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Abstract: Clinical trials comparing a test treatment with an active control therapy have become very popular in drug and 

medical device development in the last decade. An active controlled trial without a placebo, however, exhibits some 
major challenges in design, analysis, and interpretation, such as the determination of the non-inferiority margin or the 
assumption of constancy condition. When there are no ethical concerns, the comparison of a test drug with placebo 

usually provides the most convincing proof of the efficacy of a new treatment. Therefore, it may be advisable to conduct 
a three-arm trial — including placebo, active control, and the new treatment — if it is ethically justifiable such as a 
papulopustular acne study and an oral prophylactic antibiotics study. In this paper, we propose a statistical methodology 

for a three-arm non-inferiority trial with binary outcomes. We adapt the step-down hierarchical hypotheses and give a 
three-step testing procedure which is more realistic in conducting a clinical trial. We derived an optimal sample size 
allocation rule in an ethical and reliable manner to minimize the total sample size and hence to shorten the duration of 

the trials. Real examples from a papulopustular acne study and an oral prophylactic antibiotics study are used to 
demonstrate our methodology. 

Keywords: Clinical trial, binary outcomes, gold standard design, optimal sample size allocation, restricted 

maximum likelihood. 

1. INTRODUCTION 

The main purpose of a clinical trial is to demonstrate 

efficacy of a new treatment. Many investigators adapt 

an active controlled non-inferiority clinical trial without a 

placebo because of ethical concerns. Such a trial, 

however, exhibits some major challenges in design, 

analysis, and interpretation, such as the determination 

of the non-inferiority margin or the assumption of 

constancy condition. Because of the absence of a 

placebo arm, one cannot assert directly that the test 

treatment is superior to a placebo. Moreover, many 

researchers may not pay attention to verifying assay 

sensitivity, that is, to showing that the active control is 

better than the placebo in the current trial. When the 

placebo arm is present in the non-inferiority trial if 

ethically justifiable, the assay sensitivity can be 

concurrently verified and the issues discussed above 

will not be present.  

Several studies have presented useful ideas for 

non-inferiority trial designs. Some of them suggest 

including a placebo arm in a non-inferiority trial when  
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ethically justifiable (see [1 2]) and propose statistical 

methodologies for such design; these include Pigeot et 

al. [3], Koch and Röhmel [4], and Hauschke and Pigeot 

[5] for continuous outcome; Tang and Tang [6], Kieser 

and Friede [7], Hasler [8] for binary outcome; and 

Mielke et al. [9] for survival data, and Kombrink et al. 

[10] for censored time-to-event data. A three-arm trial 

including placebo, active control and test drug is 

referred to as gold standard design [5]. In this design, 

the hypotheses can be formulated more precisely, the 

non-inferiority of the test treatment to an active control 

can be verified, and the efficacy of the test treatment 

can be accessed directly. Tang and Tang [6] proposed 

sample size allocation rules for a three-arm clinical trial 

by using binary outcomes based on rate difference. 

However, they did not consider the optimal sample size 

determination. Kieser and Friede [7] derived 

approximate sample size formulas in each patient 

group and proposed a complete two-step test 

procedure. Koch and Röhmel [4] and Hauschke and 

Pigeot [5] suggested comparing the test treatment with 

a placebo in the first step. Emphasizing the importance 

of comparing the test treatment versus a placebo, they 

indicated that nothing can rescue such a trial if the 

superiority of an experimental over a placebo cannot 

be shown. Hence, we propose a testing procedure with 

hierarchical hypotheses based on Koch and Röhmel’s 
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[4] suggestion and derive an optimal sample size 

determination of a three-arm trial. 

The outline of this paper is as follows. In Section 2, 

we present the models and hypotheses for a three-arm 

gold standard design. The null variance estimation 

based on two methods is proposed and an optimal 

sample size allocation is also given. The simulation 

outcomes of type I error rate, and power are displayed 

in Section 3. We apply the proposed method to a 

papulopustular acne study and an oral prophylactic 

antibiotics study in Section 4. Finally, we conclude with 

discussion in Section 5. 

2. METHODOLOGY 

2.1. Model and Hypotheses 

In this article, we propose a statistical method for 

binary outcomes, such as improvement/no 

improvement and remission/no remission. We consider 

the primary clinical outcomes under a placebo, an 

active control, and a test treatment (XP, XC, and XT), 

respectively, as independent and binomially distributed 

variables. That is, we assume that Xk ~ B(nk, k), where 

the success rate k represents unknown true response 

probability and nk be the sample size, k = P, C, and T. 

Under gold standard three-arm design, we adapted 

the step-down hierarchical hypotheses for binomial 

outcomes. In the first step, we compared a test 

treatment with a placebo by the following hypothesis 

H01: T  P.             (1) 

If the superiority of an experimental over a placebo 

cannot be shown, nothing can rescue such a trial. 

Thus, it is reasonable to compare the test treatment 

versus a placebo in the first step. If H01 is rejected, we 

claimed that the test treatment is superior to the 

placebo and executed the second-step procedure. 

In the second step, we compared an active control 

with a placebo by the following hypothesis 

H02: C  P.           (2) 

Similarly, we claimed that the active control is 

superior to the placebo if H02 is rejected. Consequently, 

the assay sensitivity was established. 

After both hypotheses H01 and H02 were rejected, 

the non-inferiority hypothesis for a test treatment 

versus an active control was accessed at level  with a 

pre-specified non-inferiority margin  (  > 0). In other 

words, we wanted to ensure 

T – C > . 

The margin can be a function  of difference 

between response probabilities C and P [3], that is  

= (1  )( C – P), where  is a pre-specified fixed 

fraction of active controlled effect. Koch and Tangen 

[11] mentioned the reasonable region for non-inferiority 

test is for  between 0.5 and 0.99. Therefore, the null 

hypothesis could be simply rewritten as 

H03: ( T – P) / ( C – P)            (3) 

If H03 is successfully rejected for a given , we claim 

that the test treatment retains more than   100% 

efficacy of the active control compared with the 

placebo. Therefore, the non-inferiority of the test 

treatment to the active control is declared. 

2.2. Statistical Hierarchical Test Procedures 

We described the step-down hierarchical 

hypotheses in the previous section. According to the 

hierarchical testing procedures (Figure 1), the 

familywise error rate (FWER) could be controlled at the 

same level, . 

Statistical test procedures for hypotheses in (1) and 

(2) can be established according to conventional 

method [12], we now only focus on establishing the 

testing procedures in the third step to evaluate the non-

inferiority of the test treatment to the active control. For 

further development, we rewrote (3) and let 

 

Figure 1: The partitioning hierarchical hypotheses. 
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( ) = T – C – (1 – ) P,         (4) 

which is a linear combination of  = ( T, C, P). We 

obtained the maximum likelihood estimator (MLE) 
   k

 

of k,  
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where 
k
 estimates k under null hypothesis. We 

evaluate 
  k

 in 2  by using two commonly used 

methods under the null hypothesis (3).  

Method I: The value of 
  k

 can be estimated by an 

observed value 
   k  

[14], but it might be failed in a null 

hypothesis of non-zero difference between groups [15].  

Method II: According to Farrington and Manning 

[15], the value of 
  k

 can be estimated by a restricted 

maximum likelihood under the null hypothesis 

restriction 
T
=

C
+ 1( )

P
. A third-degree 

likelihood equation of the proportion-type rates 
  k

 is a 

problem that can be solved by Miettinen and Nurminen 
[16]. The derivation is given in the Appendix A. 

Therefore, we obtain the Wald statistic 

   

T =
( )

           (5) 

which is asymptotically standard normally distributed 

for ( ) = 0 . Thus, the null hypothesis (3) was rejected 

if 

  
T > z

1             (6) 

at the one-sided significant level , where z1-  is the 
100(1 – ) quantile of the standard normal distribution. 

2.3. Power and Optimal Sample Size 
Determinations 

In this subsection, we formulate the power function 
of the Wald test and determined the necessary sample 
size of test treatment to achieve a desired level of 
power 1 – . According to Chow et al. [12], sample size 
formulae for Step 1 and 2 are established, respectively 
(see Appendix B). In Step 3, the power function of the 
test (6) is given by 

  
1 P T > z

1
( ) ,           (7) 

and the power of the above inequality (7) is 
approximately 

   

( ) z
1

A

2

           (8) 

where  denotes the cumulative distribution function of 
the standard normal distribution. 

Assume that an optimal sample size allocation for 
the test treatment group, the active control, and the 
placebo group can be expressed as nT: nC: nP = 1: CC: 
CP. Therefore, according to (8), we determined the 
sample size based on the following inequality: 
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for observing T z
1

 with a desired level of power 1 – 

. This led to a simplification of the procedure where nT 
has to be determined as the smallest value fulfilling 
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According to Method I, the inequality (9) can be 
reduce to  
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In general, the choice of CC and CP may be made 
by clinicians or investigators at the design stage for 
conducting a clinical trial. Given the values of CC and 
CP, we determined the total sample size N with 

 N = n
T
+ n

C
+ n

P
= n

T
1+C

C
+C

P
( ) .      (11) 

To determine the minimum of the total sample size 
N, the optimal values for CC and CP are given as partial 
derivatives of (11) at zero. In Method I, the solutions of 
CC and CP are: 

  

C
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In Method II, an iterative procedure can be used to 

solve CC and CP in (11) and minimize of the total 

sample size N (see Appendix A).  

We explored the required total sample size N based 

on Method I and II for different sample size allocation 

rules, different combination of the design parameters 

( P, C, T) and , and for given  = 0.025, 1 –  = 0.8 

(see Table 1). In Table 1, we considered four different 

sample size allocations (balance design, two types of 

unbalance designs, and our proposed optimal sample 

size allocation), different choices of , ( P, C) = (0.1, 

0.8), and T = C. We found that Method I gives smaller 

total sample size N than Method II. Farrington and 

Manning [15] pointed out that Method I, however, suffer 

serious drawbacks such as underestimate or 

overestimate the true value of the null variance under 

the alternative hypothesis thus leading to incorrect 

sample sizes. Hence, in the following discussion we 

focus on Method II for precise sample size. When  = 

0.1, the sample sizes of Method II for balance design, 

2: 2: 1 design, 3: 2: 1 design and optimal sample size 

allocation are 23, 27, 27, and 16, respectively. As seen 

in Table 1, the sample size of Method II obtained from 

optimal allocation design is always smaller than that 

obtained from the other sample size allocation rules. 

Furthermore, the total sample size increases as  

increases when other design parameters are fixed. 

This phenomenon is intuitively true since the 

requirement of the treatment effect is stronger for the 

larger margin ; hence, the required total sample size 

is larger. In Table 2, we set the margin at  = 0.6 and 

0.8 for four different sample size allocations. The first 

row is sample size of the treatment group (nT), while 

the second row is the total sample size (N). For 

example, in the first row, sample sizes of Method II of 

the treatment group nT for balance design, 2: 2: 1 

design, 3: 2: 1 design, and optimal sample size 

allocation are 29, 31, 36, and 38, respectively. In the 

second row, the total sample sizes N for four sample 

size allocation are 85, 77, 71, and 67, respectively. The 

result of Table 2 is similar to Table 1. In addition, we 

find that the total sample size increases as ratio of 

P/ C increases when other design parameters are 

fixed. In Table 3, the corresponding sample size based 

on the three steps is calculated according to Appendix 

B and Eq. (11). We find that the required sample sizes 

per group of Step 1 and Step 2 are substantially 

smaller than the sample size of Step 3.  

In Figure 2, we illustrate the sample size reductions 

for using the optimal allocation instead of a balance 

design, 2: 2: 1 and 3: 2: 1 designs, respectively, given 

P = 0.1, C = 0.8 and T = C. As seen in Figure 2, 

Table 1: Required Total Sample Sizes for Different Sample Size Allocation Designs at Nominal , Given P = 0.1, C = 

0.8, T = C,  = 0.025,  = 0.2 

nT: nC: nP 

1:1:1 2:2:1 3:2:1 1:CC:CP  

Method I Method II Method I Method II Method I Method II Method I Method II 

0.1 14 23 16 27 16 27 10 16 

0.2 17 26 18 30 18 30 13 20 

0.3 22 32 22 35 21 34 18 25 

0.4 30 40 28 42 27 40 25 32 

0.5 43 56 40 54 37 51 37 45 

0.6 70 85 62 77 58 71 58 67 

0.7 132 151 114 131 108 118 106 116 

0.8 320 344 270 291 260 264 244 254 

0.9 1396 1426 1167 1191 1145 1125 1000 1010 
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there are at least 20% sample size reductions when the 

balance design is replaced by optimal allocation. In 

addition, the sample size reductions are even greater 

than 30%, where the margins for  are close to 0.1 and 

0.9, respectively. For 3: 2: 1 design, we could save at 

least 2% sample size by relocating to the optimal 

sample size allocation. 

Figure 3 presents the total sample size for  = 0.5, 

0.6, 0.7, 0.8, and 0.9, with the different proportions of 

P / C from 0.125 to 1, given C = 0.8 and T = C. As 

seen in Figure 3, the total sample size increases with 

increasing values of  and active control effect P / C. 

The total sample size is enormous when P / C close 

to one and  = 0.9, which is impractical in clinical trials. 

3. SIMULATION 

To examine the performance of proposed optimal 

sample size allocation in Method II, we conducted a 

simulation study for the type I error rate and the 

simulated power. All parameter constellations were 

simulated with 100,000 replications. 

Table 2: Required Sample Sizes Based on Method II for the Treatment Group (First Row) and Total Sample Size 

(Second Row) with T = C,  = 0.025,  = 0.2 for Different Sample Size Allocation Designs 

nT: nC: nP 
 ( P, C) 

1:1:1 2:2:1 3:2:1 1:CC:CP 

0.6 (0.1, 0.8) 29 31 36 38 

  85 77 71 67 

 (0.2, 0.7) 66 72 84 85 

  196 179 167 163 

 (0.3, 0.6) 199 219 261 262 

  597 548 522 515 

 (0.4, 0.5) 1856 2048 2462 2463 

  5566 5119 4923 4877 

0.8 (0.1, 0.8) 115 117 132 139 

  344 291 264 254 

 (0.2, 0.7) 281 286 336 340 

  842 714 672 649 

 (0.3, 0.6) 880 898 1078 1052 

  2638 2245 2155 2072 

 (0.4, 0.5) 8232 8421 10181 9730 

  24694 21053 20361 19557 

 

Table 3: Required Sample Sizes Per Group (T: Test Treatment; C: Active Control; P: Placebo) in Three Steps for 

Different Combination of Design Parameters , ( P, C) with T = C,  = 0.025,  = 0.2 According to the 

Proposed Optimal Sample Size Allocation Using Method II 

Step 1 Step 2 Step 3 
 ( P, C) 

T P C P T C P 

0.6 (0.1, 0.8) 8 2 6 3 38 16 13 

 (0.2, 0.7) 21 8 16 9 85 45 33 

 (0.3, 0.6) 70 27 51 31 262 151 102 

 (0.4, 0.5) 677 266 485 317 2463 1453 961 

0.8 (0.1, 0.8) 13 1 11 2 139 92 23 

 (0.2, 0.7) 36 6 30 7 340 248 61 

 (0.3, 0.6) 119 23 100 23 1052 820 200 

 (0.4, 0.5) 1158 227 966 236 9730 7881 1946 
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Figure 2: Reduction in total sample size when optimal 
allocation is used instead of balance design (green dotted 
line), 2: 2: 1 allocation (blue dashed line) and 3: 2: 1 (red 
solid line), given P = 0.1, C = 0.8, and T = C. 

 

 

Figure 3: Required total sample size based on optimal 
sample size allocation design for  = 0.5, 0.6, …, 0.9 with the 
different proportions of P / C from 0.125 to 1, given C = 0.8, 
and T = C. 

3.1. Type I Error Rate 

In order to assess the type I error rate, we set T = 

C + (1 – ) P, margin  = 0.8, and considered ( P, C) 

= (0.1, 0.8), (0.2, 0.7), (0.3, 0.6), and (0.4, 0.5) for a 

nominal significance level of  = 0.025. We considered 

allocation ratios of nT: nC: nP = (a) 1: 1: 1; (b) 2: 2: 1; (c) 

3: 2: 1 (d) 1: CC: CP with total sample size N (= nT + nC 

+ nP) being 60, 150, and 300. Table 4 presents the 

simulated type I error rate of Wald’s test in four 

different sample size allocation plans. The type I error 

rate close to  = 0.025 as N increases. For N = 300, all 

sample size allocation designs control the type I error 

rates quite well at the nominal  = 0.025. We 

concluded that the proposed optimal sample size 

allocation controls type I error very well. 

3.2. Power 

To assess the power performance of the proposed 

method, we set ( T – P) / ( C – P) > ,  = 0.8,  = 

0.025, and considered ( P, C, T) = (0.1, 0.8, 0.7), (0.1, 

0.8, 0.71), … , (0.1, 0.8, 0.99) with total sample size N 

being 300. Similarly, we considered the four allocation 

ratios as stated above. Figure 4 shows the power 

curves for the four allocation designs. Apparently, if  = 

0.8, the power curves of unbalanced sample size 

designs are higher than those of balanced sample size 

design. The proposed optimal allocation design is 

especially more powerful than other allocation rules. 

4. APPLICATION 

4.1. A Papulopustular Acne Study 

Papulopustular Acne is a common skin disease 

characterized by androgenic stimulation of sebaceous 

glands. Acne is a multifactorial disorder with 

spontaneous resolution in early adult life. Therefore, 

combined oral contraceptives (COCs) containing anti-

androgenic progestogens are suitable candidates for 

acne treatment. A multinational, multicenter study was 

conducted as a three-arm, double-blind and 

randomized trial for 1326 female patients (16–45 years 

old) with mild to moderate papulopustular acne, which 

was discussed in Ernesta et al. [17] for the therapy of 

papulopustular acne of multifactorial disorder. The 

standard treatment was combined oral contraceptives 

(COCs) containing potent anti-androgen of 

ethinylestradiol (EE)/cyproterone acetate (CPA) drug. 

Ernesta et al. [17] showed that a new drug, 

EE/dienogest (DNG), is superior to a placebo and non-

inferior to an active control EE/CPA. As they pointed 

out, there is no binding affinity between the new drug 

and sex hormone-binding (SHBG). Furthermore, the 

new drug does not compete with free testosterone for 

binding SHBG. Hence, the component testosterone 

should be decreased to make the estrogen work [17]. 

In Ernesta et al., totally, the 1326 patients were 

randomly allocated into the three groups, with 

proportion 2: 2: 1 (nT = 525, nC = 537, nP = 264). After 

treatment with COCs, the improvement rates of acne 

were reported as T = 91.9%, C = 90.2% and P = 

76.2%. We applied optimal sample size allocation to 

this example. As mentioned in Section 2.1 and 
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observed in Figure 3,  is reasonable chosen between 

0.5 and 0.8. Thus, given margin  = 0.7, we only need 

836 patients for detect the effect size in this study with 

 = 0.025 and the desired power of 80% using our 

method. The proposed optimal sample size allocation 

method reassigned patients into the three groups, with 

the allocation ratio nT: nC: nP = 1: CC: CP = 1: 0.64: 0.41 

(nT = 408, nC = 261, nP = 167). Compared to Ernesta et 

al. [17], 97 patients were reassigned to the treatment or 

active control group from the placebo group utilizing the 

proposed optimal sample size allocation. According to 

our method, the results showed DNG was superior to 

the placebo and non-inferior to CPA at  = 0.025 with 

80% power in this study. From the economical point of 

view, the required total sample size was reduced from 

1326 to 836. Thus, the proposed optimal sample size 

allocation is an economically advantageous method for 

saving 37% of the total sample size. 

4.2. An Oral Prophylactic Antibiotics Study 

A large prospective study with 2083 patients, who 

were completed flexible cystoscopy (FC) from a three-

arm placebo controlled trial was conducted to examine 

whether oral prophylactic antibiotics (ciprofloxacin or 

trimethoprim) reduce the risk of bacteriuria after FC 

[18]. A treatment group was treated with ciprofloxacin 

(500 mg); and an active control group was treated with 

trimethoprim (200 mg). The sample sizes for the three 

groups were nT = 687, nC = 712, and nP = 684. The 

sample size allocation ratio was approximately 1: 1: 1 

(balanced design). After FC, the proportions of patients 

with a negative urine culture were T = 97.2%, C = 

95.4%, P = 90.9%. In this example, we applied optimal 

sample size allocation to let the number of patients in 

the placebo group be as small as possible. Given 

margin  = 0.7, the required total sample size is 1272 

for detect the effect size in this study given  = 0.025 

Table 4: Simulated Type I Error Rates for Tests at T = C + (1 – ) P, Given  = 0.8, and a Nominal Significance Level 

of  = 0.025 

nT: nC: nP 

N ( C, P) 

1:1:1 2:2:1 3:2:1 1:CC:CP 

60 (0.8, 0.1) 0.0235 0.0250 0.0253 0.0288 

 (0.7, 0.2) 0.0235 0.0268 0.0259 0.0278 

 (0.6, 0.3) 0.0232 0.0236 0.0230 0.0280 

 (0.5, 0.4) 0.0239 0.0252 0.0241 0.0244 

150 (0.8, 0.1) 0.0256 0.0250 0.0261 0.0266 

 (0.7, 0.2) 0.0249 0.0242 0.0248 0.0268 

 (0.6, 0.3) 0.0245 0.0236 0.0244 0.0242 

 (0.5, 0.4) 0.0256 0.0251 0.0248 0.0288 

300 (0.8, 0.1) 0.0244 0.0242 0.0257 0.0260 

 (0.7, 0.2) 0.0251 0.0254 0.0253 0.0248 

 (0.6, 0.3) 0.0254 0.0243 0.0245 0.0246 

 (0.5, 0.4) 0.0250 0.0241 0.0253 0.0257 

 

Figure 4: Simulated power for 1: 1: 1 (black dot-dash line), 2: 
2: 1 (green dotted line), 3: 2: 1 (blue dashed line) and 1: CC: 
CP (red solid line), respectively for  = 0.8, P = 0.1, C = 0.8, 

T = 0.7, 0.71, …, 0.99, N = 300, and  = 0.025. 
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and the desired power of 80% by our method. The new 

sample size allocation ratio was nT: nC: nP = 1: 0.68: 

0.41 (nT = 608, nC = 414, nP = 250) by optimal sample 

size allocation. Compared to Johnson et al. [18], 434 

patients were reassigned to the therapeutic group 

using our method. As a result, the proposed method 

using the optimal sample size allocation design was 

more ethical than the balance design. We concluded 

that the ciprofloxacin significantly reduced the 

bacteriuria after FC at  = 0.025 with 80% power in this 

study. Using optimal sample size allocation, the 

required total sample size is reduced from 2083 to 

1272. Thus, the proposed method saved 61.6% of total 

sample size compared to Johnson et al. [18]. We 

concluded that the proposed design is economically 

and ethically better than the balanced design. 

5. DISCUSSION 

For two-arm non-inferiority trials, issues such as a 

choice of non-inferiority margin, constancy assumption, 

and assay sensitivity have been debated for years, and 

the statistical methodology has been challenged. Given 

all the issues as discussed, two-arm non-inferiority 

trials are needed when placebo is not a choice in 

situation of life threatening or disease progress may be 

irreversible. Three-arm non-inferiority trials may be a 

choice in other situations when placebo is acceptable 

such as in the disease areas of depression, bipolar 

disorders, and papulopustular acne. In this article, we 

proposed an optimal sample size allocation design for 

a three-arm non-inferiority trial when it is ethically 

justifiable. Moreover, we use restricted maximum 

likelihood method to correct sample size when the null 

hypothesis is non-zero between groups because 

Method I may produce incorrect sample size under null 

a hypothesis of non-zero difference. The proposed 

method can substantially reduce the total required 

number of patients. Furthermore, more patients can be 

reassigned to the therapeutic group using the proposed 

design. Thus, our method is not only desirable from an 

ethical point of view, but also substantially save the 

total sample size to achieve a certain power. 

Our simulation study shows that the optimal sample 

size allocation design controls type I error rate fairly 

well in nominal level  for most practical situations. In 

addition, the proposed design yields a power higher 

than the other competitive sample size allocation 

designs in each hypothesis testing. In conclusion, the 

use of the proposed design is recommended for non-

inferiority three-arm trials. 

In some clinical trials, more than one primary 

endpoint could be investigated for efficacy evaluation, 

which may result in significant complexity in the design, 

conduct, analysis, and interpretation of data. In 

addition, testing multiple hypotheses for multiple 

primary outcomes may increase the FWER. We hope 

to address this issue by the rationale of optimal sample 

size allocation in the future. 
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APPENDIX A 

To derive the value of 
k
, let L = L( T; xT) L( C; xC) 

L( P; xP) be the product of four binomial probabilities 

under the null hypothesis restriction 

   
T
=

C
+ 1( )

P  
for Method II. Setting the partial 

derivative of log-likelihood with respect to C to be zero 

yields the following third-degree likelihood equation: 

a1x
3 

+ b1x
2 

+ c1x + d1 = 0      (A.1) 
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be the unique solution in (0, 1) of Eq. (A.1). 

The solution is 
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1
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Setting the partial derivative of log-likelihood with 

respect to P to be zero yields the following third-

degree likelihood equation: 

a2x
3 

+ b2x
2 

+ c2x + d2 = 0      (A.2) 

with 

a
2
= 1( )

2

1+C
P
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b
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2
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P P
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P P
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Let 
P  

be the unique solution in (0, 1) of Eq. (A.2). 

The solution is 

   
P
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2
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2
( ) b
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where 
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and 
   

T
=

C
+ 1( )

P
. 

APPENDIX B 

Sample size formulae for Steps 1 and 2 can be 
established based on conventional method for given CP 

and CC. According to Chow et al. [12], sample size 
formulae of test treatment (nT.I) and the required total 
sample size (NI) in Step 1 are derived as follows. 

n
T .I

=
z

1
+ z

1

T P

2

T
1

T
( ) + P

1
P

( )
C

P

, 

N
I
= n

T .I
+ n

P.I
= n

T .I
1+C

P
( ) . 

In Step 2, we can establish the sample size 
formulae of active control (nC.I) and required total 
sample size (NII) in this step using the similar idea. 

  

n
C .II
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1
+ z
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C P
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1
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