345. https://doi.org/10.1021/ie50458a035

Nomoto O. J Phys Soc Jpn. 1958; 13: 1528. https://doi.org/10.1143/JPSJ.13.1524

Van Dael W, Vangeel E. Proc. 1st International Conference on Calorimetry and Thermodynamics: Warsaw. 1969; p. 555.

Junje Z. J Chem Univ Sci Tech. 1984; 14: 298.

Baldev Raj, Rajendran V, Palanichamy P. Science and Technology of ultrasonics. Narosa Publishing House Pvt. Ltd.: New Delhi; 2007.

Pearson K. Fundamentals of Mathematical Statistics., AS Chan and Company: New Delhi; 1978.

Marwein BL., Bhatt SN. Acustica. 1985; 58: 243-8. https://doi.org/10.1111/j.2044-8325.1985.tb00199.x

Kannappan V, Kothai S. Advances of Ultrasonics. 2001: 124-6. https://doi.org/10.1080/00319100290010437

Kannappan V, Jaya Shanthi R, Malar EJP, Phys. Chem. Liq. 2000; 40(4): 507-19.

Kumar R, Mahesh R, Shanmugapriyan B, Kannappan V. Ind. J. Pure. Appl. Phys. 2012; 43: 633-8.

Fort RJ, Moore WR. Trans Faraday Soc. 1965; 61: 2102. https://doi.org/10.1039/tf9656102102

Kannappan AN, Rajendran V. Ind. J. Pure. Appl. Phys. 1992; 30: 240-3.

Sridevi U, Samatha K, Viswanatha Sarma A. J. pure Appl. Ultrason. 2004; 26: 1-11.

Islam MR, Quadri. Thermo. Chim. Act. 1987; 115: 335-7. https://doi.org/10.1016/0040-6031(87)88379-X

Kannappan V, Askar Ali SJ, Abdul Mahaboob PA. Ind. J. Pure. Appl. Phys. 2009; l 47: 97-6.

Babuja S, Oza S. J. Pure and Applied Ultrasonics. 2002; 24: 580-3.

Rama Rao GV, Triveni M, Ramachandran D. Int. J. Eng. Res. 2015; 3 (special issue).

Fakruddin Babavali SK, Shakira P, Srinivasu Ch, Narendra K. Karbala International Journal of Modern Science. 2015; 12: 172-6.

Radha Sirija Maganti, Gayathri Devi Nanduri, Raghu Sai Sarath Dittakavi, Ramachandran Dittakavi, Karbala International Journal of Modern Science. 2018; 4: 126-8. https://doi.org/10.1016/j.kijoms.2017.12.003

Vasantharani P, Muthu Shailaja S, Kannappan AN, Ezhil Pavai R. Journal of Applied Sciences. 2008; 8(12): 2329-4. https://doi.org/10.3923/jas.2008.2329.2332

Downloads

Published

2021-07-14

How to Cite

Ibrahim, P. S. ., Jeyakumar, J. E. ., & vinayagam, S. C. . (2021). Excess Properties and Theoretical Evaluation on Ternary Systems of 1-Pentanol in n-Hexane Solution with some Organic Compounds at 313 K Using Ultrasonic Technique . Journal of Applied Solution Chemistry and Modeling, 10, 1–13. Retrieved from https://www.lifescienceglobal.com/pms/index.php/JASCM/article/view/7369

Issue

Section

General Articles