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Abstract: Vitrification, a method of rapid cooling, is an alternate cryopreservation method of oocytes and embryos. The 
present study was aimed to examine the effect of polyvinylpyrrolidone (PVP) on vitrification of buffalo oocytes. Cumulus 
oocyte complexes (COCs) with fully grown oocytes (120-130 µm in diameter) were aspirated from slaughtered buffalo 
ovaries for vitrification. COCs were treated with equilibration solution at room temperature for 5 min and then transferred 
to a vitrification solution for 1 min. Then the COCs were submerged into liquid nitrogen (-196̊C) for a while using 
cryotops. The COCs were thawed, diluted, and washed in a washing solution for 5 min, respectively. Vitrified oocytes 
were incubated for in vitro maturation (IVM) at 38.5̊C under an atmosphere of 5% CO2 in the air for 24 hrs. Cumulus cells 
surrounding the oocytes were removed mechanically, oocytes were fixed in acetic acid and ethanol, and stained with 
aceto-orcein to examine the meiotic stages of oocytes. The numbers of morphologically normal oocytes after vitrification 
were higher in 5% PVP than 0 and 10% PVP groups. A proportion of oocytes treated with 5% PVP reached the 
metaphase II (MII) stage while none of the oocytes from 0% and 10% PVP groupsdeveloped beyond anaphase I and 
metaphase I (MI) stages, respectively. These results show that PVP can be used as a cryoprotectant for the vitrification 
of buffalo oocytes.  
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INTRODUCTION 

The buffalo (Bubalus bubalis, L.) is an important 
livestock species in the world. Buffalo farming is highly 
emphasized for household income from milk for 
farmers’ livelihood in Bangladesh [1]. Buffaloes have 
low reproductive performances caused by silent estrus, 
seasonal anestrous, delayed puberty, late post-partum 
conception, and a long calving interval. Buffalo oocytes 
collected from large antral follicles during the luteal 
phase are less competent due to the presence of 
different fatty acids in follicular fluid [2]. Due to low 
response to multiple ovulation and embryo transfer 
(MOET), in vitro embryo production (IVEP) technology 
is important in buffaloes. The major limitation of IVEP 
technology in buffalo is the small number of oocytes 
that can be recovered from donors. Buffalo ovary 
contains small numbers of antral follicles and a high 
percentage of atretic follicles [3]. It has been reported 
that buffalo ovaries have a smaller number of 
recruitable follicles [4] and lower reproductive 
hormones [5] at a given time compared to a cow. The 
scarcity of oocytes is a drawback for exploiting embryo 
technologies in buffaloes. Therefore, vitrification can be 
a useful technique to avail buffalo oocytes for 
reproductive technology. 

 

 

 

*Address correspondence to this author at the Department of Animal Science, 
Bangladesh Agricultural University, Mymensingh-2202, Bangladesh; Tel: 880-
91-67401-6/ Ext-2620; Fax: 880-91-61510; E-mail: monir.as@bau.edu.bd 
#These authors contributed equally to this work. 

Vitrification, a method of rapid cooling, is the 
solidification of a solution at low temperatures (-196 C̊) 
without ice crystal formation in the cell cytoplasm by 
use of a very high concentration cryoprotectants [6]. To 
improve the reproductive performance of water 
buffaloes, a method has been developed by Abdel-
Ghani et al. for the in vitro culture of vitrified-warmed 
ovarian tissues [7]. They found that supplementation of 
vitrified-warmed ovarian tissue culture medium with 
growth differentiation factor-9 (GDF-9) promoted 
primary follicle development that might be used for 
improving ovarian inactivity in water buffaloes. Oocytes 
were collected from slaughtered water buffaloes, 
matured and fertilized in vitro, and embryos were 
cultured in cumulus cells monolayer, then resultant 
preimplantation stage embryos were cryopreserved 
and transferred to recipient buffaloes [8]. Six healthy 
and normal calves produced from that cryopreserved 
technologies indicated the potential application of 
vitrification techniques in buffalo reproduction regime. 
In the year 2005, in vitro fertilized and cryopreserved 
water buffalo embryos were transported from Italy to 
California for transferring them into recipient buffaloes 
[9]. In the vitrification method, a cryo-device is required 
to hold the sample materials and be used for 
submerging into liquid nitrogen. A comparative study 
on cryo-devices has been done by Mahesh et al. [10]. 
They collected COCs from buffaloes and vitrified using 
either a conventional straw, open pulled straw, 
cryoloop, hemistraw or cryotop. Their results suggest 
that hemistraw, cryotop, and cryoloop are more 
suitable as cryo-device for vitrification of buffalo 
oocytes. 
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Vitrification requires the use of cryoprotectant 
solutions, which prevent ice crystal formation and 
increase viscosity at low temperatures. Several 
cryoprotectants, including ethylene glycol (EG), 
glycerol (GLY), dimethylsulfoxide (DMSO), propylene 
glycol (PG), and 1,2-propanediol (PROH), sucrose, etc. 
have been used in different combinations for 
vitrification of buffalo oocytes and embryos [11]. EG is 
an important cryoprotectant due to its higher 
penetrating ability with low toxicity [12]. EG and PG are 
equally effective in preventing cryodamage of buffalo 
oocytes [13]. Disaccharides are recently being used for 
the vitrification of oocytes in various species, including 
mouse [14], cattle [15], buffalo [16], and human [17, 
18]. Effects of different sugars (i.e. glucose, sucrose, or 
a polysaccharide) as non-permeant cryoprotectants in 
vitrification media on in vitro maturation of vitrified-
warmed immature (GV) porcine oocytes have been 
studied by Huang et al. [19]. They reported that 
sucrose treated oocytes had a higher maturation rate 
compared to oocytes vitrified in glucose supplemented 
cryoprotectant. 

In principle, short exposure to a high concentration 
of cryoprotectants has been widely used to reduce cell 
injury. In contrast, Mukaida (2002) has reported a high 
survival rate of blastocysts vitrified with a combination 
of EG and DMSO [20]. The combination of EG and 
DMSO for the vitrification process provides a lower 
relative concentration and also causes lower toxicity. In 
fact, when DMSO penetrates the cell and combines 
with other cryoprotectants, it accelerates glass-forming 
and increases the permeability rate complementing 
each other. DMSO has been used for the vitrification of 
oocytes in many species, including buffalo [21] and 
cattle [22]. However, it has been reported that DMSO 
adversely affects the developmental processes of 
oocytes [23]. 

Polyvinylpyrrolidone (PVP), also known as 
povidone, is a water-soluble polymer of N-vinyl-2-
pyrrolidone [24]. It has been used widely in 
pharmaceuticals, cosmetics, and food industries. It is 
used as a vehicle for drugs and a food additive. PVP 
has been used for intra-cytoplasmic sperm injection 
(ICSI) to increase the viscosity of sperm solution for 
easy handling of individual sperm in domestic animals 
and humans [25–30]. PVP prevents the adherence of 
oocytes to plastic and glass dishes. It has also been 
used in media for the in vitro growth of bovine oocytes 
[31]. PVP was used as a substitute for a serum for in 
vitro maturation of bovine [32]. Supplementation of 
PVP in EG and sucrose based vitrification solution 

resulted in an increased survival rate of bovine oocytes 
after vitrification and warming [33]. PVP is a non-
permeating cryoprotectant. It creates a smear around 
cells during vitrification and protects them from the 
cryodamage. It was reported that PVP protects the 
disruption of the zona of oocytes [34]. Supplementation 
of PVP in EG based vitrification media increased 
survivability of mouse oocytes [35]. PVP has a 
protective role in vitrification for survival and 
subsequent development of bovine oocytes [33]. 
However, so far, a few studies have been conducted to 
know the effect of PVP as a cryoprotectant for the 
vitrification of buffalo oocytes. This present study was 
aimed to examine the effect of replacing DMSO with 
PVP on vitrification solution for cryopreservation of 
buffalo oocytes. 

MATERIALS AND METHODS 

Chemicals 

All chemicals were purchased from Sigma-Aldrich 
(St. Louis, MO) unless otherwise mentioned. 

Collection of Cumulus Oocyte Complexes (COCs) 

Buffalo ovaries were collected from a local 
slaughterhouse and transported to the laboratory in 
0.9% normal saline. The ovaries were washed in 
Dulbecco’s phosphate buffer saline (DPBS) solution 
supplemented with gentamycin sulfate (50 mg/mL) 
once and rinsed three times in DPBS. Visible antral 
follicles (4–6 mm in diameter) were aspirated using a 
20-gauge needle attached to a 10 ml syringe to collect 
COCs. The COCs were screened under a 
stereomicroscope and washed three times in TCM-199 
(pH 7.4, Nissui Pharmaceutical, Tokyo, Japan) 
containing 0.85 mg/mL NaHCO3, 0.08 mg/mL 
gentamycin sulfate and 25 mM HEPES in a plastic dish 
(No. 1008, Falcon, Becton Dickinson and Company, 
Franklin lakes, NJ, USA) for vitrification. COCs 
containing healthy oocytes (120–130 µm in diameters) 
were selected based on their morphological 
appearances (uniformly granulated cytoplasm 
surrounded by multilayered compact cumulus cells) for 
vitrification [36]. 

Vitrification and Warming of Oocytes 

Vitrification of COCs was performed following the 
procedure of our previous reports [37, 38] with some 
modifications. Briefly, the basic solution was TCM-199 
containing 2.5 mg/mL HEPES, 2.47 mg/mL Na-
HEPES, 0.35 mg/mL NaHCO3, and 0.05 mg/mL 
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gentamycin sulfate. The equilibration solution was 
TCM-199 containing 7.5% (v/v) ethylene glycol (EG), 
7.5% (v/v) dimethyl sulfoxide (DMSO) and 20% fetal 
bovine serum (FBS). The vitrification solution consisted 
of 15% (v/v) EG,15% (v/v) DMSO, 0.5M sucrose and 
20% FBS in M-199 in control (0% Polyvinylpyrrolidone; 
PVP). In other two groups DMSO was replaced with 5 
or 10% PVP (molecular weight 360,000). The warming 
solution was 20% FBS, 0.5 M sucrose in M-199 that 
contained 0, 5 or 10% PVP depending on the PVP 
concentrations of the vitrification solution. The dilution 
solution was 20% FCS in M-199 containing 0, 5 or 10% 
PVP. The washing solution contained 20% FCS in M-
199. 

At first, COCs were treated with equilibration 
solution at room temperature for 5 min and transferred 
to a vitrification solution for 1 min. Then, 3-5 COCs 
were loaded on the filmstrip of a cryotop (Kitazato 
Biopharma, Shizuoka, Japan). The surrounding 
solution was removed and immediately plunged into 
liquid nitrogen (-196 ̊C). After vitrification, the COCs 
were warmed in the thawing solution for 5 min. Then 
the COCs were placed in a dilution solution for 5 min. 
The COCs were washed in a washing solution for 5 
min to remove the cryoprotectants. The COCs were 
evaluated for morphological quality as described by 
Gupta et al. with some modifications [36]. Briefly, 
COCs with multilayered compact cumulus cells and 
good integrity between oolemma and zona pellucida 
were classified as morphologically normal COCs. The 
COCs with normal morphology were subsequently 
used for in vitro maturation, and the rest were 
discarded from further experiments. 

In Vitro Maturation (IVM)  

The basic medium for oocyte maturation was TCM-
199 supplemented with 0.1 mg/ml sodium pyruvate, 
0.08 mg/ml gentamycin sulfate, 5% (v/v) FBS and 100 
ng/ml follicle-stimulating hormone (FSH; NIDDK, 
Washington, DC, USA) [39]. The vitrified and thawed 
COCs were washed three times in the IVM medium. 
COCs were placed in 100 µL droplet of IVM medium in 
35 mm Petri dish under mineral oil, and incubated at 
38.5 ̊C, 5% CO2 in humidified air for 24 hrs. After 24 
hrs, oocytes were observed under the microscope for 
cumulus expansion. The assessment of cumulus cell 
expansion was carried out as described by Maruska et 
al. with some modifications [40]. Briefly, COCs with one 
or two layers expanded, one-half of the cumulus 
expanded, all layers expanded other than last layers of 
corona radiata, or all layers expanded, including corona 

radiate, were classified as expanded COCs. All of the 
COCs other than expanded COCs, such as COCs 
without cumulus expansion (no observable sign of 
cumulus expansion), were classified as non-expanded 
COCs. The oocytes were picked up from the droplets 
and washed in Dulbecco’s phosphate-buffered saline 
(DPBS). The oocytes were denuded mechanically 
using a small-bore pipette with the help of 0.1% (w/v) 
hyaluronidase. Oocytes were fixed in acid-alcohol 
(acetic acid: ethanol = 1:3) for two days, stained with 
aceto-glycerol (glycerol: acetic acid: water = 1:1:3) and 
examined under a differential interference contrast 
(DIC) microscope (Olympus Inc., USA) for meiotic 
stages [39]. Oocytes were classified based on their 
chromosomal configuration following the previous 
report of Motlik et al. [41]. Oocytes showing 
cytoplasmic or nuclear abnormalities were considered 
degenerated. 

Statistical Analysis 

All data were subjected to one-way ANOVA, and 
the significance of difference among means was 
determined by Duncan's Multiple Range Test (DMRT). 
All statistical analyses were conducted using SPSS 
(IBM SPSS Statistics 22) software for Windows. Values 
of P < 0.05 were considered significant. 

RESULTS 

Effects of PVP on the Morphology of Vitrified 
Buffalo Oocytes 

The numbers of oocytes recovered after vitrification 
did not differ among the treatment groups (Table 1). 
However, the number of morphologically normal 
oocytes was significantly (P<0.05) higher in 5% PVP 
than that of other groups. In a higher concentration 
(10%) and without PVP oocytes underwent to various 
abnormal morphological changes, e.g., shrinkage of 
oocytes cytoplasm, denudation of oocytes and 
dissociation of cumulus cells, etc.  

Effects of PVP on In Vitro Maturation of Vitrified 
Buffalo Oocytes 

A proportion of vitrified oocytes treated with 5% 
PVP reached the MII stage while none of oocytes in 
0or10% PVP group progressed beyond Anaphase I 
and MI stage, respectively (Table 1). The percentage of 
oocytes at the MI stage was higher in 5% PVP (40%) 
than in other groups. The cumulus expansion in 5% 
PVP treated oocytes were also comparable with that in 
control group, although there were no significant 
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differences among the PVP treated groups (Table 2, 
Figure 1). 

DISCUSSION 

The present study showed that 5% PVP treated 
vitrified oocytes reached the MII stage while oocytes in 

other groups (0% or 10% PVP) resumed meiosis but 
did not reached the MII stage. PVP is a macromolecule 
that prevents oocytes from cryoinjury. It has been 
added to cryopreservation solutions for embryos in 
many species [42]. Yang et al. investigated the effects 
of PVP concentrations in vitrification solution on the 
post-thaw survival and in vitro maturation of bovine 

Table 1: Effects of PVP on Morphology and in vitro Maturation of Vitrified Buffalo Oocytes 

Numbers (%) of oocytes at different stages 
of meiotic division Concentrations 

of PVP (%) 
Numbers of 

oocytes 
examined 

Recovered 
after 

vitrification 
(%) 

Morphologically 
normal oocytes 

(%) 

Cumulus 
expansion 

(%) MI AI TI MII 

0 24 20 (83) 8 (40)b 20 (83) 4(20) 0(0) 0(0) 0(0) 

5 18 15 (83) 14 (93)a 15 (83) 4(27) 1(7) 1(7) 6(40) 

10 21 14 (67) 4 (28)b 14 (67) 0(0) 0(0) 0(0) 0(0) 
a-cValues with different superscripts in the same column differed (P< 0.05). Oocytes were subjected to in vitro maturation, followed by vitrification. Oocytes were 
classified as MI, Metaphase I; AI, Anaphase I; TI, Telophase I; MII, Metaphase II. 
 

 
Figure 1: Vitrified oocytes (with different concentrations of PVP) before (A-C) and after (D-F) maturation. Chromosome 
morphologies of vitrified oocytes after culture (G-I). Scale bars represent 200 µm (A-F) and 20 µm (G-I). Arrows indicate 
chromosomes. 
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oocytes [33]. Among the treatment groups, the survival 
rate of oocytes was higher in 5% PVP than in 0% or 
10% PVP. The rate of in vitro maturation was more 
elevated in 5% than the 10% PVP group. In the slow 
freezing of bovine oocytes, 5% PVP had a beneficial 
effect compared with 10 or 20% PVP [43]. On the other 
hand, Checura and Seidel (2007) reported the 
successful vitrification of bovine oocytes with 20 and 
6% PVP [44]. Mouse embryo was successfully vitrified 
with supplementation of EG and sucrose as a 
cryoprotectant solution with 7.5% PVP [45]. 

Despite the protective effects, cryoprotectants 
impose toxicity to cells [45]. DMSO affects the 
organisation of the microtubule systems in mouse 
oocytes [23]. Cytoskeletal elements are implicated 
during the developmental process in oocytes [47]. It 
was reported that DMSO altered the microtubule 
organization of mouse oocytes [48]. DMSO caused 
progressive disassembly of the spindle that was 
demonstrated to be sensitive in chilling [49,50]. It 
lowered the critical protein content for microtubule 
assembly [51,52]. This may be the reason for the lower 
rate of meiotic progression in DMSO treated oocytes in 
this experiment. The present study showed that PVP 
could be a better replacer of DMSO in vitrification of 
buffalo oocytes. Previously it has been reported that 
PVP prevents zona pellucida of oocytes from 
cryodamage [53]. However, comparing the results in 
DMSO, PVP could not rescue buffalo oocytes from 
cryodamage as it was expected. In agreement with our 
results, it was reported that normal developmental 
competence of buffalo oocytes was compromised by 
vitrification with PVP [54].  

PVP at a concentration of 5% increased 
morphologically normal COCs after vitrification than 0% 
and 10% of PVP. This indicated that PVP increased the 
survivability of oocytes during vitrification. PVP in the 
vitrification solution increased the survival rate of 
mouse oocytes after vitrification-warming [35]. 
Whittingham (1971) reported fruitful use of PVP for the 
cryopreservation of mouse 8 cell stage embryos and 
further early blastocysts [55]. When embryos were 
frozen at a temperature of –79°C in a 7.5% PVP 
solution, the survival rate was 55–65%. Damage to the 
zona pellucida after freezing and thawing in mouse 
embryos was accompanied by low survival rates of the 
embryo itself [56]. Since the survivability of oocytes and 
embryos during vitrification is largely depends on the 
zona pellucida and in this experiment, zona pellucida 
were examined to assess the morphologically normal 
oocytes. It is reasonable to conclude that PVP 

maintains the integrity of oolemma and zona pellucida, 
and cumulus cells and zona pellucida thereby 
increased morphologically normal COCs after 
vitrification. 

It is thought that PVP is deleterious for the 
development of vitrified embryo [57]. It is toxic to kidney 
cells [45]. In the present study, a lower rate of meiotic 
progression was found in 10% PVP treated oocytes 
than in 5% PVP group. This might be due to the 
deleterious effect of a higher concentration of PVP on 
oocyte maturation. This supports the previous report of 
Wang et al. (2013), where mouse oocytes were vitrified 
with 2% PVP combined with other cryoprotectants [35]. 
However, further study is necessary to elucidate the 
mechanisms involved in the deleterious effect of a 
higher concentration of PVP on oocytes and embryos. 

In conclusion, PVP protects buffalo oocytes from 
cryoinjury and supports the meiotic progression of 
oocytes in vitro after vitrification and warming. PVP at a 
concentration of 5% maintains the normal morphology 
and promotes meiotic maturation of oocytes after 
vitrification and warming, whereas 10% PVP exerts the 
toxic effects. Therefore, 5% of PVP could be used as a 
cryoprotectant for the vitrification of buffalo oocytes. 
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