

Microbiological Safety of Donor Human Milk for Term Infants - Review Article

S. Sarkar*

KeventerAgro Limited, Barrackpore-Barasat Link Road, Subashnagar, P.O. Neelgunj Bazar, Kolkata - 700121, West Bengal, India

Abstract: Breastfeeding is recognized as the most secure and optimal approach to infant nourishment. In situations where breastfeeding is insufficient or unavailable, donor human milk from reputable human milk banks is a viable alternative to breast milk. The objective of this paper was to conduct a comprehensive review of the microbiological safety associated with the utilization of donated human milk for infant feeding. Donated human milk is prone to contamination during collection, storage or transportation; therefore, all efforts should be taken to render it microbiologically safe as it is fed to infants, who are more prone to infection. Donor human milk collected, processed and stored under hygienic conditions can be safely used for infant feeding in the absence of the mother's own milk.

Keywords: Breast milk, mother's milk, donor human milk, human milk bank, microbiological safety.

INTRODUCTION

Breast milk is widely acknowledged as the optimal nutritional source for neonates, attributable to its comprehensive array of macro- and micronutrients, in conjunction with various non-nutritive bioactive constituents, including hormones, immunoglobulins, growth factors, cytokines, microbes, metabolites, and human milk oligosaccharides, all of which significantly influence the health of infants [1-4]. Breastfeeding is the ideal standard for infant nourishment since it naturally supplies infants with essential vitamins, nutrients, and immune-enhancing components necessary for their growth and development [5-7]. WHO [8] has recommended exclusive breastfeeding until the child is 6 months old, followed by continued complementary feeding for the next 2 years. Direct breastfeeding is the safest and optimal method of infant feeding.

Donor human milk [DHM] from several well-established human milk banks [HMB] is the practical alternate for supplying breast milk [9-14] in absence of breast feeding due to separation, sickness, death, abandonment, no lactating capacity, insufficient production [15, 16], perceived insufficient milk supply [17] or HIV infection of mother [18].

HMB is a service provider that eliminates breast milk donors, gathers donated human milk, screens donor DHM for bacteria, processes it to make it microbiologically safe, and stores it until it is given to hospitals or outpatient patients [19]. Mackenzie *et al.* [20] reported the establishment of HMBs in many

developed and developing countries, and their numbers are increasing worldwide. The first HMB was established in Vienna, Austria, in 1909, and there are now more than 700 HMBs spread across 60 countries, with the majority in North America, Europe, and Brazil [21]. The Virtual Collaborative Network of Milk Banks and Associations estimated that more than 800 000 infants receive DHM annually worldwide [22, 23]. Kaechet *et al.* [24] identified the diverse factors influencing the sustainability of the HMBs. They categorized them into donation duration, donors' infant features [e.g., gestational age, birth weight], donors' features [e.g., socio-demographic characteristics, milk donation history], and factors related to the milk bank and health care systems [e.g., awareness and support].

DHM proved to be advantageous over formula feeds, including lower rates of infection and feeding intolerance [25, 26], but is prone to contamination during collection, storage, or transportation. All efforts should be taken to render it microbiologically safe, as it is fed to infants, who are more prone to infection. In this review, an attempt has been made to highlight the importance and microbiological safety of donor milk for infant feeding.

Significance of Breast Milk

Breast milk is considered the most nutritious food for infants owing to its macro and micronutrients [27], bioactive and immune factors such as antibodies, lysozyme, growth factors, antimicrobial peptides, microRNAs, stem cells and human milk oligosaccharides [5, 28] and presence of beneficial bacteria such as *Bifidobacterium* and *Lactobacillus* [29, 30]. Gut flora of breast-fed infants is constituted by breast milk, as an infant consuming approximately 800 ml/day of breast milk would ingest 1×10^5 to 1×10^7

*Address correspondence to this author at the KeventerAgro Limited, Barrackpore-Barasat Link Road, Subashnagar, P.O. Neelgunj Bazar, Kolkata - 700121, West Bengal, India; E-mail: drsurajitsarkar@yahoo.co.in

Table 1: Bioactive Components of Breast Milk

Components	Biological Activity	References
Oligosaccharides	Modulate the bacteria-host interactions and exert positively impact the composition of intestinal flora and protects infants against infection and diarrhea	[36]
Bioactive Proteins	Responsible for nutrition absorption, growth stimulation, modulation of immune system and pathogen defence	[37]
Polyunsaturated Fatty Acids	Extend natural resistance by enhancing intestinal epithelial barrier integrity	[38]
Secretory IgA	Either by a direct immune protection	[39]
Lactoferrin	Modulate immune protection	[39]

bacteria [31, 32], which assists in the development and maturation of the immune system of newborns [33]. The development of the infant microbiome with bacteria present in raw [unpasteurized] human milk is confirmed by higher gut microbiome diversity in infants fed pasteurised human milk or formula [34]. Disease transmission through breastfeeding or donor human milk is rare, most likely owing to the complex, intrinsically protective composition of human milk and its protective effects on the infant gut lining [35]. Diverse bioactive components of breast milk and their biological significance are delineated in Table 1.

Microbiology of Breast Milk

Initially, breast milk was considered sterile, but recent studies have established that it harbours bacteria, viruses, fungi, yeasts, and minor genera, collectively known as the human milk microbiome [40]. The retrograde flow governs Microflora of human milk [contamination of the mammary duct with microbes from the infant's oral cavity during suckling] and the entero-mammary pathway [contamination of the mammary gland with maternal gut bacteria via the lymphatic circulation] or transfer from maternal skin [7, 41, 42]. Microflora of human milk is also influenced by diverse factors such as the stage of lactation, maternal body mass index, age, diet [41], geographical location, socio-economic status, use of antibiotics or probiotics during pregnancy, mode of delivery [41], host immunity [43], composition of breast milk, HIV infection and method of collection [44] and mode of breastfeeding [45]. However, other investigators reported no effect of delivery mode, infant sex, or maternal body mass index on the breast milk microbiome [46, 47].

Microflora in human milk is diverse and varies significantly between individuals [48, 49]. Diversity in the microbial flora of breast milk differed between term- and preterm-delivered mothers and was also

influenced by perinatal antibiotic use. Khodayar-Pardo *et al.* [50] noted lower counts of *Enterococcus* spp. in colostrum and higher counts of *Bifidobacterium* spp. in breast milk from term-delivered mothers. Antibiotic therapy in lactating mothers also affects the prevalence of *Lactobacillus*, *Bifidobacterium*, and *Staphylococcus* spp. in human milk [51, 52] and results in a decline in the abundance of *Bifidobacterium*, *Staphylococcus*, and *Eubacterium* spp. [53]. Raw human milk generally contains a viable bacterial count [cfu/ml] of 10^2 - 10^3 [48, 54] and may reach a level of 10^6 due to bacterial growth [55]. Human milk is dominated by Gram-positive bacteria, including *Staphylococci*, *Streptococci*, *Corynebacteria*, *Propionibacteria*, *Lactobacillus* spp., and *Bifidobacteria* [31, 56]. The "core" bacteriome of Human Milk Microbiota is composed of nine genera, including *Staphylococcus*, *Streptococcus*, *Serratia*, *Pseudomonas*, *Corynebacterium*, *Ralstonia*, *Propionibacterium*, *Sphingomonas*, and *Bradyrhizobium*, representing approximately 50% of the microbial milk community [48, 57]. Later, Zimmermann and Curtis [44] reported that *Staphylococcus*, *Streptococcus*, *Lactobacillus*, *Pseudomonas*, *Bifidobacterium*, *Corynebacterium*, and *Enterococcus* were the predominant genera in breast milk. Other identified bacteria in breast milk are *Lactobacillus salivarius*, *Lactobacillus fermentum*, *Bacteroides*, *Blautia*, *Clostridium*, *Collinsella*, *Coprococcus*, *Eubacterium*, *Acinetobacter*, *Bradyrhizobium* [31, 58, 59], *Lactococcus*, *Leuconostoc*, and *Enterobacteriaceae* [60]. Breast milk has been reported as a possible source of Group B streptococcus [61] and is a leading cause of neonatal infections in developed countries [62].

Donor Human Milk [DHM]

In the absence of breast milk, formulated milk may be offered to infants, but diversity in gut flora of

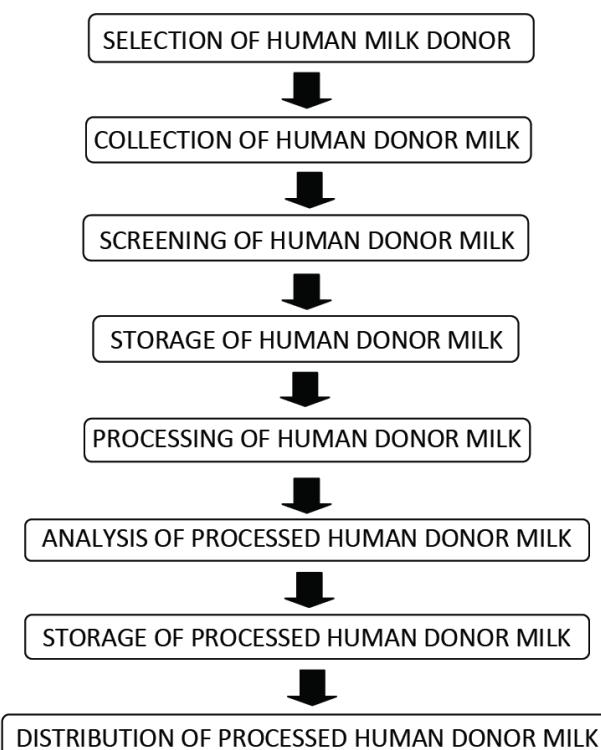
formula-fed infants and breastfed infants has been noted [63-65]. Therefore, infant formulas may contain components similar to human breast milk, but are not considered perfect substitutes [43]. Diverse human milk-based fortifiers are added to human milk or DHM to meet the nutritional needs of infants. All human milk-based nutritional products available on the market are not created equally due to differences in manufacturing processes, which influence their composition (immunoglobulins, lysozyme, lactoferrin) and, thereby, their efficacy [66-68]. Probiotic bacteria and prebiotics, alone or in combination (synbiotics), are also incorporated into commercial milk formula to mimic the natural prebiotic and probiotic effects present in human milk [69, 70]. Recent research found no significant increase in iron absorption in Thai children after a single serving of probiotics, synbiotics, or an iron-fortified follow-up formula [71].

When mothers' own milk is not available, donor human milk [DHM] has been recommended by organizations such as the WHO, AAP, ESPGHAN as a suitable and practical alternative [11, 72]. A recent investigation in North Carolina on the composition of breast milk from 11 to 17 months postpartum found a significant increase in the concentrations of total protein, lactoferrin, lysozyme, Immunoglobulin A, oligosaccharides, and sodium. In contrast, zinc and calcium concentrations declined, with no alteration in concentrations of lactose, fat, iron and potassium. Results indicated that donor milk collected after 1 year postpartum might not be nutritionally adequate and may require mineral fortification [73].

Microbiology of Donor Human Milk

Mothers should be encouraged to donate breast milk to human milk banks [HMB] to serve infants deprived of their mother's own milk [74] in case of insufficient breast milk secretion from mothers [75] due to illness, severe medical conditions or those undergoing tremendous stress [76], breast milk from several well-established HMB is the practical alternate for supplying breast milk but donor human milk [DHM] can be contaminated during collection, storage, or processing [77, 78]. Jones [79] pointed out that the method of expression of breast milk, environmental, hygienic and storage conditions at home, shipping, processing at HMBs and handling in neonatal intensive care units [NICUs] are the primary sources of pathogenic microorganisms in human milk.

Usually, human milk has a lower [$< 3 \log \text{cfu/ml}$] bacterial concentration [31, 56] but microbiological


analysis of raw DHM collected in Vietnam, revealed presence of bacteria count at a level of $< 10^3 \text{cfu/ml}$ in 15.4% samples, $10^3 - 10^5 \text{cfu/ml}$ in 63.0% samples and $> 10^5 \text{cfu/ml}$ in 21.6% samples constituted of *Staphylococcus epidermidis*, *Acinetobacter* sp., gram-positive bacillus, *Staphylococcus coagulase-negative* and *Staphylococcus aureus* [80]. Recently, microbiological analysis of DHM in the UK [2017-2023] revealed a total viable count of $10^3 - 10^5 \text{ cfu/ml}$ in 70.1% of samples, no growth in 18.3% of samples, and $> 10^5 \text{ cfu/ml}$ in 11.5% of samples. *Staphylococcus epidermidis* was found in 61.5% of samples [81].

No globally accepted microbiological standards for expressed milk exist [82]; however, a total bacterial count $< 10^6 \text{cfu/ml}$ has been reported as the physiological threshold for bacterial load in human milk [83, 84]. The United Kingdom's National Institute for Health and Care Excellence have declared that donor milk with $< 1 \times 10^6 \text{cfu/ml}$ bacterial counts, $< 1 \times 10^4 \text{cfu/ml}$ Enterobacteriaceae or 10^4cfu/ml *S. aureus* is acceptable for further processing [85]. Other investigators considered raw donor milk containing $\geq 10^4 \text{cfu/ml}$ of coagulase-negative *Staphylococcus* [86] and a bacterial count of $\geq 10^5 \text{cfu/ml}$ as indicators of poor quality [87]. Recently, Serra *et al.* [88] considered expressed breast milk to be bacteriologically acceptable if mesophilic aerobic bacteria and total enterobacteria counts are $< 10^5 \text{cfu/ml}$ and $< 10 \text{ cfu/ml}$, respectively. Presence of *Escherichia coli*, enterobacteria, *Staphylococcus aureus*, *Streptococcus faecalis*, *Pseudomonas*, *Salmonella* or fungi in expressed milk was considered a contaminant. Contamination of expressed breast milk with *Listeria* species [89], methicillin-resistant *Staphylococcus aureus* [90], *Salmonella* species [91] and *Mycobacterium tuberculosis* [92] has been reported. A schematic diagram of the HDM flow is shown in Figure 1. Various factors may influence the safety of DHM, including donor selection criteria, DHM expression methods, DHM processing, and hygienic conditions during storage and transportation.

Selection Criteria for Breast Milk Donors

Total bacterial counts in human milk are also associated with the type of milk donor. Miura *et al.* [93] reported lower bacterial counts [cfu/ml] in human milk collected from the term group [3,930cfu/ml] in contrast to those from the preterm group [26,700cfu/ml]. Donor women willing to give their milk are carefully screened for HIV-1, HIV-2, human T-cell leukaemia virus 1 and 2, hepatitis B, hepatitis C and syphilis [94]. Breast milk

donors are screened based on the following criteria to ensure the safety of donor milk for infants [85].

Figure 1: Schematic diagram for flow of Human Milk.

- Must have good general health
- Must undergo the mandatory serological testing [HIV 1 or 2, hepatitis B or C, human T-lymphotropic virus [HTLV] type I or II or syphilis] for reducing the risk of passing on infections
- Should not smoke, be exposed to high or sustained levels of passive smoke or use nicotine replacement therapy
- Should not consume alcohol regularly exceeding recommended alcohol levels forbreastfeeding mothers [1 to 2 units, once or twice a week]
- Should not be using or have recently used recreational drugs
- Should not have previously tested positive results for HIV-1 or -2, hepatitis B or C, HTLV type I or II or syphilis
- Should not be at an increased risk of Creutzfeldt-Jakob disease
- Should not be currently taking any medication or undergoing any other medical therapy

- Should not be exposed to high or sustained levels of environmental or chemical contaminants

Method of Milk Expression

DHM can be obtained from the breast either by employing manual expression or a breast pump. The advantages of hand expression over breast pump expression include lower cost, no equipment required, and greater comfort [95]. Borges *et al.* [96] reported that the quality of human milk expressed at home is as safe as that expressed at a human milk bank, provided hygienic conditions are maintained during conservation, storage, and transportation. Primary sources or factors contributing to bacterial contamination of expressed breast milk [EBM] are collection containers and pumps at NICU [97], and reuse of collection equipment at home [84].

The methods of expression also influence the microbiology of EBM. Breast milk expressed by breast pumps had a significantly higher rate of bacterial contamination by staphylococci and Gram-negative bacilli than milk expressed by the manual method [98]. Milk pumps may contribute higher bacterial concentration [$> 6 \log \text{cfu/ml}$], consisting of Gram-negative bacteria such as enterobacteria, *Pseudomonas*, *Stenotrophomonas*, etc., and yeasts may be added from rinsing water and/or poor hygienic practices [98 - 105]. Liu *et al.* [106] reported illness in infants [bloody stools] offered with donor breast milk contaminated with *Clostridium perfringens* from a breast milk pump. Reasons for higher bacterial counts and greater risks include ineffective cleaning and decontamination of breast pump systems, inadequate maintenance of collection and storage equipment, and non-compliance with the recommended milk storage conditions [98, 107].

Effective Processing of DHM

AAP [10] announced that unpasteurized donor milk is unsafe and is not recommended for feeding infants due to higher bacterial or viral contamination or possible presence of drugs or other substances like cow milk protein. Pasteurization of human donor milk is necessary to ensure its microbiological safety [108], and diverse temperature-time combinations recommended for processing HDM are shown in Table 2. Moro *et al.* [111] denoted diverse methods such as Holder pasteurization [$62.5^{\circ}\text{C}/30 \text{ min}$], high-temperature short-time pasteurization [$72^{\circ}\text{C}/15 \text{ sec}$],

Table 2: Recommended Heat-Treatment for Human Donor Milk

Temperaure-Time Combination	References
72°C/15 sec	[109, 110]
62.58°C/30 min	[94, 109]
62.5°C/30 min	[111]
62.5°C/20 min	[112]
62.5°C/ 5 min	[113]
60°C/30 min	[86]
57°/30 min	[112]
56.0°C/15 min	[114]
40°C/30 min	[86]

high-pressure treatment [300-800 MPa/< 5-10 min] and ultraviolet-C treatment [200-280 nm] to render donor milk safe for infants.

The effects of the diverse methods used to process DHM to render it microbiologically safe for infants are inconsistent. Holder pasteurization [HP] of DHM resulted in the loss of bioactive compounds, water-soluble vitamins, and immunoglobulins, and lowered the activity of signalling proteins and enzymes [115]. However, human milk oligosaccharides are found resistant to HP and remain unaltered in DHM [116]. Eradicated the beneficial bacterial flora and antimicrobial peptides, thereby reducing the bacteriostatic mechanisms, rendering the milk more prone to post-pasteurization bacterial contamination [111]. Vass *et al.* [117] noted a decline in 14 amino acids and an increase in the other 6 in holder pasteurized DHM.

On the other hand, High-Temperature Short-Time [HTST] pasteurization was better at preserving water-soluble vitamins, lactoferrin, and some cytokines in pasteurized HDM [118]. Picaud and Buffin [119] reported that, despite heat-induced alterations in the bioactive components of breast milk, pasteurized breast milk retains significant bacteriostatic, maturation, and immune-stimulating properties. Pasteurization has been reported to reduce lipolysis and increase proteolysis of lactoferrin and caseins, whereas protein hydrolysis remains unaltered [120].

Other processing methods, such as high-pressure processing, induced less damage to exosomes and their miRNA content [115]. In contrast, ultraviolet-C irradiation reduced the microbial load and inactivated cytomegalovirus, while retaining the bioactive

components, fatty acid profile, and levels of immunological proteins in fresh human milk [111].

Pasteurization of human donor milk reduced bacterial counts to 1-9 cfu/ml in 17.9% of samples and ≥ 10 in 72% of samples, and the commonly reported microorganisms in pasteurized human donor milk were gram-positive bacilli, *Staphylococcus epidermidis*, and *Acinetobacter* sp. [80]. It has been reported that pasteurization failed to eradicate anaerobic, fastidious bacteria such as *C. perfringens*, which are highly heat-resistant and resistant to contamination in breast milk [106]. Under these conditions, commercial sterilisation, also called retort pasteurization, can be employed to preserve donor human milk, in which the milk is heated to 115-145°C for several minutes under pressure. Retort pasteurization is advantageous over holder pasteurization, as the former method can inactivate heat-stable toxins and spores, rendering human milk more microbiologically safe while causing significant losses of bioactive proteins [66, 67]. Adoption of high hydrostatic pressure technique at pressures < 600 MPa without heat-treatment induced better retention of the bioactive components in human milk, including lactoferrin, lysozyme and bile salt simulated lipase [121, 122] and when employed in conjunction with low heat-treatment, inactivated spores [123].

Good Hygienic Practices during Handling of DHM

It has been reported that the method employed for collecting DHM, the probability of milk shortage for feeding their own child due to milk donation, and the likelihood of HIV transmission or quality deviation due to pasteurization and transportation are accountable for lower acceptance of HDM from HMBs [124]. Microbiological quality of raw DHM determines its suitability for further processing, the efficacy of

Table 3: Identified Critical Control Points during Processing of DHM have been Identification

Processing Steps	CCP (Hazard Type)	Critical Limits for CCP	Monitoring Procedure	Corrective Actions
SELECTION OF HUMAN MILK DONOR	CCP 1 (CHEMICAL)	Human milk donors should not be infected (HMBANA, 2015), [94]	Screened for HIV-1, HIV-2, human T-cell leukemia virus 1 and 2, hepatitis B, hepatitis C and syphilis	Not considered as Human Milk Donors
PASTEURIZATION	CCP 2 (BIOLOGICAL)	Aerobic bacteria ≤ 10 CFU/ml (Arslanoglu <i>et al.</i> , 2023), [127]	Ensuring heating of HDM to 62.5°C/30 min	Discarding Pasteurized Donor Milk and not to be used as HDM

processing treatments, and the adoption of Good Hygiene Practices [GHP]. Finally, this ascertains the competence of processed DHM for infant feeding. Critical Control Points during DHM processing have been identified (Table 3), and strict monitoring of hygiene and adherence to the critical limits will ensure DHM is safe for infant feeding.

Arslanoglu *et al.* [125] suggested that raw DHM intended for infant feeding should qualify the microbiological standards of $\leq 10^5$ cfu/ml total viable microorganisms, $\leq 10^4$ cfu/ml, Enterobacteriaceae and $\leq 10^4$ cfu/ml *Staphylococcus aureus*, whereas pasteurised DHM should have a total viable microbial count of <10 cfu/ml. GHPs must be implemented at every step of DHM handling to minimize the risk of microbiological contamination and ensure that DHM remains microbiologically safe for infant consumption. Currently, the Human Milk Banking Association of North America [HMBANA] discards thawed pasteurised DHM after 24 h; no abatement in bacterial growth was noted during storage of thawed DHM up to 9 days at 4°C [126]. HMBANA [127] declared that expressed DHM is acceptable for donation up to 3 months when stored in a fridge freezer or up to 6 months in a freezer at -20°C. Standard Operating Procedures outlining guidelines for DHM safety are delineated below.

- Hygienic practices like proper hand washing, donning gowns, masks, gloves, trimming nails, and locking long hair should be maintained
- Gloves should be worn and changed between handling raw and heat-treated milk.
- Staff should undergo regular health checks and be immunized against Hepatitis B
- Regular training of the staff [87]
- Validate, calibrate and maintain all equipment used in donor milk handling and processing as per the manufacturer's instructions:

- Clean and store all donor milk containers and equipment properly
- Pasteurized and unpasteurized donor milk should be stored in separate freezers and refrigerators
- All containers used for keeping donor milk should be made of food-grade material
- All donated milk should be immediately transferred to the freezer
- Donor milk awaiting pasteurization should be stored in the freezer [-20°C] for not more than 3months from the date of expression
- Donor milk should be adequately thawed [allowed maximum temperature rise 8°C] before pasteurization and may be kept in the refrigerator for not more than 24 h
- Pasteurized [62.5°C/30 min] donor milk should be rapidly cooled to ≤ 4 °C
- Lid of bottles of pasteurized donor milk should be opened just after use, and the opened bottle [128]
- Container to be frozen should never be filled [125]
- Cold chain should be maintained during transportation of DHM to the HMB to retain its nutritional and microbiological quality [16].

A review of evidence on the impact of WASH (Water, Sanitation and Hygiene) on child health and nutrition indicated that poor WASH contributes significantly to the incidence of diarrhoea and that this can be substantially reduced with effective handwashing, sanitation, and water treatment. Proper WASH and Good Hygienic Practices can reduce the incidence of microbial contamination, thus protecting

child health from disease burden arising from poor WASH. However, the effect of WASH on child growth, especially on undernutrition, is unclear [129]. During the collection, storage, and processing of DHM, WASH is a critical factor in ensuring microbiological safety for child health.

Training for Breast Milk Donors

A descriptive cross-sectional study conducted in India revealed that 71.29% of mothers donated human milk, and only 27.08% were regular donors [130]. Encouragement from healthcare professionals, relatives, or friends, gathering information on breast milk expression from the primary health care unit, and receiving help from the unit's professionals to breastfeed were associated with a higher prevalence of donation [131]. Many breastfeeding mothers willingly donate their expressed milk to HMB [132, 133]. Still, donor milk is less acceptable due to a lack of awareness and education regarding the importance of breast milk, coupled with a lack of transparency about the processes involved in sourcing and preparing donor milk [134]. Doshmangir *et al.* [135] suggested the mother's education during pregnancy and nursing regarding the importance of breastfeeding, reasons for donating milk and the method of donating breast milk to encourage mothers to donate their excess breast milk. Training given to all new donors must cover the following [85].

- Hand washing and the importance of milk donation
- Good personal hygiene practices
- Collecting and expressing milk, including cleaning and using breast pumps and containers
- Storing of donated milk [including cooling and freezing]
- Labelling of donated milk and documenting storage conditions
- Transportation of donated milk

CONCLUSION

Mother's own milk is the most promising food for infants, but in case of its unavailability, donor human milk is a practical substitute. Microbiological safety of donor milk at Human Milk Banks depends on the appropriate selection of donor mothers, hygienic conditions during collection and handling, and proper

processing and storage of donated human milk. Pasteurization is a heat treatment that kills microorganisms, and the extent of microbial reduction (% reduction) is directly related to the initial microbial content of the raw milk. Adequate implementation of WASH during the collection and processing of raw mother's milk (before processing) is the key factor in determining the final microbiological quality of processed DHM. Mothers should be encouraged to donate their excess breast milk to Human Milk Banks for feeding infants deprived of their own mother's milk.

REFERENCES

- [1] Sarkar S. Mother's own milk: best food for infants. *Int J Food Sci Nutr Diet* 2020; 9: 448-9. <https://doi.org/10.19070/2326-3350-2000010>
- [2] Carr LE, Virmani MD, Rosa F, Munblit D, Matazel KS, Elolimy AA, *et al.* Role of human milk bioactives on infants' gut and immune health. *Front Immunol* 2021; 12: 604080. <https://doi.org/10.3389/fimmu.2021.604080>
- [3] Duale A, Singh P, Al Khodor S. Breast milk: a meal worth having. *Front Nutr* 2021; 8: 800927. <https://doi.org/10.3389/fnut.2021.800927>
- [4] Szylter H, Antosz K, Batko J, Mytych A, Dziedziak M, Wrzéśniowska M, *et al.* Bioactive components of human milk and their impact on child's health and development: a literature review. *Nutrients* 2024; 16: 1487. <https://doi.org/10.3390/nu16101487>
- [5] Ballard O, Morrow AL. Human milk composition: nutrients and bioactive factors. *Pediatr Clin North Am* 2013; 60: 49-74. <https://doi.org/10.1016/j.pcl.2012.10.002>
- [6] Meek JY, Noble L. Policy statement: breastfeeding and the use of human milk. *Pediatrics* 2022; 150: e2022057988. <https://doi.org/10.1542/peds.2022-057988>
- [7] Dombrowska-Pali A, Wiktorczyk-Kapischke N, Chrustek A, Olszewska-Slonina D, Gospodarek-Komkowska E, Socha MW. Human milk microbiome: a review of scientific reports. *Nutrients* 2024; 16: 1420. <https://doi.org/10.3390/nu16101420>
- [8] World Health Organization. Guideline: counselling of women to improve breastfeeding practices. Geneva: World Health Organization 2018.
- [9] American Academy of Pediatrics, Section on Breastfeeding. Breastfeeding and the use of human milk. *Pediatrics* 2012; 129: 827-41. <https://doi.org/10.1542/peds.2011-3552>
- [10] American Academy of Pediatrics, Section on Breastfeeding; Committee on Fetus and Newborn; Committee on Nutrition. Donor human milk for the high-risk infant: preparation, safety, and usage options in the United States. *Pediatrics* 2017; 139: e20163440.
- [11] Arslanoglu S, Corpeleijn W, Moro G, Braegger C, Campoy C, Colomb V, *et al.* Donor human milk for preterm infants: current evidence and research directions. *J Pediatr Gastroenterol Nutr* 2013; 57: 535-42. <https://doi.org/10.1097/MPG.0b013e3182a3af0a>
- [12] DiLauro S, Unger S, Stone D, O'Connor DL. Human milk for ill and medically compromised infants: strategies and ongoing innovation. *JPEN J Parenter Enteral Nutr* 2016; 40: 768-82. <https://doi.org/10.1177/0148607116629676>
- [13] Sisk PM, Lambeth TM, Rojas MA, Lightbourne T, Barahona M, Anthony E, *et al.* Necrotizing enterocolitis and growth in preterm infants fed predominantly maternal milk, pasteurized donor milk, or preterm formula: a retrospective study. *Am J Perinatol* 2017; 34: 676-83. <https://doi.org/10.1055/s-0036-1597326>
- [14] Cayer MP, Brouard D. Microbiological safety of banked human

milk: current status and future directions. *Adv Pediatr Neonatal Care* 2021; 3: 120.

[15] Brandstetter S, Mansen K, DeMarchis A, Nguyen QN, Engmann C, Israel-Ballard KA. Decision tree for donor human milk: an example tool to protect, promote, and support breastfeeding. *Front Pediatr* 2018; 6: 324. <https://doi.org/10.3389/fped.2018.00324>

[16] PATH. Strengthening human milk banking: a resource toolkit for establishing and integrating human milk bank programs-training curriculum template for hospital and human milk bank staff. Seattle (WA): PATH 2019.

[17] Huang Y, Liu Y, Yu XY, Zeng TY. Rates and factors associated with perceived insufficient milk supply: a systematic review. *Matern Child Nutr* 2022; 18: e13255. <https://doi.org/10.1111/mcn.13255>

[18] Lawrence RM. Circumstances when breastfeeding is contraindicated. *Pediatr Clin North Am* 2013; 60: 295-318. <https://doi.org/10.1016/j.pcl.2012.09.012>

[19] Arnold LDW. Human milk in the NICU: policy into practice. Sudbury (MA): Jones & Bartlett Publishers 2010.

[20] Mackenzie C, Javanparast S, Newman L. Mothers' knowledge of and attitudes toward human milk banking in South Australia: a qualitative study. *J Hum Lact* 2013; 29: 222-9. <https://doi.org/10.1177/0890334413481106>

[21] Israel-Ballard K, LaRose E, Mansen K. The global status of human milk banking. *Matern Child Nutr* 2024 20: e13592. <https://doi.org/10.1111/mcn.13592>

[22] McCune S, Perrin MT. Donor human milk use in populations other than the preterm infant: a systematic scoping review. *Breastfeed Med* 2020; 16: 8-20. <https://doi.org/10.1089/bfm.2020.0286>

[23] Shenker N, Staff M, Vickers A, Aprigio J, Tiwari S, Nangia S, et al. Virtual Collaborative Network of Milk Banks and Associations. Maintaining human milk bank services throughout the COVID-19 pandemic: a global response. *Matern Child Nutr* 2021; 17: e13131. <https://doi.org/10.1111/mcn.13131>

[24] Kaech C, Kilgour C, Fischer Fumeaux CJ, de Labrusse C, Humphrey T. Factors that influence the sustainability of human milk donation to milk banks: a systematic review. *Nutrients* 2022; 14: 5253. <https://doi.org/10.3390/nu1424523>

[25] Corpeleijn WE, de Waard M, Christmann V, van Goudoever JB, Jansen MC, Kooi EMW, et al. Effect of donor milk on severe infections and mortality in very low-birth-weight infants: the early nutrition study randomized clinical trial. *JAMA Pediatr* 2016; 170: 654-661. <https://doi.org/10.1001/jamapediatrics.2016.0183>

[26] de Halleux V, Pieltain C, Senterre T, Rigo J. Use of donor milk in the neonatal intensive care unit. *Semin Fetal Neonatal Med* 2017; 22: 23-29. <https://doi.org/10.1016/j.siny.2016.08.003>

[27] Lessen R, Kavanagh K. Position of the Academy of Nutrition and Dietetics: promoting and supporting breastfeeding. *J AcadNutr Diet* 2015; 115: 444-449. <https://doi.org/10.1016/j.jand.2014.12.014>

[28] Ongprasert K, Ruangsuriya J, Malasao R, Sapbamr R, Suppansan P, Ayood P, et al. Macronutrient, immunoglobulin and total antioxidant capacity profiles of human milk from 1 to 24 months: a cross-sectional study in Thailand. *Int Breastfeed J* 2020; 15: 90. <https://doi.org/10.1186/s13006-020-00333-5>

[29] Thongaram T, Hoeflinger JL, Chow J, Miller MJ. Human milk oligosaccharide consumption by probiotic and human-associated bifidobacteria and lactobacilli. *J Dairy Sci* 2017; 100: 7825-7833. <https://doi.org/10.3168/jds.2017-12753>

[30] Bode L. Human milk oligosaccharides at the interface of maternal-infant health. *Breastfeed Med* 2018; 13: 7. <https://doi.org/10.1089/bfm.2018.29073.ljb>

[31] Fernández L, Langa S, Martín V, Maldonado A, Jiménez E, Martín R, et al. The human milk microbiota: origin and potential roles in health and disease. *Pharmacol Res* 2013; 69: 1-10. <https://doi.org/10.1016/j.phrs.2012.09.001>

[32] Jeurink PV, van Bergenhenegouwen J, Jiménez E, Knippels LM, Fernández L, Garsen J, et al. (Note for Author: Kindly check this reference is incomplete).

[33] Houghteling PD, Walker WA. Why is initial bacterial colonization of the intestine important to the infant's and child's health? *J Pediatr Gastroenterol Nutr* 2015; 60: 294-307. <https://doi.org/10.1097/MPG.0000000000000597>

[34] Cong X, Wu J, Vittner D, Xu W, Hussain N, Galvin S, et al. The impact of cumulative pain/stress on neurobehavioral development of preterm infants in the NICU. *Early Hum Dev* 2017; 108: 9-16. <https://doi.org/10.1016/j.earlhumdev.2017.03.003>

[35] Blackshaw K, Valtchev P, Koolaji N, Berry N, Schindeler A, Dehghani F, et al. The risk of infectious pathogens in breast-feeding, donated human milk and breast milk substitutes. *Public Health Nutr* 2021; 24: 1725-1740. <https://doi.org/10.1017/S1368980020000555>

[36] Bode L. Human milk oligosaccharides: prebiotics and beyond. *Nutr Rev* 2009; 67: 183-191. <https://doi.org/10.1111/j.1753-4887.2009.00239.x>

[37] Lönnerdal B. Bioactive proteins in breast milk. *J Paediatr Child Health* 2013; 49: 1-7. <https://doi.org/10.1111/jpc.12104>

[38] Willemsen LE, Koetsier MA, Balvers M, Beermann C, Stahl B, van Tol EA. Polyunsaturated fatty acids support epithelial barrier integrity and reduce IL-4-mediated permeability in vitro. *Eur J Nutr* 2008; 47: 183-191. <https://doi.org/10.1007/s00394-008-0712-0>

[39] Tackoen M. Breast milk: its nutritional composition and functional properties. *Rev Med Brux* 2012; 33: 309-317.

[40] Consales A, Cerasani J, Sorrentino G, Morniroli D, Colombo L, Mosca F, et al. The hidden universe of human milk microbiome: origin, composition, determinants, role, and future perspectives. *Eur J Pediatr* 2022; 181: 1811-1820. <https://doi.org/10.1007/s00431-022-04383-1>

[41] Lopez Leyva L, Brereton NJB, Koski KG. Emerging frontiers in human milk microbiome research and suggested primers for 16S rRNA gene analysis. *Comput Struct Biotechnol J* 2020; 19: 121-133. <https://doi.org/10.1016/j.csbj.2020.11.057>

[42] Moubarek CA. Human milk microbiota and oligosaccharides: a glimpse into benefits, diversity, and correlations. *Nutrients* 2021; 13: 1123. <https://doi.org/10.3390/nu13041123>

[43] Kim SY, Yi DY. Analysis of the human breast milk microbiome and bacterial extracellular vesicles in healthy mothers. *Exp Mol Med* 2020; 52: 1288-1297. <https://doi.org/10.1038/s12276-020-0470-5>

[44] Zimmermann P, Curtis N. Breast milk microbiota: a review of the factors that influence composition. *J Infect* 2020; 81: 17-47. <https://doi.org/10.1016/j.jinf.2020.01.023>

[45] Notarbartolo V, Giuffrè M, Montante C, Corsello G, Carta M. Composition of human breast milk microbiota and its role in children's health. *Pediatr Gastroenterol Hepatol Nutr* 2022; 25: 194-210. <https://doi.org/10.5223/pghn.2022.25.3.194>

[46] Cortes-Macías E, Selma-Royo M, Martínez-Costa C, Collado MC. Breastfeeding practices influence the breast milk microbiota depending on pre-gestational maternal BMI and weight gain over pregnancy. *Nutrients* 2021; 13: 1518. <https://doi.org/10.3390/nu13051518>

[47] Lyons KE, Shea CO, Grimaud G, Ryan CA, Dempsey E, Kelly AL, et al. The human milk microbiome aligns with lactation stage and not birth mode. *Sci Rep* 2022; 12: 5598. <https://doi.org/10.1038/s41598-022-09009-y>

[48] Hunt KM, Foster JA, Forney LJ, Schutte UM, Beck DL, Abdo Z, et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. *PLoS One* 2011; 6: e21313. <https://doi.org/10.1371/journal.pone.0021313>

[49] Bode L, McGuire M, Rodriguez JM, Geddes DT, Hassiotou F, Hartmann PE, et al. It's alive: microbes and cells in human milk and their potential benefits to mother and infant. *Adv Nutr* 2014; 5: 571-573.

https://doi.org/10.3945/an.114.006643

[50] Khodayar-Pardo P, Mira-Pascual L, Collado MC, Martínez-Costa C. Impact of lactation stage, gestational age and mode of delivery on breast milk microbiota. *J Perinatol* 2014; 34: 599-605. <https://doi.org/10.1038/jp.2014.47>

[51] Soto A, Martín V, Jiménez E, Mader I, Rodríguez JM, Fernández L. Lactobacilli and bifidobacteria in human breast milk: influence of antibiotic therapy and other host and clinical factors. *J Pediatr Gastroenterol Nutr* 2014; 59: 78-88. <https://doi.org/10.1097/MPG.0000000000000347>

[52] Witt A, Mason MJ, Burgess K, Flocke S, Zyzanski S. A case-control study of bacterial species and colony count in milk of breastfeeding women with chronic pain. *Breastfeed Med* 2014; 9: 29-34. <https://doi.org/10.1089/bfm.2013.0012>

[53] Urbaniak C, Cummins J, Brackstone M, Macklaim JM, Gloor GB, Baban CK, et al. Microbiota of human breast tissue. *Appl Environ Microbiol* 2014; 80: 3007-3014. <https://doi.org/10.1128/AEM.00242-14>

[54] Ojo-Okunola A, Nicol M, du Toit E. Human breast milk bacteriome in health and disease. *Nutrients* 2018; 10: E1643. <https://doi.org/10.3390/nu10111643>

[55] Demmelmair H, Jiménez E, Collado MC, Salminen S, McGuire MK. Maternal perinatal factors associated with the human milk microbiome. *Curr Dev Nutr* 2020; 4: nzaa027. <https://doi.org/10.1093/cdn/nzaa027>

[56] McGuire MK, McGuire MA. Human milk: Mother nature's prototypical probiotic food? *Adv Nutr* 2015; 6: 112-123. <https://doi.org/10.3945/an.114.007435>

[57] Diez-Sampedro A, Flowers M, Olenick M, Maltseva T, Valdes G. Women's choice regarding breastfeeding and its effect on well-being. *NursWomens Health* 2019; 23: 383-389. <https://doi.org/10.1016/j.nwh.2019.08.002>

[58] Rodriguez JM. The origin of human milk bacteria: is there a bacterial entero-mammary pathway during late pregnancy and lactation? *Adv Nutr* 2014; 5: 779-784. <https://doi.org/10.3945/an.114.007229>

[59] Moossavi S, Azad MB. Origins of human milk microbiota: new evidence and arising questions. *Gut Microbes* 2020; 12: 1667722. <https://doi.org/10.1080/19490976.2019.1667722>

[60] Lyons KE, Ryan CA, Dempsey EM, Ross RP, Stanton C. Breast milk, a source of beneficial microbes and associated benefits for infant health. *Nutrients* 2020; 12: 1039. <https://doi.org/10.3390/nu12041039>

[61] Zimmermann P, Gwee A, Curtis N. The controversial role of breast milk in GBS late-onset disease. *J Infect* 2017; 74: 34-40. [https://doi.org/10.1016/S0163-4453\(17\)30189-5](https://doi.org/10.1016/S0163-4453(17)30189-5)

[62] Cossey V, Vanhole C, Eerdeken A, Rayyan M, Fieuws S, Schuermans A. Pasteurization of mother's own milk for preterm infants does not reduce the incidence of late-onset sepsis. *Neonatology* 2013; 103: 170-176. <https://doi.org/10.1159/000345419>

[63] Ma J, Li Z, Zhang W, Zhang C, Zhang Y, Mei H, et al. Comparison of gut microbiota in exclusively breast-fed and formula-fed babies: a study of 91 term infants. *Sci Rep* 2020; 10: 15792. <https://doi.org/10.1038/s41598-020-72635-x>

[64] Wang Z, Neupane A, Vo R, White J, Wang X, Marzano SL. Comparing gut microbiome in mothers' own breast milk- and formula-fed moderate-late preterm infants. *Front Microbiol* 2020; 11: 891. <https://doi.org/10.3389/fmicb.2020.00891>

[65] Parpanen KMM, Hultman J, Markkanen M, Satokari R, Rautava S, Lamendella R, et al. Early-life formula feeding is associated with infant gut microbiota alterations and an increased antibiotic resistance load. *Am J Clin Nutr* 2022; 115: 407-421. <https://doi.org/10.1093/ajcn/nqab353>

[66] Lima HK, Wagner-Gillespie M, Perrin MT, Fogleman AD. Bacteria and bioactivity in Holder pasteurized and shelf-stable human milk products. *Curr Dev Nutr* 2017; 1: e001438. <https://doi.org/10.3945/cdn.117.001438>

[67] Meredith-Dennis L, Xu G, Goonatilleke E, Lebrilla CB, Underwood MA, Smilowitz JT. Composition and variation of macronutrients, immune proteins, and human milk oligosaccharides in human milk from nonprofit and commercial milk banks. *J Hum Lact* 2018; 34: 120-129. <https://doi.org/10.1177/0890334417710635>

[68] Friend LL, Perrin MT. Fat and protein variability in donor human milk and associations with milk banking processes. *Breastfeed Med* 2020; 15: 370-376. <https://doi.org/10.1089/bfm.2020.0046>

[69] Moossavi S, Miliku K, Sepehri S, Khaftipour E, Azad MB. The prebiotic and probiotic properties of human milk: implications for infant immune development and pediatric asthma. *Front Pediatr* 2018; 6: 197. <https://doi.org/10.3389/fped.2018.00197>

[70] Maldonado J. Probiotics and prebiotics in infant formulae. In: Franco-Robles E, Ramírez-Emiliano J, editors. *Prebiotics and Probiotics - Potential Benefits in Nutrition and Health*. London: IntechOpen 2020. doi: 10.5772/intechopen.88609. <https://doi.org/10.5772/intechopen.88609>

[71] Scheuchzer P, Sinawat S, Donzé AS, Zeder C, Sabatier M, Garcia-Garcera M, et al. Iron absorption from an iron-fortified follow-up formula with and without the addition of a synbiotic or a human-identical milk oligosaccharide: a randomized crossover stable isotope study in young Thai children. *J Nutr* 2024; 154: 2988-2998. <https://doi.org/10.1016/j.jn.2024.08.016>

[72] Parker MG, Stellwagen LM, Noble L, Kim JH, Poindexter BB, Puopolo KM. AAP Section on Breastfeeding, Committee on Nutrition, Committee on Fetus and Newborn. Promoting human milk and breastfeeding for the very low birth weight infant. *Pediatrics* 2021; 148: e2021054272. <https://doi.org/10.1542/peds.2021-054272>

[73] Perrin MT, Fogleman AD, Newburg DS, Allen JC. A longitudinal study of human milk composition in the second year postpartum: implications for human milk banking. *Matern Child Nutr* 2017; 13: e12239. <https://doi.org/10.1111/mcn.12239>

[74] Sarkar S. Safety of donor human milk. *Int J Food Sci Nutr Diet* 2023; 12: 642-643.

[75] Walker M. *Breastfeeding management for the clinician*. Burlington (MA): Jones & Bartlett Publishers 2011.

[76] Kim JH, Unger S. Human milk banking. *Paediatr Child Health* 2010; 15: 595-598. <https://doi.org/10.1093/pch/15.9.595>

[77] Human Milk Banking Association of North America. *Best practices for expressing, storing and handling human milk in hospitals, homes, and child care settings*. Fort Worth (TX): HMBANA 2011.

[78] Almutawif Y, Hartmann B, Lloyd M, Erber W, Geddes D. A retrospective audit of bacterial culture results of donated human milk in Perth, Western Australia. *Early Hum Dev* 2017; 105: 1-6. <https://doi.org/10.1016/j.earlhumdev.2016.12.011>

[79] Jones F. *Best practices for expressing, storing and handling human milk in hospitals, homes, and child care settings*. 4th ed. Fort Worth (TX): Human Milk Banking Association of North America 2019.

[80] Tran HT, Nguyen TT, Nguyen OTX, Huynh LT, Nguyen LT, Nguyen TT, et al. Differences in the microbiological profile of raw and pasteurized breast milk from hospital- and community-based donors at the first human milk bank in Vietnam. *Nutrients* 2023; 15: 412. <https://doi.org/10.3390/nu15020412>

[81] Li R, Shenker N, Gray J, Megaw J, Weaver G, Cameron SJS. Microbiological analysis of donor human milk over seven years from the Hearts Milk Bank (United Kingdom). *Food Microbiol* 2025; 126: 104661. <https://doi.org/10.1016/j.fm.2024.104661>

[82] PATH. *Strengthening human milk banking: a global implementation framework*. Version 1.1. Seattle (WA): Bill & Melinda Gates Foundation Grand Challenges Initiative 2013.

[83] Boix-Amorós A, Collado MC, Mira A. Relationship between milk microbiota, bacterial load, macronutrients, and human cells

during lactation. *Front Microbiol* 2016; 7: 492. <https://doi.org/10.3389/fmicb.2016.00492>

[84] Haiden N, Pimpel B, Assadian O, Thanhäuser M, Roberts CD, Berger A. Comparison of bacterial counts in expressed breast milk following standard or strict infection control regimens in neonatal intensive care units: compliance of mothers does matter. *J Hosp Infect* 2016; 92: 226-228. <https://doi.org/10.1016/j.jhin.2015.11.018>

[85] National Institute for Health and Care Excellence. Donor breast milk banks: the operation of donor milk bank services. NICE clinical guideline No. 93. London: NICE 2010.

[86] Chang FY, Cheng SW, Wu TZ, Fang LJ. Characteristics of the first human milk bank in Taiwan. *PediatrNeonatol* 2013; 54: 28-33. <https://doi.org/10.1016/j.pedneo.2012.11.004>

[87] Bharadva K, Tiwari S, Mishra S, Mukhopadhyay K, Yadav B, Agarwal RK, et al. Infant and young child feeding: human milk banking guidelines. *Indian Pediatr* 2014; 51: 469-474. <https://doi.org/10.1007/s13312-014-0424-x>

[88] Serra VV, Teves S, López de Volder A, Ossorio F, Aguilar N, Armadans M. Comparison of the risk of microbiological contamination between samples of breast milk obtained at home and at a healthcare facility. *Arch Argent Pediatr* 2013; 111: 115-119. <https://doi.org/10.5546/aap.2013.eng.115>

[89] Svabic-Vlahovic M, Pantic D, Pavicic M, Bryner AH. Transmission of *Listeria monocytogenes* from mother's milk to her babies and to puppies. *Lancet*. 1988; 2: 1201. [https://doi.org/10.1016/S0140-6736\(88\)90276-0](https://doi.org/10.1016/S0140-6736(88)90276-0)

[90] Gastelum DT, Dassey D, Mascola L, Yasuda LM. Transmission of community-associated methicillin-resistant *Staphylococcus aureus* from breast milk in the neonatal intensive care unit. *Pediatr Infect Dis J* 2005; 24: 1122-1124. <https://doi.org/10.1097/01.inf.0000189983.71585.30>

[91] Qutaishat SS, Stemper ME, Spencer SK, Borchardt MA, Opitz JC, Monson TA, et al. Transmission of *Salmonella enterica* serotype Typhimurium DT104 to infants through mother's breast milk. *Pediatrics* 2003; 111: 1442-1446. <https://doi.org/10.1542/peds.111.6.1442>

[92] Pronczuk J, Akre J, Moy G, Vallenca C. Global perspectives in breast milk contamination: infectious and toxic hazards. *Environ Health Perspect* 2002; 110: 349-351. <https://doi.org/10.1289/ehp.021100349>

[93] Miura K, Tanaka M, Date M, Ito M, Mizuno N, Mizuno K. Comparison of bacterial profiles in human milk from mothers of term and preterm infants. *Int Breastfeed J* 2023; 18: 29. <https://doi.org/10.1186/s13006-023-00563-3>

[94] Human Milk Banking Association of North America. Guidelines for the establishment and operation of a donor human milk bank. Raleigh (NC): HMBANA 2015.

[95] Becker GE, Smith HA, Cooney F. Methods of milk expression for lactating women. *Cochrane Database Syst Rev* 2015; (2): CD006170. <https://doi.org/10.1002/14651858.CD006170.pub4>

[96] Borges MS, Oliveira AMM, Hattori WT, Abdallah VOS. Quality of human milk expressed in a human milk bank and at home. *J Pediatr (Rio J)* 2018; 94: 399-403. <https://doi.org/10.1016/j.jped.2017.07.004>

[97] Karimi M, Eslami Z, Shamsi F, Moradi J, Ahmadi AY, Baghianimoghadam B. The effect of educational intervention on decreasing mothers' expressed breast milk bacterial contamination whose infants are admitted to neonatal intensive care unit. *J Res Health Sci* 2012; 13: 43-47.

[98] Boo NY, Nordiah AJ, Alfizah H, Nor-Rohaini AH, Lim VKE. Contamination of breast milk obtained by manual expression and breast pumps in mothers of very low birth weight infants. *J Hosp Infect* 2001; 49: 274-281. <https://doi.org/10.1053/jhin.2001.1117>

[99] Brown SL, Bright RA, Dwyer DE, Foxman B. Breast pump adverse events: reports to the Food and Drug Administration. *J Hum Lact* 2005; 21: 169-174. <https://doi.org/10.1177/0890334405275445>

[100] Cervia JS, Ortolano GA, Canonica FP. Hospital tap water as a source of *Stenotrophomonas maltophilia* infection. *Clin Infect Dis* 2008; 46: 1485-1487. <https://doi.org/10.1086/587180>

[101] Landers S, Updegrove K. Bacteriological screening of donor human milk before and after Holder pasteurization. *Breastfeed Med* 2010; 5: 117-121. <https://doi.org/10.1089/bfm.2009.0032>

[102] Fihman V, Le Monnier A, Corvec S, Jaureguy F, Tankovic J, Jacquier H, et al. *Stenotrophomonas maltophilia*-the most worrisome threat among unusual non-fermentative gram-negative bacilli from hospitalized patients: a prospective multicenter study. *J Infect* 2012; 64: 391-398. <https://doi.org/10.1016/j.jinf.2012.01.001>

[103] Decousser JW, Ramarao N, Duport C, Dorval M, Bourgeois-Nicolaos N, Guinebretière MH, et al. *Bacillus cereus* and severe intestinal infections in preterm neonates: putative role of pooled breast milk. *Am J Infect Control* 2013; 41: 918-921. <https://doi.org/10.1016/j.ajic.2013.01.043>

[104] Cohen R, Babushkin F, Shimoni Z, Cohen S, Litig E, Shapiro M, et al. Water faucets as a source of *Pseudomonas aeruginosa* infection and colonization in neonatal and adult intensive care unit patients. *Am J Infect Control* 2017; 45: 206-209. <https://doi.org/10.1016/j.ajic.2016.05.029>

[105] Jiménez E, Arroyo R, Cárdenas N, Marín M, Serrano P, Fernández L, Rodríguez JM. Mammary candidiasis: a medical condition without scientific evidence? *PLoS One* 2017; 12: e0181071. <https://doi.org/10.1371/journal.pone.0181071>

[106] Liu K, Liu Z, Chen X, Wang R, Wang D. Detection of *Clostridium perfringens* in donor milk at a human breast milk bank: a case report. *BMC Infect Dis* 2023; 23: 810. <https://doi.org/10.1186/s12879-023-08822-8>

[107] Carré M, Dumoulin D, Jounwaz R, Mestdagh B, Pierrat V. Maternal adherence to guidance on breast milk collection process. *Arch Pediatr* 2018; 25: 274-279. <https://doi.org/10.1016/j.arcped.2018.02.003>

[108] Parreira PM, Vieira Nogueira JA, Rodrigues da Cunha L, Passos MC, Gomes NR, Breguez GS, et al. Effect of thermosonication on microorganisms, antioxidant activity, and retinol level of human milk. *Food Control* 2020; 113: 107172. <https://doi.org/10.1016/j.foodcont.2020.107172>

[109] Arslanoglu S, Bertino E, Tonetto P, De Nisi G, Ambruzzi AM, Biasini A, et al. Guidelines for the establishment and operation of a donor human milk bank. *J Matern Fetal Neonatal Med* 2010; 23: 1-20. <https://doi.org/10.3109/14767058.2010.512414>

[110] Baro C, Giribaldi M, Arslanoglu S, Giuffrida MG, Dellavalle G, Conti A, et al. Effect of two pasteurization methods on the protein content of human milk. *Front Biosci* 2011; 3: 829. <https://doi.org/10.2741/e289>

[111] Moro GE, Billeaud C, Rachel B, Calvo J, Cavallarin L, Christen L, et al. Processing of donor human milk: update and recommendations from the European Milk Bank Association (EMBA). *Front Pediatr* 2019; 7: 49. <https://doi.org/10.3389/fped.2019.00049>

[112] Czank C, Prime DK, Hartmann B, Simmer K, Hartmann PE. Retention of immunological proteins of pasteurized human milk in relation to pasteurizer design and practice. *Pediatr Res* 2009; 66: 374-379. <https://doi.org/10.1203/PDR.0b013e3181b4554a>

[113] Lloyd JC, Jennison RF, D'Souza SW. Bacterial contamination of expressed breast milk. *Br Med J*. 1979; 2: 1320-1322. <https://doi.org/10.1136/bmj.2.6201.1320>

[114] Wills ME, Han VE, Harris DA, Baum JD. Short-time low-temperature pasteurisation of human milk. *Early Hum Dev*. 1982; 7: 71-80. [https://doi.org/10.1016/0378-3782\(82\)90009-3](https://doi.org/10.1016/0378-3782(82)90009-3)

[115] Kontopodi E, Hettinga K, Stahl B, van Goudoever JB, van Elburg RM. Testing the effects of processing on donor human milk: analytical methods. *Food Chem* 2022; 373: 131413. <https://doi.org/10.1016/j.foodchem.2021.131413>

[116] Ames SR, Lotoski LC, Azad MB. Comparing early-life nutritional sources and human milk feeding practices: personalized and dynamic nutrition supports infant gut microbiome development

and immune system maturation. *Gut Microbes* 2023; 15: 2190305. <https://doi.org/10.1080/19490976.2023.2190305>

[117] Vass RA, Zhang M, Sarkadi LS, Üveges M, Tormási J, Benes EL, *et al.* Effect of Holder pasteurization, mode of delivery, and infant's gender on fatty acid composition of donor breast milk. *Nutrients* 2024; 16: 1689. <https://doi.org/10.3390/nu16111689>

[118] Escuder-Vieco D, Espinosa-Martos I, Rodríguez JM, Corzo N, Montilla A, Siegfried P, *et al.* High-temperature short-time pasteurization system for donor milk in a human milk bank setting. *Front Microbiol* 2018; 9: 926. <https://doi.org/10.3389/fmicb.2018.00926>

[119] Picaud JC, Buffin R. Human milk treatment and quality of banked human milk. *Clin Perinatol* 2017; 44: 95-119. <https://doi.org/10.1016/j.clp.2016.11.003>

[120] Pitino MA, Beggs MR, O'Connor DL, Doyen A, Pouliot Y, Sergius-Ronot M, Unger S. Donor human milk processing and its impact on infant digestion: a systematic scoping review of in vitro and in vivo studies. *Adv Nutr* 2023; 14: 173-189. <https://doi.org/10.1016/j.advnut.2022.11.004>

[121] Peila C, Emmerik NE, Giribaldi M, Stahl B, Ruitenberg JE, van Elburg RM, *et al.* Human milk processing: a systematic review of innovative techniques to ensure the safety and quality of donor milk. *J Pediatr Gastroenterol Nutr* 2017; 64: 353-361. <https://doi.org/10.1097/MPG.0000000000001435>

[122] Pitino MA, Unger S, Doyen A, Pouliot Y, Aufreiter S, Stone D, *et al.* High hydrostatic pressure processing better preserves the nutrient and bioactive compound composition of human donor milk. *J Nutr* 2019; 149: 497-504. <https://doi.org/10.1093/jn/nxy302>

[123] Demazeau G, Plumecocq A, Lehours P, Martin P, Couëdelo L, Billeaud C. A new high hydrostatic pressure process to assure the microbial safety of human milk while preserving the biological activity of its main components. *Front Public Health* 2018; 6: 306. <https://doi.org/10.3389/fpubh.2018.00306>

[124] Lubbe W, Oosthuizen CS, Dolman RC, Covic N. Stakeholder attitudes towards donating and utilizing donated human breastmilk. *Int J Environ Res Public Health* 2019; 16: 1838. <https://doi.org/10.3390/ijerph16101838>

[125] Arslanoglu S, Moro GE, Tonetto P, De Nisi G, Ambruzzi AM, Biasini A, *et al.* Recommendations for the establishment and operation of a donor human milk bank. *Nutr Rev* 2023; 81: 1-28. <https://doi.org/10.1093/nutrit/nuad012>

[126] Vickers AM, Starks-Solis S, Hill DR, Newburg DS. Pasteurized donor human milk maintains microbiological purity for 4 days at 4 °C. *J Hum Lact* 2015; 31: 401-405. <https://doi.org/10.1177/0890334415576512>

[127] Human Milk Banking Association of North America. HMBANA standards for donor human milk banking: an overview. Fort Worth (TX): HMBANA 2024.

[128] Food and Drug Administration. Current good manufacturing practice, hazard analysis, and risk-based preventive controls for human food. Title 21 Code of Federal Regulations, Part 117. Silver Spring (MD): US Department of Health and Human Services 2023.

[129] Mills JE, Cumming O. The impact of water, sanitation and hygiene on key health and social outcomes: review of evidence. New York (NY): UNICEF Water, Sanitation and Hygiene (WASH) 2016.

[130] Balachandran AM, Kamalarathnam CN, Mangala BS. Sociodemographic and clinical profile of human milk donors and their infants in a model human milk bank: a descriptive cross-sectional study. *Int J ContempPediatr* 2018; 5: 1775-1780. <https://doi.org/10.18203/2349-3291.ijcp20183368>

[131] Meneses TMX, Oliveira MIC, Boccolini CS. Prevalence and factors associated with breast milk donation in banks that receive human milk in primary health care units. *J Pediatr (Rio J)* 2017; 93: 382-388. <https://doi.org/10.1016/j.jped.2016.09.004>

[132] Arnold LD. Global health policies that support the use of banked donor human milk: a human rights issue. *Int Breastfeed J* 2006; 1: 26. <https://doi.org/10.1186/1746-4358-1-26>

[133] Alencar LC, Seidl EM. Breast milk donation: women's donor experience. *Rev Saude Publica* 2009; 43: 70-77. <https://doi.org/10.1590/S0034-89102009000100009>

[134] Coutsoudis I, Petrites A, Coutsoudis A. Acceptability of donated breast milk in a resource-limited South African setting. *Int Breastfeed J* 2011; 6: 3. <https://doi.org/10.1186/1746-4358-6-3>

[135] Doshmangir L, Naghshi M, Khabiri R. Factors influencing donations to human milk banks: a systematic review of facilitators and barriers. *Breastfeed Med* 2019; 14: 298-306. <https://doi.org/10.1089/bfm.2019.0002>