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Abstract: The Hardy-Weinberg Principle explains how random mating can produce and maintain a population in 

equilibrium, that is: with constant genotypic proportions. The Hardy-Weinberg formula is in constant use as a basis for 
developing population genetics theory. Here we give a complete description of a model which can sustain equilibrium but 
with a general mating system, thereby giving a much broader basis on which to develop population genetics. It was S. N. 

Bernstein who first showed how Mendel’s first law could be justified simply on the basis of observations of populations in 
equilibrium. We show how the model can be applied to exploring the change in incidence of a genetic disorder. 
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INTRODUCTION 

Penrose gives the conventional introduction to the 

Hardy-Weinberg Principle of population genetics [1]. 

He uses it in his superb exposition of the then current 

knowledge of the aetiology of mental defect. He derives 

the Hardy-Weinberg formula giving the frequencies of 

genotypes in a population in equilibrium: 

  
q

2
,2 pq, p

2{ }.            (1) 

Penrose uses (1), inter alia, to explain how, in the 

case of recessive inheritance, the great majority of 

defectives would be derived from normal parents.  

Hartl and Jones [2], Edwards [3] and Mayo [4] give 

detailed accounts of the Hardy-Weinberg law.  

The usual textbook derivation of the (1) takes as 

foundational Mendel's coefficients of heredity (for 

example, that the relative frequency of aa offspring in 

Aa x Aa parental crossings is ), together with random 

mating between individuals in the parental generation. 

Mendel’s experimental approach had relied on the 

collation of outcomes of single pollination events. 

Around 1920 S. N. Bernstein (see Seneta [6]), using 

axiomatic reasoning, derived Mendel’s first law of 

inheritance (see Bernstein, 1942 for the mathematical 

derivation): that is, the structure of the Mendelian 

coefficients of heredity [5]. By contrast with Mendel’s 

experimental approach, Bernstein postulated a 

population with many members which was maintained 

in equilibrium by a system of random mating. From  
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these basic assumptions Bernstein derived Mendel’s 

coefficients of heredity which we put in matrix form in 

the section on notation below. 

Stark & Seneta [7] put Bernstein’s result in a more 

general context, and gave a more transparent 

derivation, by modifying the mating system. The 

population is still assumed to be maintained in 

equilibrium, which thus becomes foundational, but is 

not necessarily in the form of (1). But a more elaborate 

set of conditions is needed to specify the equilibrium 

than is required in a model of random mating. 

However, there is a considerable gain in generality and 

realism beyond that provided by the Hardy-Weinberg 

model.  

The first purpose of this note is to delineate visually 

the region of equilibrium which varies according to the 

gene frequency. It is three-dimensional, with simpler 

form when the gene frequency is less than or equal to 

. Thus, although the basic nature of the system is 

simple, its full description of the region is less so. This 

is an extension of work of Stark [8]. 

We begin by introducing notation which enables a 

convenient description of the mating system without 

resort to cumbersome tables. This is followed by 

descriptions of the admissible regions of equilibrium. 

Then we point out the highly restrictive nature of the 

model of random mating.  

Our final section is a discussion of how Hardy-

Weinberg equilibrium, as described by (1), can be 

achieved under mating which is not necessarily 

random. Our illustration is in terms of the Tay-Sachs 

disease. We demonstrate by this example how the 

model of equilibrium specified by (7) below can provide 

a broader basis for developing many of the concepts 

treated by Penrose [1]. 
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NOTATION 

We deal only with a single autosomal locus with two 
alleles  U  and  T  with frequencies in the population 

 
q

 
and 

 
p (q + p = 1) . Throughout 

 
q

 
remains constant 

because this is guaranteed by the nature of the 
selected mating system. A set of frequencies of 

genotypes 
  
{UU ,UT ,TT}  can be represented in terms of 

q
 
and a measure of departure from Hardy-Weinberg 

(HW) form  F  as, say, 
  
{q

2
+ Fpq,2 pq

 

2Fpq, p2 + Fpq} . These will vary according to F and 

will be denoted generally by 
  
{ f

0
, f

1,
f

2
}, ( f

0
+ f

1
+ f

2
= 1) , 

that is 
  
f

0
= q2

+ Fpq , etc. 

The population is maintained in discrete generations 

according to the mating scheme 

 

UU UU UU UT UU TT

UT UU UT UT UT TT

TT UU TT UT TT TT

        (2) 

with commensurate pairing frequencies given by the 

matrix 

  

C =

f
00

f
01

f
02

f
10

f
11

f
12

f
20

f
21

f
22

.           (3) 

 C  is symmetric, that is 
 
f

ij
= f

ji
, with row and column 

sums 
  
{ f

0
, f

1
, f

2
} . This triplet of sums is the parental 

frequency distribution. 

Below we use  C  in the extended (row vector) form 

u ={ f
00
, f
01
, f
02
, f
10
, f
11
, f
12
, f
20
, f
21
, f
22
}.         (4) 

To follow the progression of generations we need 
Mendel’s coefficients of heredity given in matrix form by 

M =

1 1 2 0 1 2 1 4 0 0 0 0

0 1 2 1 1 2 1 2 1 2 1 1 2 0

0 0 0 0 1 4 1 2 0 1 2 1

.        (5) 

Then the frequency distribution of juveniles is 
calculated from  

  
j = ( Mu)  

which in detail is 

  

j =

f
00
+

f
01
+ f

10

2
+

f
11

4
,

f
01

2
+ f

02
+

f
10
+ f

11
+ f

12

2

+ f
20
+

f
21

2
,

f
11

4
+

f
12
+ f

21

2
+ f

22

.      (6) 

The population is in equilibrium, that is: the 

distribution of juveniles is the same as that of adults, if 

and only if matrix  C  has, in addition to the properties 

given above, the special property 

  
f
11
= 4 f

02
= 4 f

20
.            (7) 

The notation used here is a modified version of that 

given in Stark & Seneta [7, 9]. 

Identity (7) allows for non-random mating (NRM) as 

well as random mating (RM).  

REGIONS OF ADMISSIBLE POINTS 

Mating matrix  C , displayed in (3), is determined by 

combinations of 
 
q ,  F , 

  
f
11

, and 
  
f

01
. We first fix 

 
q

 
then 

consider sets of  F , 
  
f
11

, and 
  
f

01  
as points in 3-

dimensional space by giving their coordinates with 
reference to the orthogonal axes shown in Figure 1. 

Without loss of generality we take 
  
0 < q 1 2  

throughout. 

 

Figure 1: Orthogonal axes used to specify coordinates  F , 

f
11

, and f
01

, for given 
 
q . 

The shape of the region of admissible points is 

governed by the elements 
 
f

ij  
of  C - that they sum to 1, 

etc. So, while the requirements are basically simple, 
they require detailed description. The regions are of 

three main types, depending on q : (i) 1 4 < q <1 2 ; (ii) 

  
q 1 4 ; (iii) 

  
q = 1 2 . We describe these separately. 

Points 
  
(F , f

11
, f

01
)
 
on and between the bounding planes 

are admissible, that is to say correspond to admissible 

 C . The faces of the region are planar, the planes 
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defined by 
  
f
11
= 0 ( 1) and 

  
f

01
= 0 ( 2) being two main 

ones. The remaining planes are defined by the 
equations 

3 
  
4 pqF f

11
4 f

01
+ 4q2

= 0          (8) 

4 2pqF + f
11
+ f

01
2pq = 0          (9) 

5   
12 pqF + 3 f

11
+ 4 f

01
+ 4 p( p 2q) = 0       (10) 

(i) Region 1 4 < q <1 2  

Figure 2 is a schematic of this region. The 
coordinates of the vertices are given in Table 1. Other 
points of reference, not shown on Figure 2, are: O 

  
( q p ,0,0) ; B 

  
(( p 2q) / (3p),0,0) ; N 

((2p q) / (3p),0,0) . The distance between O and V is 

  
1 p , that between O and B is 

  
1 (3p) , that between O 

and N is 
  
2 (3p) , and therefore that between B and N is 

1 (3p) . The bounding planes, identified by their 

vertices, are as follows: 

1: AQVZ; 2: QVDE; 3: AZDE; 4: VDZ; 5: AQE 

Table 1: The Coordinates of the Vertices of the 
Admissible Regions as Functions of 

 
q  

  

Vertex F f
11

f
01

A ( p q)2 4 pq) 0 q 1 4

V 1 0 0

D ( p 2q) (3p) 4q 3 0

E (1 4q + 6q2 ) (6 pq) 2(4q 1) 3 0

Z (2 p q) (3p) 0 2q 3

Q (3q 1) (3q) 0 0

 

 

 

Figure 2: Schematic illustration of the bounding region of 

admissible sets of  F , f
11

and f
01

for 
  
1 4 <q <1 2 . 

In Figure 2, the plane shaded in lime-green is 2, 

that is when 
  
f

01
= 0 . To assist with orientation, the line 

segment QV lies along the  F  axis, so that the corner 

letters of 2 lie in the F f
11  

plane. 

(ii) Region 
  
q 1 4  

This region is shown in Figure 3. It does not contain 

5. The planes are: 

1: AVZ; 2: AVD; 3: AZD; 4: VDZ 

 

Figure 3: Schematic illustration of the bounding region of 
admissible sets of  F , 

  
f
11  

and 
  
f

01  
for 

  
q 1 4 . 

In Figure 3, the plane shaded in lime-green is 2, 

that is when 
  
f

01
= 0 . To assist with orientation, the line 

segment AV lies along the  F axis. 

(iii) Region 
  
q = 1 2  

This region is shown in Figure 4. The planes are: 

1: ANVZ; 2: NVD; 3: AZD; 4: VDZ; 5: AND 

When 
  
q = 1 2 , points D and E coalesce, as do Q 

and N. When 
  
q = 1 4 , points A, E and O coalesce. 

 

Figure 4: Schematic illustration of the bounding region of 

admissible sets of  F , 
  
f
11  

and 
  
f

01  
for 

  
q = 1 2 . 

In Figure 4, the plane shaded in lime-green is 2, 

that is when 
  
f

01
= 0 . To assist with orientation, the line 

segment NV lies along the  F  axis. 

HARDY-WEINBERG PROPORTIONS AND RANDOM 
MATING 

The fact that Hardy-Weinberg proportions can be 
maintained by non-random as well as random mating is 



Hardy-Weinberg Equilibrium as Foundational International Journal of Statistics in Medical Research, 2014, Vol. 3, No. 2      201 

supported by Figure 5 which displays the section of the 
region depicted by Figure 2 corresponding to   F = 0 , 

when q = 3 10 . Provided the mating system follows the 

restrictions applying to matrix  C  outlined above, any 
point within and on the edges of the triangle gives an 
admissible system. This shows the highly restrictive 
nature of random mating which corresponds to a single 

point within the triangle. The 
  
( f

11
, f

01
) coordinates of the 

points in the diagram are: L:- (0,0); M:- (0.36,0); N:- 
(0,0.09); random mating:- (0.1764,0.0378). 

 

Figure 5: The region of admissible combinations of values of 

  
f
11  

and 
  
f

01  
when 

  
q = 3 10

 
and   F = 0 , that is for a population 

in Hardy-Weinberg form. The letters L, M, and N identify the 
vertices. The point corresponding to random mating is shown 
within the region. All points within and on the edges are 
admissible. 

APPLICATION 

The trinity of a population in equilibrium under 

random mating with Hardy-Weinberg proportions is a 

standard of monographs in human genetics. Penrose 

[1, page 103] writes: 

The concept of gene frequency is of 

fundamental importance in the genetics of 

wild populations, which human 

populations resemble much more closely 

than selected breeds of laboratory 

animals. The idea is essential to the 

mathematical study of evolution because 

many of the processes of natural selection 

can be expressed in terms of progressive 

increase or decrease in gene frequencies. 

In the shorter-term problems of human 

populations, the concept is also 

indispensable. The elementary theoretical 

results were discovered independently by 

Hardy, Pearson and Weinberg. 

As can be seen from the preceding sections, the 

Hardy-Weinberg Principle is less elementary than 

commonly supposed. Figure 5 shows that random 

mating is associated with a single point in the wider set 

of matings consistent with Hardy-Weinberg proportions. 

Furthermore a more general equilibrium is sustainable 

even without natural selection. 

Penrose has a section entitled “Amaurotic Idiocy” 

[1]. He includes, in particular, infantile amaurotic idiocy, 

which he says is known as Tay-Sachs disease. This 

disorder is the focus of our application. Penrose notes 

the then recently-established connection with 

hexosaminidase A established by O’Brien [10]. 

Penrose included Tay-Sachs disease in the category of 

cerebromacular degeneration. [1, pages 163, 382]. He 

notes: “Slome’s (1933) analysis of published sibships 

clearly indicates that it is due to a single autosomal 

gene in spite of a slight excess of female cases.” [11] 

Since then extensive research has mapped the 

relevant HEXA gene to chromosome 15. 

O’Brien writes: “The widespread absence of 

hexosaminidase A in the tissues, the normal or 

increased activity of other lysosomal hydrolases, the 

normal or increased activity of hexosaminidase A in 

other gangliosidoses, and the partial reduction of this 

enzyme in the serum of individuals heterozygous for 

the Tay-Sachs gene, suggest that the absence of 

hexosaminidase A is the fundamental enzymic defect 

in Tay-Sachs disease.” [10] 

The finding of O’Brien led to a test for Tay-Sachs 
heterozygotes. Lewis, an Ashkenazim, gives an 
account of her own experience [12, pp. 126-130]. For 
the purposes of this paper our population is the people 
of Ashkenazi Jewish background, that is Jews whose 
ancestors came from central or eastern Europe. 
Westman [13] gives additional information about the 
Ashkenazi community. Lewis states that, before 
genetic testing, about 1 in 3,600 Ashkenazi newborn 
were diagnosed with Tay-Sachs disease. Using Hardy-
Weinberg proportions we take the gene frequency in 

the population to be 
  
q = 1 3600 = 1 60 . Lewis notes 

that, as a consequence of screening, the incidence of 
Tay-Sachs in the Ashkenazi population has been 
substantially reduced. Just for the purpose of 
illustration, we suppose the incidence now to be 

 
1 36000 , although it is lower than that.  

Under random mating, the former mating matrix, (3), 

is 
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12960000
1

1 118 3481

118 13924 410758

3481 410758 12117361

.       (11) 

Because of the programme to reduce the incidence 

of Tay-Sachs in the population, the frequency of 

marriage between carriers has been reduced. Our 

model, incorporating incidence 
 
1 36000 , is 

36000
1

0 0 1

0 4 1194

1 1194 33606

.        (12) 

Note that the gene frequency is 1 60 and the 

population is in Hardy-Weinberg form in both (11) and 

(12). Neither model is fully valid in that children with 

Tay-Sachs die long before reproductive age. 

Consequently there is natural selection against the 

gene on this account but its reduction is slow because 

of the mode of inheritance. Mating matrix (12) could be 

replaced by many others which satisfy equation (7). 

Sebro et al. show the importance of taking account 

of the stratification of populations in epidemiological 

research [14]. 
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