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Abstract: Time series data with excessive zeros frequently occur in medical and health studies. To analyze time series 
count data without excessive zeros, observation-driven Poisson regression models are commonly used in the literature. 
As handling excessive zeros in count data is not straightforward, observation-driven models are rarely used to analyze 

time series count data with excessive zeros. In this paper an observation-driven zero-inflated Poisson (ZIP) model for 
time series count data is proposed. This approach can accommodate an autoregressive serial dependence structure 
which commonly appears in time series. The estimation of the model parameters by using the quasi-likelihood estimating 

equation approach is discussed. To estimate the correlation parameters of the dependence structure, a moment 
approach is used. The proposed methodology is illustrated by applying it to a data set of daily emergency room visits 
due to bronchitis. 
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1. INTRODUCTION 

1.1. Motivating Example 

In the past number of years there have been 

increasing concerns with how the environment affects 

our health. In particular, the role that air quality, 

specifically air pollution levels, plays in affecting the 

general health of the population has become more 

important. Given these concerns, it is important to 

develop statistical models that can be used to 

investigate the relationship between air quality and 

measurements of a person’s health. This work is 

motivated by data collected in Prince George, British 

Columbia on daily emergency room visits, air pollution 

and meteorlogical variables [1]. The health 

measurement of interest is the daily number of 

emergency room visits that are due to bronchitis. The 

air pollution variables are sulphur (total reduced 

sulphur compounds, in parts per billion) and 

particulates (total suspended particulates, in μg /m3 ). 

The meteorlogical measurements used are average 

daily temperature, maximum daily relative humidity and 

minimum daily relative humidity. The number of 

emergency room visits used in the analysis were 

recorded daily from April 1, 1984 to March 31, 1986. 
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1.2. Background 

The data on emergency room visits has been 

studied previously. Jorgensen et al. [1] assumed the 

daily counts of emergency room visits to be a Poisson 

process driven by a latent Markov process. Knight et al. 

[2] used a log-linear model, assuming the counts were 

independent over time. Hasan et al. [3] developed a 

multilevel, parameter-driven zero-inflated Poisson (ZIP) 

mixed model to account for excess zeros in the 

response. 

There are a number of issues that need to be 

considered with this data. It is a time series of over 700 

observations, so the presence of some serial 

correlation is to be expected. This is because the 

number of emergency room visits on a particular day is 

likely to be related to the number of visits on the 

previous day. However, a standard ARIMA 

(autoregressive integrated moving average) model is 

inappropriate because the responses are counts. A 

Poisson (log-linear) model that can incorporate 

correlated responses would be more appropriate. The 

data set also has another issue that needs to be 

addressed. A large number of responses (about 28%) 

are zero. In other words, on about 28% of days there 

were no emergency room visits that were due to 

bronchitis. This pattern, along with the positive skew in 

the distribution, is seen in Figure 1. We need to 

develop a model that accounts for these excess zeros 

as well.  
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Figure 1: Bar plot of counts for children emergency room visit 
data due to bronchitis. 

Lambert [4] developed zero-inflated Poisson (ZIP) 

models to deal with excess zeros in independent count 

responses. The ZIP model can be thought of as a 

mixture of a Poisson and a degenerate component 

putting all of its mass at zero [4]. Ngatchou-Wandji and 

Paris [5] discuss a variety of applications of ZIP 

models. Others have worked on extending the ZIP 

model to allow for correlated observations [3, 6-8], 

using random effect-based models. Hasan and 

Sneddon [9] developed an observation-driven ZIP 

model for longitudinal count data with excessive zeros. 

1.3. Proposed Method 

In this paper we modify the work in [9] and develop 

a non-stationary, observation-driven ZIP model for a 

time series of counts with excessive zeros. The work in 

[9] addressed the issue of modelling longitudinal count 

data with excessive zeros, whereas this paper 

addresses the issue of modelling time series count 

data with excessive zeros. The proposed approach will 

be used for the analysis of the daily emergency room 

visits described previously. This observation-driven 

model will be based on binomial thinning. The 

advantage of the obervation-driven model is that the 

correlation structure will have a very similar form to that 

of an autoregressive of order 1 (AR(1)) type model in a 

traditional time series. We introduce the observation-

driven model in Section 2. We discuss a quasi-

likelihood approach for estimating the regression 

parameters and a moment estimator of the correlation 

parameter in Section 3. The analysis of the daily counts 

of emergency room visits data is presented in Section 

4. The performance of the proposed model is examined 

through a simulation study and the results are 

presented in Section 5, with a concluding discussion in 

Section 6. 

2. OBSERVATION-DRIVEN MODEL FOR COUNT 
DATA WITH EXCESSIVE ZEROS 

2.1. The Model 

In this section we present a non-stationary 
observation-driven model for count data with excessive 

zeros. Let Yt  denote the non-stationary time series 

count response recorded at the t th ( t =1,2,…,T ) time 

point. In the proposed observation-driven model, the 
response at the t th time point depends on the 
responses of the previous 1,2,…, (t 1)  time points 

which can be constructed based on the following four 
assumptions:  

Assumption 1: Let Ut
, for t =1,2,…,T , 

independently follows a Poisson distribution with 

parameter ( t (t 1) ) . That is, the mean and 

variance of Ut
 can be expressed as  

E(Ut ) =Var(Ut ) = ( t (t 1) ).          (1) 

In (1), t = exp(Xt
' )  with the vector of covariates 

 
Xt
' = (1,Xt1,Xt2 ,…,Xtn )  and the vector of regression 

parameters 
 
= ( 0 , 1, 2 ,…, n )

' . Also in (1),  and  

are the probability and the correlation parameters 
respectively, which satisfy the range restriction of 

0 ( , ) 1 . As the mean and variance of the Poisson 

random variable have to be positive i.e. 

( t (t 1) ) 0 , it then implies that < t

(t 1)

. Thus 

the correlation parameter  must satisfy the range 

restriction 

 

0 < < min 1

0

, 2

1

,…, T

(T 1)

,1 .  

Assumption 2: Let Yt  be the count response 

recorded at the t th time point ( t =1,2,…,T ). The 

distribution of the zero inflated count response Yt  can 

be developed through the binomial thinning operation. 

To be specific, for a given Y(t 1) , Y(t 1)  is the sum of 

Y(t 1)  binary observations, where each observation is 

generated with probability . We write this as  

Y(t 1) =
j=1

Y(t 1)

bj ( ) = Z(t 1) , say         (2) 

with Pr[bj ( ) =1] =  and Pr[bj ( ) = 0] =1 . This 

implies that the conditional distribution of Z(t 1)  given 

Y(t 1)  follows a binomial distribution with parameters 

Y(t 1)  and . Then the conditional expectation and 

variance of Z(t 1)  given Y(t 1)  can be expressed as  
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E Z(t 1) |Y(t 1)( ) = Y(t 1) and

Var Z(t 1) |Y(t 1)( ) = (1 )Y(t 1) .
 

Then the unconditional mean of Z(t 1)  can be 

expressed as  

E Z(t 1)( ) = E[E Z(t 1) |Y(t 1)( )] = (t 1) .  

Similarly the unconditional variance of Z(t 1)  can be 

expressed as  

Var Z(t 1)( ) =Var[E Z(t 1) |Y(t 1)( )]+ E[Var Z(t 1) |Y(t 1)( )]
= (t 1) .

 

Thus it is easy to show that the unconditional 

distribution of Z(t 1)  is a Poisson random variable with 

parameter (t 1) .  

Assumption 3: The random variables Z(t 1)  for the 

(t 1) th and Ut  for the t th time points are independent 

of one another and follow Poisson distributions with 

parameters (t 1)  and ( t (t 1) ) , respectively. 

After some algebra it can be shown that the sum of 

these two random variables i.e. Yt
* = Z(t 1) +Ut  

follows a 

Poisson distribution with parameter t .  

Assumption 4: The non-stationary response Yt  

recorded at the t th ( t =1,2,…,T ) time point has the 

following form:  

Yt =
0 with probability1

Yt
* with probability

.          (3) 

After some algebra it can be shown that Yt  follows 

a Poisson distribution with parameter t . Thus the 

unconditional mean and variance can be expressed as 

E(Yt ) = t  and var(Yt ) = t , respectively. The mean 

of E(Yt ) = t  is smaller than the mean of E(Yt
* ) = t  

because of the mixture of the excess zeros in the time 
series count responses. The mixture of zero and 
Poisson components here is modeled through the 
observation driven technique, in accordance with ZIP 
models. 

2.2. Variance-Covariance Structure 

We calculate the variance-covariance structure for 

the proposed model by induction. As Yt  follows a 

Poisson distribution with parameter t , the variance 

of Yt  for 
 
t =1, 2,…,T  can be expressed as  

Var(Yt ) = t .  

To calculate the covariance between lag- l  

(l =| t t' |)  apart observations such as Yt  and Y
t'

, first 

we calculate the covariance between lag-1 apart 

observations Yt  and Y(t 1)  under the proposed model. 

To do this we write  

Cov(Yt ,Y(t 1) ) = E(YtY(t 1) ) E(Yt )E(Y(t 1) ).         (4) 

In (4), E(YtY(t 1) )  can be expressed as 

E(YtY(t 1) ) = EE YtY(t 1) |Y(t 1)( ) , which after some lengthy 

algebra can be simplified as  

E(YtY(t 1) ) =
2

(t 1) +
2

t (t 1) .  

This implies that Cov(Yt ,Y(t 1) )  in (4) is  

Cov(Yt ,Y(t 1) ) =
2

(t 1) .              (5) 

Similarly we can calculate the covariance for lag-2 

apart observations Yt  and Y(t 2)  as  

Cov(Yt ,Y(t 2) ) =
2 3

(t 2) .          (6) 

Consequently, following (5) and (6), we can write 
the lag- l  apart covariance as  

Cov(Yt ,Y(t l ) ) =
l l+1

(t l ) .          (7) 

Let C( )  denote the correlation matrix of the time-

series response vector = (Y1,Y2 ,…,YT ) , which can be 

expressed as  

 

C( ) =

1 (1,2) (1,3) … (1,T )

(2,1) 1 (2,3) … (2,T )

(3,1) (3,2) 1 … (3,T )

…

(T ,1) (T ,2) (T ,3) … 1

.         (8) 

where 
(t ,t' )

 represents the correlation between lag- l  

( l =| t t' | ) apart responses Yt  and Y
t'

. After some 

simple algebra, 
(t ,t' )

 can be simplified as  

(t ,t' )
=Corr(Yt ,Yt' ) =

|t t' | |t t' | (t |t t' |)

t

.         (9) 

The correlation structure presented in (9) can be 
considered as autoregressive of order 1 type 
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correlation structure for the non-stationary count 
responses as the correlation decays with the increase 

of the lag. Note that if 
 1 = 2 =… = T = , then the 

lag- l  ( l =| t t' | ) apart correlation structure in (9) can 
be simplified as  

(t ,t' )
=Corr(Yt ,Yt' ) =

|t t' | |t t' | ,        (10) 

which is an autoregressive of order 1 correlation 
structure for the stationary count responses with 

excessive zeros. 

3. PARAMETER ESTIMATION 

In this section we discuss the estimation procedures 

to estimate the regression parameter  and the 

correlation parameter . In Section 3.1, following [10], 

we introduce a quasi-likelihood (QL) approach to 

estimate . Note that the QL approach involves the 

unknown correlation parameter  and probability 

parameter  which need to be estimated. In Section 

3.2 we use a moment approach to estimate . The 

logistic regression based estimation approach of the 
probability parameter  using the covariate 

information is discussed in Section 3.3. 

3.1. Estimation of Regression Parameters 

Following [10], the QL estimating equation can be 

written as  

g( ) =
μ 1(Y μ) = 0.

       (11) 

In (11), 
 
Y = (Y1,…,Yt ,…,YT )

'  is a T 1  response 

vector with mean vector 
 
μ= (μ1,…,μt ,…,μT )

'  where 

μt = E(Yt | Xt
' ) = t  and 

 

μ '

=
μ1

'

,…,
μT

'

. Also in 

(11), = A1/2C( )A1/2  where C( )  is the correlation 

matrix defined in (8) and A  is the T T  diagonal 

matrix given by 
 
A =diag[ 1,…, t ,…, T ] , where 

t =var Yt | Xt
'( ) = t . For known  and , the solution 

of  from (11) is achieved by using the Gauss-Newton 

iteration procedure, which can be written as  

(r +1) = (r) +
μ '

1 μ

(r )

1
μ '

1 Y μ( )
(r )

, (12) 

where [.](r )  denotes that the expression within the 

square brackets is evaluated at =

^

(r) , the values of 

 at the rth  iteration. Let 
^

 be the final estimator 

of . Following [10], it can be shown that, under some 

mild regularity conditions, T
1

2 ( ˆ )  is asymptotically 

normal with mean vector 0  and covariance matrix V  
given by  

V =
T
limT

μ '
1 μ

1

.        (13) 

Note that the solution of (11) for  computed by 

(12) is a consistent estimate for . This is because for 

known  and , the estimating function g( )  is 

unbiased for zero. 

3.2. Estimation of Correlation Parameter 

As mentioned before, the estimation of  requires 

the correlation matrix C( ) . Even though the structure 

of the correlation matrix C( )  is known under the 

proposed model, the correlation parameter  involved 

in C( )  is however still unknown. We need to estimate 

 consistently in order to obtain the consistent and 

efficient estimate for the regression parameter . To 

do that we assume that the probability parameter  is 

known in this section. Under the proposed model (3), 

the correlation structure of Yt  and Y(t l )  have the form 

derived in (9). In order to know all lag correlations 
under the proposed model, it is sufficient to know the 
estimate of . Consequently, to develop a moment 

equation for Yt  
 
(t =1, 2,…,T ) , we consider a statistic 

1 , as a function of the sample autocovariances of the 

response variable given by  

 

1 =
t=2

T

YtY(t 1){ } / (T 1),            (14) 

where Yt =
Yt E(Yt )

[var(Yt )]
1/2 . Now to develop the moment 

equation we solve 1  with E( 1 ) , where  

E( 1 ) = 1( ) =
t=2

T
(t 1)

t

/ (T 1).       (15) 

For the estimate of  i.e. ˆ , we consider the 

moment equation  

1 E( 1 ) = 1 1( ˆ ) = 0        (16) 

and solve for  by using the iterative equation  

(r +1) = (r) { 1( ) 1}
(r )

1

[ 1( ) 1](r ),      (17) 
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where  

{ 1( ) 1} =
t=2

T
(t 1)

t

/ (T 1),  

and [.](r )  denotes that the expression in [ ]  is evaluated 

at = ˆ(r) . Once the correlation parameter  is 

estimated using the appropriate moment estimating 
equation for known correlation structures, one can use 
this estimate of  in the QL estimating equation (12), 

which also involves the estimation of the probability 
parameter . In Section 3.3 we present the estimation 

technique for estimating the probability parameter. 

3.3. Estimation of Probability Parameter 

In the proposed observation-driven model, the 
unknown probability parameter  can be considered 

as a nuisance parameter. So a consistent estimate of 
the probability parameter  should be enough to 

obtain estimates of the regression and correlation 
parameters. To do that we follow [9] and estimate  

from the data using logistic regression. Note that 
logistic regression is commonly used in the ZIP model 
to estimate the probability parameters consistently [4-
8]. To do this we convert the count data to binary data 
as  

Yt
** =

0 if Yt = 0

1 if Yt > 0
.  

Then the probability parameter  can be estimated 

as  

= E(Yt
** ) =

1

T t=1

T exp Xt
' **( )

1+ exp Xt
' **( )

,

 

using the quasi likelihood estimate of ** . We then 

use the maximum likelihood estimate of  to update 

the estimates of the regression parameters iteratively. 

4. DATA ANALYSIS 

In this section, we illustrate our proposed 

observation-driven method to the daily counts of 

emergency room visits due to bronchitis from Prince 

George, British Columbia over a two year period [1]. As 

there may be no visit to a single hospital due to 

bronchitis in many days, we may observe excessive 

zero counts as compared to the nominal counts of 

zeros. To check the presence of extra zeros in the data 

set, we first conduct exploratory data analysis which 

shows that about 28% of days have zero responses. 

We then calculate the nominal percentage of zeros 

from a Poisson distribution using its sample average as 

the mean parameter which is 19%. Therefore the 

observed percentage of zeros is nearly 50% higher 

than the nominal percentage. So we need to 

accommodate these excessive zeros to analyze this 

data set appropriately. 

In our analysis, the daily counts of emergency room 

visits by residents to the single hospital in Prince 

George, British Columbia due to bronchitis have been 

considered responses. To examine the various 

covariates’ effects on the daily counts of ER visits due 

to bronchitis, we consider temperature, maximum 

relative humidity and minimum relative humidity as 

covariates, which were collected at the Prince George 

airport. The measurements refer to the daily average 

readings in degrees Celsius, largest reading and 

smallest reading of humidity, respectively. We 

considered two air quality variables: TRS (total reduced 

sulphur) and TSP (total suspended particulates) as in 

[1]. These two air quality variables refer to the daily 

average reading collected from the six stations at 

Prince George. To consider effects of the air quality of 

previous days, we considered the lag 0, 1 and 2 of 

log(TRS) and log of lag TSP [1]. 

We also considered the effect of different days of 

the week in the initial analysis and found out that only 

weekends are significantly different than weekdays. 

Therefore we incorporated an indicator variable (Day) 

which is 1 if the response is recorded on the weekend 

or 0 otherwise. The occurrence of bronchitis can also 

be affected by periodical variation as more cases may 

occur during flu season. To capture the periodical 

variation in the data we considered cosine and sine 

terms of month and season. Therefore the covariates in 

our final model are temperature, sum of log humidities 

(Sum Hum.), difference of log humidities (Diff. Hum.), 

lag 0 of log TSR (Log TRS.L0), lag 1 of log TSR (Log 

TRS.L1), lag 2 of log TSR (Log TRS.L2), log of lag TSP 

(Log TSP.L), day, cosine of month, sine of month, 

cosine of season and sine of season. 

In this paper, our scientific interest is to assess the 

effects of air pollution on the emergency room visits 

while accounting for the large number of zero 

observations as well as serial correlation which 

commonly occurs in time series data. Let Yt  represent 

the observed number of daily emergency room visits at 

the t th time point, which can be analyzed using our 

model (3) with the Poisson mean parameter being 

specified as  



Observation-Driven Model for Zero-Inflated Daily Counts International Journal of Statistics in Medical Research, 2013 Vol. 2, No. 3      225 

t = exp 0 + 1 Temperature+ 2  Sum Hum.+

3 Diff .Hum.+ 4  Log TRS.L0
 

+ 5  Log TRS.L1+ 6  Log TRS.L2+ 7  Log TRS.L+

8  Day+ 9  Cosine of Month
 

+ 10  Sine of Month+ 11 Cosine of Season+

12  Sine of Season
,      (18) 

where 
 
t =1,…, 728 . Our data analysis results are 

presented in Table 1.  

Our analysis shows that temperature has a negative 

significant effect. That is, if temperature increases then 

number of emergency room visits decreases. The 

covariates sum of log humidities and difference of log 

humidities also have positive significant effect, which 

indicate that the increase of the daily variation in 

humidities increases the emergency room visits. 

Jørgensen et al. [1] and Hasan et al. [3] found that the 

sum of log humidities and difference of log humidities 

have insignificant effects. Other covariates such as lag 

0, 1 and 2 of log(TRS) appear to be insignificant as in 

[1]. In their data analysis, Jørgensen et al. [1] found 

that log(TSP.L) has a negative significant effect and the 

number of emergency room visits during weekends as 

well as Mondays and Wednesdays are significantly 

higher as compared to the other days of the week. 

After accounting for excessive zeros in our analysis, we 

found Log TSP.L has an insignificant effect and the 

number of emergency room visits is significantly higher 

on the weekends as compared to the weekdays, which 

is similar to the results presented in [3]. One of the 

reasons for this is probably due to the unavailability of 

family doctors during weekends. 

To capture the seasonal variation of the responses 
we included the cosine and sine terms of months and 
seasons. Our results show that cosine and sine term of 
months and sine of season have negative significant 
effects. To understand the overall effect of the 
periodical variation, we plot the overall effect against 

the day in Figure 2 where the values of ˆ9 ,
ˆ
10 ,
ˆ
11  and 

ˆ
12  are given in Table 1:  

overall effects= ˆ
9 Cosine of Month+ ˆ

10  Sine of Month  

+
ˆ

11 Cosine of Season+
ˆ

12  Sine of Season
 

The overall periodic pattern shown in Figure 2 

would repeat annually over these two years, so the plot 

is drawn for only for one year from January 1 to 

December 31. There appears to be a quadratic shape 

in the periodic pattern of daily emergency room visits 

due to bronchitis over a year with its peak in fall and 

winter. The highest peak in the months is in winter and 

the lowest peak is in the summer months. This is 

probably beacuse fall and winter are considered to be 

flu season in British Columbia. The dotted line indicates 

the overall effect and the solid line indicates the 

nonparametric fit of the overall effect (using the 

function supsmu in R). 

Table 1: Estimates of Parameters with Standard Errors and p-Values for Daily Emergency Room Visit Data 

 Covariates  Estimate  St. Error  p-value  

Intercept  0.2512  0.6788  0.7113  

Temperature  -0.0111  0.0026  0.0000  

Sum Hum.  0.2852  0.1025  0.0054  

Diff. Hum.  0.1497  0.0717  0.0367  

Log TRS.L0  0.0156  0.0199  0.4340  

Log TRS.L1  -0.0425  0.0211  0.0538  

Log TRS.L2  0.0177  0.0194  0.3609  

Log TSP.L  -0.0438  0.0473  0.3539  

Day  0.6723  0.0319  0.0000  

Cosine of Month  0.4755  0.0763  0.0236  

Sine of Month  -0.0500  0.0641  0.0000  

Cosine of Season  -0.2442  0.0619  0.4352  

Sine of Season  -0.1394  0.0616  0.0000  

  0.7184    

  0.5217    
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The estimates of  and  are 0.7184  and 0.5217 , 

respectively. The serial correlation of 0.5217  indicates 

that the serial dependence of the daily counts between 

consecutive days is strong. This pattern is common as 

the temperature, flu activity and variation in humidity 

are similar on consecutive days. 

5. SIMULATION STUDY 

To examine the performance of the proposed 

methodology we conducted a simulation study. In the 

simulation study, we generate count responses similar 

to those in the emergency room dataset 500 times via 

simulation by using the proposed observation driven 

 

Figure 2: Overall periodical effect plot for children emergency room visit data due to bronchitis. 

Table 2: Simulated Means, Simulated Standard Errors and Estimated Standard Errors Based on 500 Simulation 

 Covariates   True Values   SM
a
   SSE

b
  ESE

c
  

0   0.2512  0.1797  0.5424  0.5615  

1   -0.0111  -0.0081  0.0039  0.0027  

2   0.2852  0.1986  0.0568  0.0792  

3   0.1497  0.1026  0.0341  0.0595  

4  0.0156  0.0083  0.0100  0.0170  

5  -0.0425  -0.0272  0.0137  0.0176  

6  0.0177  0.0155  0.0085  0.0157  

7  -0.0438  -0.0522  0.0262  0.0493  

8  0.6723  0.5322  0.0186  0.0261  

9  0.4755  0.4517  0.0336  0.0673  

10  -0.0500  -0.0438  0.0250  0.0729  

11  -0.2442  -0.2278  0.0319  0.0797  

12  -0.1394  -0.1291  0.0387  0.0793  

 0.7184  0.7166  0.0173   

 0.5217  0.5099  0.2320   

a
Simulated means. 

b
Simulated standard errors. 

c
Estimated standard errors. 
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ZIP model specified in our example. We consider the 

covariates listed in Table 1 from the data example as 

the covariates for our simulation study. The true values 

of the regression parameters in the simulation study 

are taken from the estimates of the corresponding 

regression parameters listed in Table 1. The true 

values of the probability and the correlation parameters 

also taken from the estimates of the corresponding 

parameters from our data example. They are listed in 

Table 2 as ‘True value’ 0 , 1 , … , 12 ,  and  

respectively.  

In each simulation, we generated 728 count 

responses based on the assumptions described in 

Section 2. We then analyze the simulated data set 

under the estimation technique presented in Section 3. 

The simulation results are presented in Table 2. The 

simulated means for the regression parameters are 

appear to be very close to the true values. The average 

biases (the absolute difference between the true values 

and the simulated mean) for the regression parameter 

estimates over 500 simulations are all less than 0.05, 

with the exception of 0  and 8 , which each have bias 

around 0.1. The simulated means of the probability and 

the correlation parameters estimates over 500 

simulations are also very close to the corresponding 

true values, with average biases less than 0.02. The 

sample standard errors of the estimates over 500 

simulations and the averages of the 500 estimated 

standard errors are termed simulated and estimated 

standard errors respectively. All estimated standard 

errors for the regression parameter estimates are 

similar to the simulated standard errors. This limited 

simulation study demonstrates that our approach is 

performing well for the analysis of time series count 

data with excessive zeros. 

6. DISCUSSION 

In this paper we have proposed an observation-

driven zero inflated Poisson model for analyzing time 

series count data with excessive zeros. In this 

observation-driven model the regression coefficients 

can be interpreted as the proportional change in the 

marginal expectation of the response variable on the 

logarithm scale given a unit change in the regressor 

variables. This property makes the interpretation of the 

regression parameter easy to understand. Our choice 

of observation-driven model allows us to accommodate 

the excessive zeros in the time series count responses. 

Our proposed approach can also capture the serial 

dependence which is likely to be present in time series 

data. Although in this paper we assumed an AR(1)-type 

correlation structure due to its common occurrence in 

time series analysis, our model is easily modified for 

other serial dependence structures such as moving 

average of order 1 or exchangeable correlation 

structures. A computationally efficient estimation 

method for the regression parameters has been 

developed through the quasi-likelihood approach. 

Results based on our limited simulation study show 

that the proposed approach performs well. In our 

example, the large value of the estimate of serial 

correlation indicates the importance of capturing the 

serial dependence among the time series responses. 

Under the longitudinal count data with excessive zeros, 

it was shown in [9] that ignoring serial dependence 

among the responses may lead to inefficient estimates 

of the model parameters. This conclusion can be 

extended to the context of time series count responses 

with excessive zeros. 
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