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Abstract: When the nature of a data set comes from a skew distribution, the use of usual Gaussian mixed effect model 
can be unreliable. In recent years, skew-normal mixed effect models have been used frequently for longitudinal data 

modeling in many biomedical studies. These models are flexible for considering skewness of the longitudinal data. In this 
paper, a shared parameter model is considered for simultaneously analysing nonignorable missingness and skew 
longitudinal outcomes. A Bayesian approach using Markov Chain Monte Carlo is adopted for parameter estimation. 

Some simulation studies are performed to investigate the performance of the proposed methods. The proposed methods 
are applied for analyzing an AIDS data set, where CD4 count measurements are gathered as longitudinal outcomes. In 
these data CD4 counts measurements are severely skew. In application section, different structures of skew-normal 

distribution assumptions for random effects and errors are considered where deviance information criterion is used for 
model comparison.  
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1. INTRODUCTION 

The normality assumption is usually used for 

analysing real data sets, but this assumption maybe 

unrealistic when there is strong skewness or heavy-

tails in the data set. In practice, most of the real data 

sets are skewed or heavy-tailed, for example, CD4 

count measurements in AIDS data set (see application 

section) are extremely skew. Therefore, development 

of statistical models using some flexible distribution 

families for analyzing this kind of data set is necessary. 

Skew-normal distribution family [1] is a flexible 

family which includes normal one as a special case. 

Recently, some developments of various statistical 

applications using univariate and multivariate forms of 

skew-normal distribution are published. For examples 

vide [2-10]. Also, [11-15] discussed the use of skew-

normal distribution for analyzing skew-normal data with 

missing values.  

In longitudinal studies, subjects are measured 

repeatedly through time and missing values are a 

common problem in these studies. According to 

taxonomy of missing data mechanisms by [16], the 

missing process is categorized to be missing 

completely at random (MCAR) if the missingness 

mechanism is independent of both unobserved and 

observed data. It is missing at random (MAR) if  
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conditional on observed data, missingness is 

independent of the unobserved measurements and it is 

not missing at random (NMAR) if it is neither MCAR nor 

MAR. 

Models which can be used for analysing missing 

data are selection model, pattern-mixture model and 

shared parameter model. Selection model factorizes 

joint distribution of missing mechanism and responses 

as a marginal density of measurement process and a 

missingness process conditional on the outcomes. 

Pattern mixture model uses a marginal distribution of 

missingness process and a conditional distribution of 

the measurement process given the missingness 

process. Finally, shared parameter model shares one 

or two random components in models of responses 

and missingness mechanisms. Some references to 

such models are [17-22]. In this paper, we will use a 

shared parameter model for skew responses and will 

use a Bayesian approach for parameter estimation. 

Various versions of the multivariate skew-normal 

distribution were considered and used in literature [23-

25, 4]. 

[26] proposed the multivariate skew-normal 

distribution through the following probability density 

function:  

  
f ( y|μ, , ) = 2k

k
( y|μ, + ')  

                  
k
( '( + ') 1( y μ) | 0,( I

k
+ ' 1 ) 1)  
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where 
k
( y|μ, )  and 

k
( y|μ, )  are the probability 

density function and cumulative distribution function of 

the N
k
(μ, ) , respectively. We denote this by 

Y SN
k
(μ, , ) . In this form, = diag( )  and  is a 

vector of skewness parameter for variable 
 
Y . Note 

that for 
 

= 0 , the multivariate skew-normal distribution 

reduces to the usual symmetric multivariate normal 

  
N

k
(μ, )  distribution. Its stochastic representation is 

given by: 
  
Y

d

= |X
0
|+X

1
, where, 

   
X

0
N
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X
1
N
k
(μ, ) , X

0
 and X

1
 are independent, 

  

d

=  

means “distributed as" and 
  
|X

0
|  is the vector of the 

absolute values of the components of the vector 
  
X

0
. 

This form can be used to derived many of properties of 
the distribution. 

When 
   
Y SN

k
(μ, , ) , then 

  

E[Y ] =μ+
2

 and 

var(Y ) = + (1
2
) 2 . 

In his paper, we have developed skew-normal linear 

mixed effect model for considering missingness 

mechanism in a shared parameter model framework. 

We have used Bayesian approach and the available 

WinBUGS software [27] for implementation of the 

model, where the Bayesian criterion DIC (deviance 

information criterion) has been used for model 

comparison. We have used some simulation studies for 

investigating the performance of the proposed method 

for analysing skew responses with possibility of 

nonignorable missingness. As an illustrative example, 

we have reanalyzed an AIDS data with CD4 count 

measurement as response variable which is severely 

skew.  

This paper is organized as follows: Section 2 

includes the model, notations and concepts of skew-

normal shared parameter model. Section 3 includes the 

MCMC scheme for the proposed model. Section 4 

presents some simulation studies to provide some 

viewpoints about using the proposed method. Section 5 

includes an application section. In this section after 

exploratory analysis of the data set, the data are 

analysed using proposed methodology. The last 

section includes some conclusions.  

2. NOTATION AND MODELS 

We specify a mixed effect model and a logistic 
model for the longitudinal responses and missingness 

mechanism, respectively, such that the two models 

share some random effects. Let 
  
Y

i
= (Y

i1
,Y

i2
,...Y

im
i

)'  

denote the vector of longitudinal measurements for the 

i
th  individual at times 

  
t

i1
,t

i2
,...,t

im
i

, also let 
 
Y

i
 be 

partitioned into two subvectors: Y
i

obs
 containing the 

observed components of 
 
Y

i
 and 

 
Y

i

mis
 containing the 

missed components of 
 
Y

i
. 

We assume a skew-normal linear mixed effects 
model with the following hierarchical model for the 
longitudinal responses:  

   
Y

i
|b

i
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1
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e

ind .

SN
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i

( X
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i
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b
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SN
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), i = 1,2,...,n.  

where 
 
Y

i
 is a 

  
m

i
1 vector of response for the ith , 

  i = 1,2,...,n , individual 
  
X

1i
 with dimension 

  
m

i
p

1
 is a 

design matrix corresponding to the fixed effects, 
 1

 

with dimension 
  
p

1
1  is a vector of regression 

coefficients, 
 
Z

i
 with dimension 

 
m

i
q  is the design 

matrix corresponding to the 
  
q 1  random effects vector 

 
b

i
, and 

 e
 and 

 b
 are diagonal matrices of error 

skewness parameter and random effect skewness 

parameters with elements 
  

e1
,

e2
,...,

em
i

 and 

  b1
,

b2
,...,

bq
, respectively. Also,  and D  are scale 

matrices of error and random effects, respectively. For 
simplicity and identifiability of parameters, in the 

reminder of the paper, we assume =
e
I
m
i

 and 

  e
=

e
I

q
. 

Let 
 
R

ij
 be an indicator variable for observing the  i

th  

individual’s outcome at 
 
jth  follow-up time, i.e. 

  
R

ij
= 1 , if 

an outcome is observed and 
  
R

ij
= 0  if an outcome is 

missed. Using the shared parameter model framework, 
we assume the following model for the probability of a 

subject having missing value at time point 
 
t

ij
:  

  
Prob(R

ij
= 1|b

i
,

2
, )( ) =x

2ij

'

2
+ 'b

i
,  

where  is a link function for missingness mechanism 

such as probit, logit or complementary log-log. 
  
x

2ij
 is a 

  
p

2
-dimensional vector of covariate, 

 2
 is a 

  
p

2
1  
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vector of fixed effects, b
i
 is the same subject-specific 

random effects defined in the longitudinal model (1) 
and  is a vector of parameters for random effects. 

The model can be viewed as an improvement of the 
shared parameter model (SPM) proposed in the 
context of longitudinal data with nonignorable dropout 

[28-30]. Therefore, if 
  
R

i
= (R

i1
, R

i2
,..., R

im
i

)'  is the random 

vector of missing data status, then  

  
f (r

i
|b

i
,

2
, ) =

k =1

m
i

f (r
ik

|b
i
,

2
, ).  

In the Bayesian SPM the regression parameter  

is of particular interest because it controls how the 
missingness effects the measurement process. If 

 
=0 , 

the missing data are ignorable and the usual Bayesian 
mixed effect model can be used, for analysing the data. 
In this case we do not need any missing data 
adjustment. Also, note that if 

 
0 , the degree of non-

ignorability depends on its components values, i.e. a 
large value of each component of  causes more non-

ignorability.  

Biometrical researchers have an attractive appeal 

for the shared parameter model, because they 

generally believe that there may be some latent, yet to 

be measured, quantity underlying a person’s 

susceptibility to both cognitive decline and missing data 

due to adverse outcome. Also, the shared parameter 

model does not explicitly assume that missingness 

depends on the unobserved outcome, instead it 

depends on a latent variable that is inherent in all 

outcomes from the same subject.  

In the next section, we have considered MCMC 

scheme for implementation of the above described 

model.  

3. THE MCMC SCHEME 

For MCMC computation, we use the stochastic 

representation of the multivariate skew-normal 

distribution. Therefore, the model can be represented 

hierarchically by the following representation:  
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, i = 1,2,...,n.  

where 
  
I

{u
i
>0}

 means that all components of vector 
 
u

i
 

are larger than  0 . 

Implementation of MCMC methods such as Gibbs 

sampling needs to specify prior distributions. The full 

model specification is given by:  
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where 
  
Ber(.) , 

  
IG(.,.)  and 

  
IW (.,.)  denote Bernoulli 

distribution, inverse gamma distribution and inverse 
Wishart distribution, respectively. We have used logit 
link for missingness mechanism. Also, the 
hyperparameters of these priors are selected such that 
they lead to the low-informative prior distributions. The 
full conditional distributions of hierarchical model (2) 
can be found in appendix. 

Many Bayesian criteria have been proposed in the 
literature, we consider DIC, deviance information 
criterion [27] for model comparison. Let  and 

  
Z = (z

1
,..., z

N
)'

 be the entire model parameters and data, 

respectively. Define 
  
D( ) = 2ln f (z| )  

= 2
i=1

N

ln f (z
i
| )  where, 

  
f (z

i
| )  is marginal 

distribution of 
 
z

i
, then 

  
E D( )  is a measure of fit and 

can be approximated by using the MCMC output in a 
Monte Carlo integration. This index is given by 
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D =
1

m
k=1

m

D( (k )).  The DIC criterion is given by 

   
DIC = D + p

D
, where, p  is the number of parameters 

and N  is the total number of observations. The 
   
p

D
 is 

the effective number of parameters [27], and is defined 

as 
  
p

D
= E D( ) D E( ) . The term 

 
D E( )  is 

the deviance of posterior mean obtained when 
considering the mean values of the generated posterior 
mean of the model parameters, which is estimated by 

   

D = D
1

m
k =1

m

(k ) .  The smaller is the DIC, the better is 

the fit of the model. 

4. SIMULATION STUDIES 

 To investigate the performance of the proposed 

methodology, we conducted some imulation studies. A 

simulation study for investigating performance of the 

skew-normal within subject error is considered. Also, 

some simulation studies, for investigating the 

performance of the skew-normal random effects model 

are considered. A simulation study for comparing the 

results of the proposed method with those of a method 

which ignores the missing mechanism even when the 

missingness is truly nonignorable is also considered. 

The last simulation is considered for investigating the 

performance of the proposed method when the 

outcomes are actually normal.  

4.1. The Skew-Normal within Subject Error 

In this simulation study, we generate 500 samples 
with sample size   n = 200  with two rates of missingness 

 15%  and  30% . We simulate data according to the 

following linear mixed effect model:  

  
y

ij
=

10
+

11
t

j
+

12
x

i
+ b

1i
+ b

2i
t

j
+

ij
,         (3) 

where 
  
t

j
= j , for 

   
j = 1,2, ,5 , and 

 
x

i
 is generated from 

Bernoulli distribution with success probability  0.2 . In 

this model, 
 10

= 10 , 
 11

= 3  and 
 12

= 2 . Also, we 

considered the following missingness mechanism:  

   
R

ij
Ber( p

ij
),            (4) 

where,  

  
logit( p

ij
) =

20
+

21
x

i
+

22
b

1i
+

23
b
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.         (5) 

 

In this model, 
ij
SN (0,

e

2 ,
e
) , where 

e

2
= 1  and 

  e
= 4 , also, b

i
= (b

1i
,b
2i
) N

2
(0,D) , such that 

  

D =
1 0.5

0.5 1
. 

We have analyzed the simulated data under normal 

and skew-normal distribution assumptions. The results 

of this simulation study are given in Table 1. This table 

contains estimated value of parameters, standard 

errors, relative biases and root of mean square errors. 

The two later criteria are defined as  

   

Rel.Bias( ) =
1

N
i=1

N

( i 1),   MSE( ) =
1

N
i=1

N

(
i

)2  

where 
i
 is the estimated value of  for the  i

th  

sample. In this table, the header “Skew-normal 
Scenario” and “Normal Scenario” identify the 
underlying model. The results show that the rate of 
missingness is an effective measures, such that the 
less the rate of missingness, the smaller are the 
relative biases and the smaller are the root of MSEs. 
The results of this table show that using normal 
distribution assumption when one has to use the skew-
normal distribution leads to biased estimates. The 
regression coefficients of normal model are estimated 
without considerable bias, but intercept and variance 
estimates are severely bias. Also, the relative biases 
and root of MSEs in skew-normal model are near zero, 
this means that the proposed model possess 
consistency properties.  

4.2. The Skew Random Effects 

In this section, we have considered two different 
skew random effects models. We generate 500 
samples with sample size   n = 200 , and we considered 
two rates of missingness  15%  and  30% . The random 

effects are generated from gamma distribution and 
within-subject errors from normal as described in the 
following. The first model is  

  
y

ij
=

10
+

11
t

j
+

12
x

i
+ b

i
+

ij
,  

   
R

ij
Ber( p

ij
); logit( p

ij
) =

20
+

21
x

i
+

22
b

1i
.  

where 
   
b

1i
Gamma(4,1)  and

    ij
N (0,1) . The results of 

this simulation study are given in Table 2. In this table, 

we report 
  
E

10
+ b

1i
 and 

  
Var b

1i
. 

The results of this table show that under skew-

normal distribution assumption, the parameters are 
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estimated without bias and values of RMSE are small. 

But under normal distribution assumption some 

parameters such as intercept and variance of random 

effects are estimated with some biases and the values 

of RMSE for these parameters are relatively large. 

The model for other simulation study is the same as 

models (3)-(5), but 
   
b

1i
,b

2i
Gamma(2,1)  and 

  
b

1i
 and 

  
b

2i
 

are uncorrelated. The results of this simulation study 
are presented in Table 3. Similar to previous table, we 

report E
10
+ b

1i
, 

  
E

10
+ b

2i
, 

  
Var b

1i
, 

  
cov b

1i
,b

2i
 

and Var b
2i

. These results give a better evidence for 

good performance of skew-normal model, than the 
previous simulation study. As can be seen in Table 3, 
the skew-normal model has not any bias estimate, but 
the parameter estimates of normal model have some 
biases. 

The relative bias of 
  
cov b

1i
,b

2i
 is not reported since 

the real value of this parameter is zero. 

4.3. The Skew Random Effects and Errors 

In this section, again, we generate  500  samples 
with sample size   n = 200  with two rates of 
missingness,  15%  and  30% . We simulate data from 

model (3)-(5), where b
1i
,b
2i

Gamma(2,1) , 
  
b

1i
 and 

  
b

2i
 

are uncorrelated and
    ij

SN (0,
e

2 ,
e
) , where 

  e

2
= 1  

and 
  e

= 4 . In all the simulations 
 21

, 
 22

 and 
 23

 are 

selected such that the desired rates of missingness are 
obtained. Results of this simulation study are given in 
Table 4.  

This table shows that the performance of the skew-

normal model is good but some biases can be found 

under normal distribution assumption.  

4.4. Performance of Nonignorablity of the Model 

In this section, we generate using as models (3)-(5) 
with sample size   n = 300  with two rates of 
missingness,  15%  and  30% . The model is analyzed 

using an ignorable mechanism. We use available 
cases without any missingness mechanism. The 
results of this simulation study are presented in Table 
5. These results show that when data are generated 
under a non-ignorable missingness mechanism, using 
a ignorable mechanism leads to some high biased 
parameter estimates. The higher is the rate of 
missingness, the higher are the biases.  

4.5. Performance of the Proposed Model in Normal 
Model 

In this section, the performance of the proposed 

method is investigated, when the outcomes are actually 

normal. The data are simulated from models (3)-(5), 

but under normal distributional assumption. 

We have analyzed the data set using the proposed 

method and using the pure normal model. The results 

of this simulation study are presented in Table 6. 

The results show that when the outcomes are 

actually normal, the skewness parameter is estimated 

near zero i.e. as a non-significant parameter. The 

results of the proposed skew-normal model are very 

close to those of shared random effects model under 

normal distribution assumption.  

5. REAL DATA ANALYSIS: HIV DATA SET 

We consider a longitudinal study on 467 HIV 
infected patients who had failed or were intolerant of 
zidovudine (AZT) therapy. The data had analyzed 
before by [31-32]. The aim of the study was to compare 
the efficacy and safety of two alternative antiretroviral 

Table 5: Results of simulation study for 500 samples generated by skew-normal within-subject errors and analyzed 

under an ignorable mechanism, 
  
d

11
, 

  
d

12
 and 

  
d

22
 are distinct elements of the matrix 

 
D . (Est.: posterior mean, 

SE: standard error, Rel. Bias: relative bias and RMSE: root of mean square error) 

Rate of missingness  15% 30% 

parameters real Est.(SE) Rel.Bias RMSE Est.(SE) Rel.Bias RMSE 

11 10 10.090(0.188) 0.009 0.205 10.485(0.593) 0.048 0.765 

12 -3 -2.591(0.108) -0.136 0.422 -2.038(0.321) -0.32 1.013 

13 -2 -1.952(0.292) -0.023 0.291 -1.972(0.506) -0.014 0.506 

d11 1 2.294(0.231) 1.294 1.313 3.425(0.374) 2.425 2.454 

d12 0.5 -0.008(0.058) -1.016 0.511 -0.104(0.128) -1.209 0.618 

d22 1 1.136(0.063) 0.136 0.149 2.509(0.212) 1.508 1.523 

e 4 4.073(0.148) 0.018 0.163 3.516(0.655) -0.121 0.813 

  e

2
 1 0.319(0.171) -0.681 0.701 0.793(0.681) -0.207 0.71 
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drugs, namely didanosine (ddI) and zalcitabine (ddC). 
Patients were randomly assigned to receive either ddI 
or ddC, and CD4 cell counts were recorded at study 
entry, where randomization took place, as well as 2, 6, 
12, and 18 months thereafter. Because of right 
skewness in the CD4, for all of the analysis, we will 
work with the squared root of the CD4 cell values. 

Figure 1 presents histogram of CD4  for each 

calender time, this figure shows that   CD4  are 

severely skew.  

Figure 2 shows   CD4  trajectories for all individuals 

(panel a) and fifty randomly selected individuals from 
the study (panel b). These figures show a sharply 
increasing degree of missing data over time due to 
deaths, dropouts, and missed clinic visits. More details 
about this data set can be found in [33]. The red lines 
are mean profile for all observed individuals in each 
panel.  

We have used the structure of the hierarchical 

model (2) for modeling the data set, that is:  
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Figure 1: Histogram of AIDS data set in each calender time. 
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where,  

μ
1ij
=

10
+

11
t
ij
+

12
t
ij
Drug

i
+

13
Sex

i
 

  
+

14
PrevOI

i
+

15
Stratum

i
+ b

1i
+ b

2i
t

ij
 

and,  

  
μ

2ij
=

20
+

21
b

1i
+

22
b

2i
.  

Here, 
 
Sex

i
 is a gender indicator (0=female, 

1=male), also other three explanatory variables are 

Drug
i
 (0=ddC, 1= ddI), PrevOI

i
, previous opportunistic 

infection, (0=AIDS diagnosis, 1=no AIDS diagnosis), 

and 
 
Stratum

i
 (0=AZT failure, 1=AZT intolerance). In our 

approach, we generate two parallel MCMC chains with 
different starting values for  300,000  iterations each. 

Then, we discarded the first 20,000  iterations as pre-

convergence burn-in and the retained iterations are 
used for the posterior analysis. Then, we have checked 

convergence of parameter estimates using Gelman 
and Rubin diagnostic test [34] for all models. In all 

models priors are
    

k
N

p
k

(0,103 ) , 
  
k = 1,2, p

1
= 6, p

2
= 3 , 

and 
   
D IW (100I

2
,2) , 

   e
,

b
IG(0.1,0.1)  and 

   b
,

e
N (0,0.01) . The results of various models can be 

found in Table 6, where different distributional 
assumptions are specified in the header. In this table, 
four statistical models, differing in the error and random 
effects distribution assumptions, are compared. These 
models are:  

A model with multivariate skew-normal distributional 

assumption for both random effects and errors.  

A model with multivariate skew-normal distributional 

assumption for random effects and normal 

distributional assumption for errors.  

A model with multivariate normal distributional 

assumption for random effects and skew-normal 

distributional assumption for errors.  

 

Figure 2: Profiles of CD4 measurements over time. (a) All individuals. (b) Fifty randomly selected individuals. The red lines are 
mean profile for all observed individuals in each panel. 
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A model with multivariate normal distributional 

assumptions for both random effects and errors.  

According to DIC criterion  N SN  model has the 
smallest DIC and  N N  has the largest amount of 
DIC. 

In the best fitted model, time and PrevoI are two 
significant factors in the study, also skewness 
parameter of error is highly significant. An important 

result of this analysis is the estimated values of 
 21

 and 

 22
, which show NRD mechanism for response 

variables. Also estimated variance of shared random 
effect is another important notice of this table. The 
table shows also that other estimated values of 
regression coefficients such as types of drug (ddI and 
ddC) and gender are not significant. 

6. CONCLUSION 

Use of appropriate and general distributional 

assumptions in analysing data sets, specially in the 

presence of missing values, is important. In this paper, 

we have developed a shared parameter model under 

skew-normal distribution assumption and Bayesian 

approach for analysing data with nonignorable 

missingness. Some simulation studies show that our 

model has an adequately well performance. The model 

is also robust with respect to some modifications of 

distributional assumptions. The proposed method is 

illustrated using a real AIDS data set. For 

implementation of the proposed model we have used 

WinBUGS package. Our model is quite general and 

can be applied to other structures of mixed effects 

model. The proposed model can be also developed to 

non-linear or semiparametric mixed effect models. 

APPENDIX 

Let 
  

= (Y obs,R,X
1
,X

2
)  and 

  
= (

1
,

2
, ,D,

e

2 ,
e
,

b
,b,U

e
,U

b
,Y mis) , and let  be 

one of the component of it, we define 
 ( )

 for the 

above-mentioned vector when  is omitted from it. 

Then under the hierarchical model (2), the full 
conditional distributions are given by:  

   
1
|

(
1

)
, N (

1

1

1

,
1

1),
 

Table 7: Bayesian parameter estimates (posterior mean and standard deviation, S.D.) and 95%  HPD for analysing the 

HIV data set by some longitudinal model, notation M
r
M

e
 is used to indicate the implemented model where 

 
M

r
 and 

 
M

e
 are the distributions of the shared random effect and longitudinal residuals, respectively.  N  

and  SN  are abbreviations for the normal and the skew-normal distributions, respectively. 

Model N-N SN-SN N-SN SN-N 

Variable Est. (S.D) 95% HPD Est. (S.D) 95% HPD Est. (S.D) 95% HPD Est. (S.D) 95% HPD 

Intercept 8.123(0.349) (7.440,8.806) 2.523(0.772) (1.348,3.938) 3.227(0.387) (2.431,3.945) 3.798(0.667) (2.507,5.124) 

Time -0.237(0.025) (-0.287,-0.190) -0.236(0.063) (-0.361,-0.112) -0.397(0.046) (-0.488,-0.309) -0.223(0.062) (-0.349,-0.105) 

Time *Drug 0.023(0.030) (-0.036,0.083) 0.021(0.030) (-0.037,0.081) 0.025(0.053) (-0.075,0.133) 0.024(0.031) (-0.036,0.084) 

Gender -0.348(0.322) (-0.985,0.276) -0.070(0.244) (-0.537,0.422) -0.086(0.292) (-0.670,0.479) -0.140(0.288) (-0.711,0.419) 

Prevol -2.055(0.241) (-2.522,-1.586) -1.097(0.208) (-1.504,-0.715) -1.511(0.225) (-1.942,1.057) -1.586(0.232) (-2.045,-1.135) 

Stratum -0.128(0.232) (-0.579,0.327) -0.146(0.175) (-0.494,0.193) -0.156(0.203) (-0.563,0.235) -0.156(0.206) (-0.559,0.247) 

21 0.012(0.055) (-0.097,0.119) -0.401(0.176) (-0.737,-0.049) -0.029(0.078) (-0.184,0.123) -0.465(0.183) (-0.819,-0.097) 

22 0.077(0.015) (0.046,0.106) 0.081(0.013) (0.054,0.109) 0.0181(0.055) (0.078,0.292) 0.102(0.023) (0.056,0.146) 

23 2.472(0.543) (1.500,3.461) 2.481(0.478) (1.522,3.396) 1.845(0.175) (1.518,2.199) 2.154(0.574) (0.989,3.247) 

b
1

 - - 6.523(0.579) (5.987,7.153) - - 6.016(0.384) (5.240,6.763) 

b
2

 - - -0.001(0.074) (-0.151,0.140) - - -0.004(0.072) (-0.146,0.137) 

e - - -0.023(0.688) (-1.405,1.274) 5.841(0.318) (5.186,6.437) - - 

11 16.152(1.196) (13.800,18.470) 0.461(0.925) (0.019,1.128) 3.179(0.680) (1.972,4.563) 4.287(0.963) (2.620,6.220) 

21 -0.088(0.068) (-0.225,0.043) -0.019(0.026) (-0.081,0.023) -0.034(0.071) (-0.175,0.104) -0.067(0.057) (-0.181,0.044) 

22 -0.088(0.068) (0.033,0.060) 0.044(0.007) (0.032,0.059) 0.431(0.034) (0.364,0.500) 0.044(0.006) (0.031,0.058) 

e 3.015(0.162) (2.700,3.336) 2.994(0.161) (2.693,3.321) 2.935(0.160) (2.612,3.243) 2.961(0.158) (2.648,3.267) 

DIC 8613.911 8579.51 8543.592 8551.643 
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b
=

Z
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'
Z

i

e

2
+ D

1

1
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Let 
  
x

1i,mis
 and 

  
z

i,mis
 denote the components of 

  
x

1i
 

and z
i
, respectively. These are associated with the 

missing components of y
i,mis

. Also, let Y
i,mis

 be a 

 
k

i
dimensional vector 

  
k

i
< n

i
. The full conditional 

distribution for 
  
y

i,mis
 is given by:  

   
Y

i,mis
|

( y
i,mis

)
,y

i,obs
,t N

k
i

(x
1i,mis 1

+z
i,mis

b
i
, 2 I

k
i

).
 

The derivation of the full conditional distributions is 

straightforward. The MCMC methods such as the 

Gibbs sampler and the Metropolis-Hastings algorithm 

can be used to draw samples from the full conditional 

distributions. The Gibbs sampler works by drawing 

samples iteratively from conditional posterior 

distributions.  
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