Hyperbranched Polymers in a Supercritical Fluid: Recent Progress on Phase Behavior and Modeling

Authors

  • Yue Wu Virginia Commonwealth University

DOI:

https://doi.org/10.6000/1929-5030.2013.02.01.5

Keywords:

Dendritic structure, phase equilibrium, high pressure, PC-SAFT, lattice cluster theory, Boltorn

Abstract

Abstract: The advent of new chemistries has led to the creation of well-defined, novel polymer architectures. Due to their unique structures, hyperbranched polymers are receiving more and more attention and widely applied in various fields in the past two decades. In spite of their increasingly mature applications, some fundamental properties of star polymers are still lacking, such as their solubility behavior in different solvents, especially at high pressures. On the other hand, supercritical fluids (SCF) are ideal environmentally preferable solvents for polymer processing. This article intends to review the recent progress on the experimental determination and modeling of phase behavior of hyperbranched polymer systems, especially hyperbranched polymers in SCF. Following a brief description of the definition, properties, and applications of hyperbranched polymers, a detailed overview will be presented on the recent studies on phase behavior of hyperbranched polymer systems. Emphasis will be laid on the high-pressure phase behavior of polymers in SCF. Different models proposed by previous researchers will be then compared for the purpose of accurately predicting the phase equilibrium data. Finally current challenges will be discussed for future work.

Author Biography

Yue Wu, Virginia Commonwealth University

Department of Chemical and Life Science Engineering

References


[1] McHugh MA, Krukonis VJ. Supercritical fluid extraction: principles and practice. Boston: Butterworth-Heinemann 1994.
[2] Kirby CF, McHugh MA. Phase behavior of polymers in supercritical fluid solvents. Chem Rev 1999; 99: 565-602. http://dx.doi.org/10.1021/cr970046j
[3] Gao C, Yan D. Hyperbranched polymers: from synthesis to applications. Prog Polym Sci 2004; 29: 183-275. http://dx.doi.org/10.1016/j.progpolymsci.2003.12.002
[4] Ranganathan K, Deng R, Kainthan RK, Wu C, Brooks DE, Kizhakkedathu JN. Synthesis of thermoresponsive mixed arm star polymers by combination of RAFT and ATRP from a multifunctional core and its self-assembly in water. Macromolecules 2008; 41: 4226-34. http://dx.doi.org/10.1021/ma800094d
[5] Sunder A, Hanselmann R, Frey H, Mulhaupt R. Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization. Macromolecules 1999; 32: 4240-6. http://dx.doi.org/10.1021/ma990090w
[6] Kim YH. Hyperbranched polymers 10 years after. J Polym Sci A Polym Chem 1998; 36: 1685-98. http://dx.doi.org/10.1002/(SICI)1099- 0518(199808)36:113.0.CO;2-R
[7] Seiler M. Hyperbranched polymers: Phase behavior and new applications in the field of chemical engineering. Fluid Phase Equilib 2006; 241: 155-74. http://dx.doi.org/10.1016/j.fluid.2005.12.042
[8] Frechet J, Tomalia D. Dendrimers and other dendritic polymers. West Sussex, UK: John Wiley & Sons Ltd. 2001. http://dx.doi.org/10.1002/0470845821
[9] Seiler M. Dendritic polymers - Interdisciplinary research and emerging applications from unique structural properties. Chem Eng Technol 2002; 25: 237-53. http://dx.doi.org/10.1002/1521-4125(200203)25:33.0.CO;2-4
[10] Jikei M, Kakimoto M. Hyperbranched polymers: a promising new class of materials. Prog Polym Sci 2001; 26: 1233-85. http://dx.doi.org/10.1016/S0079-6700(01)00018-1
[11] Yates CR, Hayes W. Synthesis and applications of hyperbranched polymers. Eur Polym J 2004; 40: 1257-81. http://dx.doi.org/10.1016/j.eurpolymj.2004.02.007
[12] Ye ZB, Zhu SP. Newtonian flow behavior of hyperbranched high-molecular-weight polyethylenes produced with a Pddiimine catalyst and its dependence on chain topology. Macromolecules 2003; 36: 2194-7. http://dx.doi.org/10.1021/ma0340053
[13] Ye ZB, AlObaidi F, Zhu SP. Melt rheological properties of branched polyethylenes produced with Pd- and Ni-diimine catalysts. Macromol Chem Phys 2004; 205: 897-906. http://dx.doi.org/10.1002/macp.200300128
[14] Guan ZB, Cotts PM, McCord EF, McLain SJ. Chain walking: a new strategy to control polymer topology. Science 1999; 283: 2059-62. http://dx.doi.org/10.1126/science.283.5410.2059
[15] Seiler M, Arlt W, Kautz H, Frey H. Experimental data and theoretical considerations on vapor-liquid and liquid-liquid equilibria of hyperbranched polyglycerol and PVA solutions. Fluid Phase Equilib 2002; 201: 359-79. http://dx.doi.org/10.1016/S0378-3812(02)00082-1
[16] Seiler M, Kohler D, Arlt W. Hyperbranched polymers: new selective solvents for extractive distillation and solvent extraction. Sep Purif Technol 2002; 29: 245-63. http://dx.doi.org/10.1016/S1383-5866(02)00163-6
[17] Seiler M, Buggert M, Kavarnou A, Arlt W. From alcohols to hyperbranched polymers: The influence of differently branched additives on the vapor-liquid equilibria of selected azeotropic systems. J Chem Eng Data 2003; 48: 933-7. http://dx.doi.org/10.1021/je025644w
[18] Seiler M, Jork C, Kavarnou A, Arlt W, Hirsch R. Separation of azeotropic mixtures using hyperbranched polymers or ionic liquids. AIChE J 2004; 50: 2439-54. http://dx.doi.org/10.1002/aic.10249
[19] Rolker J, Seiler M, Mokrushina L, Arlt W. Potential of branched polymers in the field of gas absorption: Experimental gas Solubilities and Modeling. Ind Eng Chem Res 2007; 46: 6572-83. http://dx.doi.org/10.1021/ie061637f
[20] Wang JL, Ye ZB, Zhu SP. Topology-engineered hyperbranched high-molecular-weight polyethylenes as lubricant viscosity-index improvers of high shear stability. Ind Eng Chem Res 2007; 46: 1174-8. http://dx.doi.org/10.1021/ie0613624
[21] Chen Y, Shen Z, Frey H, Perez-Prieto J, Stiriba SE. Synergistic assembly of hyperbranched polyethylenimine and fatty acids leading to unusual supramolecular nanocapsules. Chem Commun 2005: 755-7. http://dx.doi.org/10.1039/b414046j
[22] Kim TH, Cook SE, Arote RB, Cho MH, Nah JW, Choi YJ, et al. A degradable hyperbranched poly(ester amine) based on poloxamer diacrylate and polyethylenimine as a gene carrier. Macromol Biosci 2007; 7: 611-9. http://dx.doi.org/10.1002/mabi.200600245
[23] Wan DC, Yuan JJ, Pu HT. Macromolecular nanocapsule derived from hyperbranched polyethylenimine (HPEI): mechanism of guest encapsulation versus molecular parameters. Macromolecules 2009; 42: 1533-40. http://dx.doi.org/10.1021/ma8026707
[24] Suttiruengwong S, Rolker J, Smirnova I, Arlt W, Seiler M, Luderitz L, et al. Hyperbranched polymers as drug carriers: Microencapsulation and release kinetics. Pharm Dev Technol 2006; 11: 55-70. http://dx.doi.org/10.1080/10837450500463919
[25] Jang WD, Selim KMK, Lee CH, Kang IK. Bioinspired application of dendrimers: From bio-mimicry to biomedical applications. Prog Polym Sci 2009; 34: 1-23. http://dx.doi.org/10.1016/j.progpolymsci.2008.08.003
[26] Irfan M, Seiler M. Encapsulation using hyperbranched polymers: from research and technologies to emerging applications. Ind Eng Chem Res 2010; 49: 1169-96. http://dx.doi.org/10.1021/ie900216r
[27] Reverchon E. Supercritical antisolvent precipitation of microand nano-particles. J Supercrit Fluids 1999; 15: 1-21. http://dx.doi.org/10.1016/S0896-8446(98)00129-6
[28] Cooper AI. Polymer synthesis and processing using supercritical carbon dioxide. J Mater Chem 2000; 10: 207-34. http://dx.doi.org/10.1039/a906486i
[29] Tomasko DL, Li HB, Liu DH, Han XM, Wingert MJ, Lee LJ, et al. A review of CO(2) applications in the processing of polymers. Ind Eng Chem Res 2003; 42: 6431-56. http://dx.doi.org/10.1021/ie030199z
[30] Yeo SD, Kiran E. Formation of polymer particles with supercritical fluids: A review. J Supercrit Fluids 2005; 34: 287-308. http://dx.doi.org/10.1016/j.supflu.2004.10.006
[31] Perstorp
[homepage on the Internet]. Sweden: Perstorp Inc.; c2012
[cited 2012 Nov 22]: Available from: www.perstorp.com/upload/boltorn_0910.pdf
[32] Gregorowicz J, Fras Z, Parzuchowski P, Rokicki G, Kusznerczuk M, Dziewulski S. Phase behaviour of hyperbranched polyesters and polyethers with modified terminal OH groups in supercritical solvents. J Supercrit Fluids 2010; 55: 786-96. http://dx.doi.org/10.1016/j.supflu.2010.09.005
[33] Tryznowski M, Tomczyk K, Fras Z, Gregorowicz J, Rokicki G, Wawrzynska E, et al. Aliphatic hyperbranched polycarbonates: synthesis, characterization, and solubility in supercritical carbon dioxide. Macromolecules 2012; 45: 6819-29. http://dx.doi.org/10.1021/ma3011153
[34] Domanska U, Zolek-Tryznowska Z. Temperature and composition dependence of the density and viscosity of binary mixtures of (hyperbranched polymer, B-U3000+1- alcohol, or ether). J Chem Thermodyn 2009; 41: 821-8. http://dx.doi.org/10.1016/j.jct.2009.02.003
[35] Domanska U, Zolek-Tryznowska Z, Pobudkowska A. Separation of hexane/ethanol Mixtures. LLE of ternary systems (ionic liquid or hyperbranched polymer plus ethanol plus hexane) at T=298.15 K. J Chem Eng Data 2009; 54: 972-6. http://dx.doi.org/10.1021/je8007588
[36] Domanska U, Paduszynski K, Zolek-Tryznowska Z. Liquidliquid phase equilibria of binary systems containing hyperbranched polymer B-U3000: experimental study and modeling in terms of lattice cluster theory. J Chem Eng Data 2010; 55: 3842-6. http://dx.doi.org/10.1021/je100334n
[37] Domanska U, Zolek-Tryznowska Z. Measurements of the density and viscosity of binary mixtures of (hyper-branched polymer, B-H2004+1-butanol, or 1-hexanol, or 1-octanol, or methyl tert-butyl ether). J Chem Thermodyn 2010; 42: 651-8. http://dx.doi.org/10.1016/j.jct.2009.12.005
[38] Domanska U, Paduszynski K, Zolek-Tryznowska Z. (Liquid plus liquid) equilibria of binary systems containing hyperbranched polymer Boltorn H2004-Experimental study and modelling in terms of lattice-cluster theory. J Chem Thermodyn 2011; 43: 167-71. http://dx.doi.org/10.1016/j.jct.2010.08.013
[39] Domanska U, Zolek-Tryznowska Z. Solubility of hyperbranched polymer, Boltorn W-3000, in alcohols, ethers and hydrocarbons. J Chem Thermodyn 2010; 42: 1304-9. http://dx.doi.org/10.1016/j.jct.2010.05.013
[40] Domanska U, Zo ek-Tryznowska Z, Tshibangu MM, Ramjugernath D, Letcher TM. Separation of an alcohol and a tetrahydrofuran, methyl tert-butyl ether, or ethyl tert-butyl ether by solvent extraction with a hyperbranched polymer at T = 298.15 K. J Chem Eng Data 2010; 55: 2879-85. http://dx.doi.org/10.1021/je901038q
[41] Zeiner T, Enders S. Phase behavior of hyperbranched polymer solutions in mixed solvents. Chem Eng Sci 2011; 66: 5244-52. http://dx.doi.org/10.1016/j.ces.2011.07.016
[42] Zeiner T, Schrader P, Enders S, Browarzik D. Phase- and interfacial behavior of hyperbranched polymer solutions. Fluid Phase Equilib 2011; 302: 321-30. http://dx.doi.org/10.1016/j.fluid.2010.07.021
[43] Browarzik C, Browarzik D, Enders S. Liquid-liquid phase equilibria of hyperbranched polymers-Experimental study and modeling. Fluid Phase Equilib 2012; 328: 49-60. http://dx.doi.org/10.1016/j.fluid.2012.05.018
[44] Schrader P, Zeiner T, Browarzik C, Puyan MJ, Enders S. Phase behaviour of hyperbranched polymers in demixed solvents. Mol Phys 2012; 110: 1359-73. http://dx.doi.org/10.1080/00268976.2011.648964
[45] Jang JG, Bae YC. Phase behaviors of hyperbranched polymer solutions. Polymer 1999; 40: 6761-8. http://dx.doi.org/10.1016/S0032-3861(99)00005-1
[46] Seiler M, Jork C, Arlt W. Phasenverhalten von hochselektiven nichtflüchtigen Flüssigkeiten mit designbarem Eigenschaftsprofil und neue Anwendungen in der thermischen Verfahrenstechnik. Chem Ing Tech 2004; 76: 735-44. http://dx.doi.org/10.1002/cite.200400064
[47] Seiler M, Rolker J, Mokrushina L, Kautz H, Frey H, Arlt W. Vapor-liquid equilibria in dendrimer and hyperbranched polymer solutions: experimental data and modeling using UNIFAC-FV. Fluid Phase Equilib 2004; 221: 83-96. http://dx.doi.org/10.1016/j.fluid.2004.04.002
[48] Sadowski G, Mokrushina LV, Arlt W. Finite and infinite dilution activity coefficients in polycarbonate systems. Fluid Phase Equilib 1997; 139: 391-403. http://dx.doi.org/10.1016/S0378-3812(97)00142-8
[49] Dohrn R, Brunner G. High-pressure fluid-phase equilibria: Experimental methods and systems investigated (1988– 1993). Fluid Phase Equilib 1995; 106: 213-82. http://dx.doi.org/10.1016/0378-3812(95)02703-H
[50] Christov M, Dohrn R. High-pressure fluid phase equilibria - Experimental methods and systems investigated (1994- 1999). Fluid Phase Equilib 2002; 202: 153-218. http://dx.doi.org/10.1016/S0378-3812(02)00096-1
[51] Dohrn R, Peper S, Fonseca JMS. High-pressure fluid-phase equilibria: Experimental methods and systems investigated (2000-2004). Fluid Phase Equilib 2010; 288: 1-54. http://dx.doi.org/10.1016/j.fluid.2009.08.008
[52] Fonseca JMS, Dohrn R, Peper S. High-pressure fluid-phase equilibria: Experimental methods and systems investigated (2005-2008). Fluid Phase Equilib 2011; 300: 1-69. http://dx.doi.org/10.1016/j.fluid.2010.09.017
[53] Dohrn R, Fonseca JMS, Peper S. Experimental methods for phase equilibria at high pressures. In: Prausnitz JM, editors. Annual Review of Chemical and Biomolecular Engineering, Vol 3. Palo Alto: Annual Reviews 2012; p. 343-67.
[54] De Loos TW, Van der Kooi HJ, Ott PL. Vapor-liquid critical curve of the system ethane + 2-methylpropane. J Chem Eng Data 1986; 31: 166-8. http://dx.doi.org/10.1021/je00044a011
[55] Shariati A, Peters CJ. Measurements and modeling of the phase behavior of ternary systems of interest for the GAS process: I. The system carbon dioxide+1-propanol+salicylic acid. J Supercrit Fluids 2002; 23: 195-208. http://dx.doi.org/10.1016/S0896-8446(02)00006-2
[56] Wu Y, Bamgbade B, Liu K, McHugh MA, Baled H, Enick RM, et al. Experimental measurements and equation of state modeling of liquid densities for long-chain n-alkanes at pressures to 265 MPa and temperatures to 523 K. Fluid Phase Equilib 2011; 311: 17-24. http://dx.doi.org/10.1016/j.fluid.2011.08.020
[57] Seiler M, Rolker J, Arlt W. Phase behavior and thermodynamic phenomena of hyperbranched polymer solutions. Macromolecules 2003; 36: 2085-92. http://dx.doi.org/10.1021/ma025994n
[58] Bungert B, Tippl R, Sadowski G, Arlt W. Separation of nonvolatile components by expansion with high-pressure gases. In: vonRohr PR, Trepp C, editors. High Pressure Chemical Engineering. Amsterdam: Elsevier Science Publ B V 1996; p. 519-24. http://dx.doi.org/10.1016/S0378-3812(97)00167-2
[59] Bungert B, Sadowski G, Arlt W. Supercritical antisolvent fractionation: measurements in the systems monodisperse and bidisperse polystyrene cyclohexane carbon dioxide. Fluid Phase Equilib 1997; 139: 349-59.
[60] Kozlowska MK, Jurgens BF, Schacht CS, Gross J, de Loos TW. Phase behavior of hyperbranched polymer systems: experiments and application of the perturbed-chain polar SAFT equation of state. J Phys Chem B 2009; 113: 1022-9. http://dx.doi.org/10.1021/jp804459x
[61] Portela VM, Straver EJM, de Loos TW. High-pressure phase behavior of the system propane-Boltorn H3200. J Chem Eng Data 2009; 54: 2593-8. http://dx.doi.org/10.1021/je900130y
[62] Schacht CS, Bahrarnali S, Wilms D, Frey H, Gross J, de Loos TW. Phase behavior of the system hyperbranched polyglycerol plus methanol plus carbon dioxide. Fluid Phase Equilib 2010; 299: 252-8. http://dx.doi.org/10.1016/j.fluid.2010.09.028
[63] Schacht CS, Schuell C, Frey H, de Loos TW, Gross J. Phase Behavior of the System Linear Polyglycerol plus Methanol plus Carbon Dioxide. J Chem Eng Data 2011; 56: 2927-31. http://dx.doi.org/10.1021/je200156e
[64] Lue L. Volumetric behavior of athermal dendritic polymers: Monte Carlo simulation. Macromolecules 2000; 33: 2266-72. http://dx.doi.org/10.1021/ma991340b
[65] Timoshenko EG, Kuznetsov YA. Equilibrium and kinetics at the coil-to-globule transition of star and comb heteropolymers in infinitely dilute solutions. Colloid Surf A-Physicochem Eng Asp 2001; 190: 135-44. http://dx.doi.org/10.1016/S0927-7757(01)00673-2
[66] Steinhauser MO. A molecular dynamics study of the influence of chain branching on the properties of polymer systems. PhD Dissertation, Johannes Gutenberg-Universitat Mainz, 2001.
[67] Jang JG, Noh ST, Bae YC. Liquid-liquid equilibria of dendrimer in polar solvent. J Phys Chem A 2000; 104: 7404- 7. http://dx.doi.org/10.1021/jp994376e
[68] Jang JG, Bae YC. Vapor-liquid equilibria of dendrimer solutions: the effect of endgroups at the periphery of dendrimer molecules. Chem Phys 2001; 269: 285-94. http://dx.doi.org/10.1016/S0301-0104(01)00259-2
[69] Jang JG, Bae YC. Phase behavior of hyperbranched polymer solutions with specific interactions. J Chem Phys 2001; 114: 5034-42. http://dx.doi.org/10.1063/1.1329647
[70] Jang JG, Bae YC. Phase behaviors of dendrimer/solvent systems: Molecular thermodynamics approach. J Chem Phys 2002; 116: 3484-92. http://dx.doi.org/10.1063/1.1436474
[71] Jang JG, Huh JY, Bae YC. Phase behavior of dendritic polymer/polar solvent: the effects of compressibility, architecture and hydrogen bondings. Fluid Phase Equilib 2002; 194: 675-88. http://dx.doi.org/10.1016/S0378-3812(01)00683-5
[72] Kouskoumvekaki IA, Giesen R, Michelsen ML, Kontogeorgis GM. Free-volume activity coefficient models for dendrimer solutions. Ind Eng Chem Res 2002; 41: 4848-53. http://dx.doi.org/10.1021/ie020034a
[73] Rissanou AN, Economou IG, Panagiotopoulos AZ. Monte Carlo simulation of the phase behavior of model dendrimers. Macromolecules 2006; 39: 6298-305. http://dx.doi.org/10.1021/ma061339u
[74] Zeiner T, Browarzik D, Enders S. Calculation of the liquidliquid equilibrium of aqueous solutions of hyperbranched polymers. Fluid Phase Equilib 2009; 286: 127-33. http://dx.doi.org/10.1016/j.fluid.2009.08.013
[75] Zeiner T, Browarzik C, Browarzik D, Enders S. Calculation of the (liquid + liquid) equilibrium of solutions of hyperbranched polymers with the lattice-cluster theory combined with an association model. J Chem Thermodyn 2011; 43: 1969-76. http://dx.doi.org/10.1016/j.jct.2011.07.010
[76] Wertheim MS. Fluids with highly directional attractive forces. 1. Statistical thermodynamics. J Stat Phys 1984; 35: 19-34. http://dx.doi.org/10.1007/BF01017362
[77] Wertheim MS. Fluids with highly directional attractive forces. 2. Thermodynamic perturbation - theory and integral equations. J Stat Phys 1984; 35: 35-47. http://dx.doi.org/10.1007/BF01017363
[78] Wertheim MS. Fluids with highly directional attractive forces. 3. Multiple attraction sites. J Stat Phys 1986; 42: 459-76. http://dx.doi.org/10.1007/BF01127721
[79] Wertheim MS. Fluids with highly directional attractive forces. 4. Equilibrium polymerization. J Stat Phys 1986; 42: 477-92. http://dx.doi.org/10.1007/BF01127722
[80] Simha R, Utracki LA. PVT Properties of Linear and Dendritic Polymers. J Polym Sci B Polym Phys 2010; 48: 322-32. http://dx.doi.org/10.1002/polb.21893
[81] Hay G, Mackay ME, Hawker CJ. Thermodynamic properties of dendrimers compared with linear polymers: General observations. J Polym Sci B Polym Phys 2001; 39: 1766-77. http://dx.doi.org/10.1002/polb.1150
[82] Gross J, Sadowski G. Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules. Ind Eng Chem Res 2001; 40: 1244-60. http://dx.doi.org/10.1021/ie0003887
[83] Gross J, Sadowski G. Application of the perturbed-chain SAFT equation of state to associating systems. Ind Eng Chem Res 2002; 41: 5510-5. http://dx.doi.org/10.1021/ie010954d
[84] Gross J, Vrabec J. An equation-of-state contribution for polar components: Dipolar molecules. AIChE J 2006; 52: 1194- 204. http://dx.doi.org/10.1002/aic.10683
[85] Kleiner M, Gross J. An equation of state contribution for polar components: polarizable dipoles. AIChE J 2006; 52: 1951- 61. http://dx.doi.org/10.1002/aic.10791
[86] Vrabec J, Gross J. Vapor-liquid equilibria simulation and an equation of state contribution for dipole-quadrupole interactions. J Phys Chem B 2008; 112: 51-60. http://dx.doi.org/10.1021/jp072619u
[87] Blas FJ, Vega LF. Thermodynamic properties and phase equilibria of branched chain fluids using first- and secondorder Wertheim's thermodynamic perturbation theory. J Chem Phys 2001; 115: 3906-15. http://dx.doi.org/10.1063/1.1388544
[88] Wu Y, Newkirk MS, Babatunde B, McHugh MA, Krukonis VJ, Wetmore P. Polymer architectural effects on solution behavior of high pressures: linear, hyperbranched, and star polymers in SCF and liquid solvents. 10th International Symposium on Supercritical Fluids (ISSF); 2012: San Francisco, CA, USA.
[89] Wu Y, Newkirk MS, McHugh MA. Solution behavior at high pressures: linear to star polymers in SCF and liquid solvents. 2012 American Institute of Chemical Engineers (AIChE) Annual Meeting; 2012: Pittsburgh, PA, USA.
[90] Langenbach K, Enders S. Development of an EOS based on lattice cluster theory for pure components. Fluid Phase Equilib 2012; 331: 58-79. http://dx.doi.org/10.1016/j.fluid.2012.06.022

Downloads

Published

2013-03-01

Issue

Section

General Articles