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Abstract: The Cox proportional hazards model is widely used in the analysis of medical data either for survival or time to 
a particular event. Factors and continuous covariates can be easily incorporated into the model and hazard ratios 

calculated. The model can however be distorted when extreme value observations occur within a continuous covariate 
and the hazard ratio can become extremely large. To overcome this, transformations of the covariate are often made, 
which can be simple, e.g. log, or more sophisticated such as the fitting of a fractional polynomial. This paper takes a 

different approach and makes a transformation based on the logistic function that has the property that the hazard ratio 
is bounded. The models are introduced and discussed. Model diagnostics based on Schoenfeld residuals and the 
influence function are established and then data from a pancreatic cancer trial are used to illustrate the model. 
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INTRODUCTION 

Cox proportional hazards modeling is in widespread 

use in medical and other contexts [1]. Here robust 

hazard models are proposed that extend the Cox 

model. Survival data will be the main focus but the 

robust models proposed can be used in any time-to-

event situation. Survival data from a pancreatic cancer 

randomized controlled trial will be used for illustration. 

For the Cox model, the hazard function, , is 

modeled as 

  
= 0 exp

T
x( )  

where x is a vector of covariates and  a vector of 

coefficients. For a factor, xi, the associated coefficient, 

i, leads to the hazard ratio, i = exp ( i), whilst for a 

continuous variable i gives the increase in hazard ratio 

per unit increase in the value of the continuous 

variable. One problem with continuous variables is that 

modeling the hazard in such a linear way can mean 

large or extreme values of x are associated with very 

high hazards when this may be unrealistic in practice. 

The presence of only a single extreme value 

observation can be enough to violate any model 

assumptions of proportionality [2] and biased estimates 

produced. Also, the interpretation of the hazard ratio is 

awkward or inappropriate. To overcome these 

problems, sometimes a simple transformation can be 

made, for instance, log(x), or x
-1

 and this can be 

sufficient for obtaining a good model fit. A more 

sophisticated model is achieved by using a fractional 
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polynomial approach [3], which uses a mixture of 

transformations, but both simple transformations and 

fractional polynomials can still be influenced by 

extreme observations. In this paper a transformation 

based on the logistic function is proposed that can 

improve the model fit and guard against extreme 

observations having undue influence on the overall 

model.  

Some previous methods to account for extreme 

value observations have concentrated on amendments 

to the likelihood formulation. A good overview is given 

by Farcomeni and Ventura [4] with two approaches in 

particular given specific attention: an approach based 

on a weighted likelihood formulation for the Cox model, 

notably proposed by Bednarski [5] and Minder and 

Bednarski [6] and secondly, an approach using 

`trimmed' likelihoods given by Viviani and Farcomeni 

[2]. For weighted Cox regression, a likelihood is 

proposed in the form: 

 

1( ) = log L( )( ) = A ti ,zi( )i=1

N
zi

R j( )A ti ,zi( )z j exp Tz j( )
R j( )A ti ,zi( ) exp Tz j( )

 

Here A ti, zi( ) is a smooth non-negative function 

which takes a value zero for either large values of t or 
T
z and R (j) the usual risk set at time ti. This method 

down-weights or completely ignores patients who either 

have large covariate values or who live longer than 

may be expected. The second approach uses a 

trimmed likelihood by excluding observations that give 

the smallest contribution to the likelihood. Whilst either 

procedure may produce more robust hazard ratios they 

do not cure the problem of non-proportionality. More 

troublesome may be that the model is explicitly treating 

some data as less valuable than others and a possible 
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criticism is that the methods can be seen as trying to 

amend the data to fit a model as opposed to producing 

a model to fit the data. 

A ROBUST PARAMERIZATION 

Let the hazard function be modelled as 

 
= 0f , x( )  

where =( , , , ) are parameters to be estimated. 

The family of transformations proposed here has the 

form  

 

f , x( ) =
+ exp x( )
+ exp x( )

           (model 1) 

This is an adaption of the logistic function and has 

asymptotes  and / . Restrictions are needed on the 

parameters: 0, 0, 0, in order for f( ,x) to be non-

negative. The first derivative of f( ,x) is (  -

) exp( x)/{ +exp( x)}
2
 and in order for a positive  to 

have positive slope for f, and correspondingly, a 

negative  to have a negative slope for f, then < . 

Also, f( ,x) is monotonically increasing in x which is 

usually a useful property in practice. A particular 
fractional polynomial might not possess this property. 
Model 1 has the property that the hazard function is 

symmetric regarding the baseline hazard, i.e. f( ,x) and 

1/f( ,x) have the same functional form for the two 

reciprocal models = 0f( ,x), and 0= /f( ,x). 

A desirable property for f( ,x) is that when  = 0, 

implying that the covariate has no effect on survival, 

then f( ,x) should have the value unity. This implies 

= + -1 and leads to model 2. 

f , x( ) =
+ exp x( )

+ 1+ exp x( )
          (model 2) 

The asymptotes for model 2 are  and /( + -1) 

and it still retains baseline hazard symmetry. For > 1, 

positive  will give a positive slope for f and negative  

a negative slope. The value of x which has no effect on 

the baseline hazard is x=0. If this should be a different 

value then the variable x should be adjusted 

accordingly with a linear transformation. Note if a para-

meter is entered into the model, replacing x by x-  with 

estimation of , then it can be shown that, by rear-

ranging parameters, model 2 reverts back to model 1.  

The slopes of the logistic function at +x and –x are 

identical. For model 2 to have this property, then =2-  

and hence 

 

f , x( ) =
2 + exp x( )

1+ exp x( )
          (model 3) 

where the asymptotes are  and 2- . This model loses 

its baseline hazard symmetry. 

For model 2 to have reciprocal asymptotes,  and 

1/ , then =1 giving 

 

f , x( ) =
1+ exp x( )

+ exp x( )
           (model 4) 

This model retains baseline hazard symmetry.  

Lastly the standard Cox model is obtained by letting 

 become infinite in model 4, or by letting  = 0 which 

will negate the  coefficient. If  = 1 then f ( , x) = 1 

with x having no effect on the hazard function. 

In this paper, concentration is on model 4 although 

the other models could be used and fitted to data in a 

similar manner to that for model 4. 

Fitting The Model 

Suppose the explanatory variables consist of p-1 

binary variables, x1,…,xp-1, representing various factors 

and one continuous covariate, xp, to be fitted in the 

proportional hazards models. The hazard for the ith 

observation is  

 

i = 0 exp 1x1 + ...+ p 1xp 1( ) 1+ exp pxp( ){ } /

+ exp pxp( ){ }
 

and then the partial likelihood is given by 

  

i

j R i( ) i

i

i=1

N

 

where R(i) is the risk set at theith survival time and i is 

the censoring value (1 – the event occurred, 0 – the 

time is censored). Here, the partial likelihood was 

maximized using the “optim” package within the 

statistical package R.  

A Simulation Study 

A small simulation study was carried out to 

investigate model fitting and accuracy. Survival times 

were simulated from an exponential distribution with 

baseline hazard set at 0.5 and with 5% of observations 
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randomly censored. Explanatory variables were a two-

level factor representing treatment within a two-arm 

clinical trial alongside a continuous covariate. 

Parameters for the robust model are denoted by ( trt, 

cov, cov). Firstly, a check was made on whether the 

new model could be fitted adequately to data arising 

from the standard Cox model by fixing the value of  

cov to be zero when simulating the data. The 

parameters ( trt, cov) were given the values (0.15, 

0.05). Patients were split equally between the two 

arms. The covariate was simulated as log (x)  N (3.5, 

1.5). Sample sizes of 100, 250, 500 and 1000 were 

used, each time simulating 1000 datasets. Each fitted 

model was assessed in terms of bias, accuracy, 

coverage and average confidence interval length 

(ACIL) [7]. Table 1 shows the results of fitting the 

standard Cox model and the new model. It can be seen 

that there is very good agreement between the 

estimates for two models. The estimated values of cov 

(not shown) for the robust model were large enough to 

essentially make the model equivalent to the standard 

Cox model. 

Next, data were simulated from the robust model 

formulation with the parameters ( trt, cov, cov) and 

given the values (0.15, 0.05, 5). Table 2 shows the 

results of the simulations where the new model, the 

standard Cox model, the standard Cox model with log-

transformed covariate values and a fractional 

polynomial model are fitted. The new model fits the 

data well and recovers the true parameter values 

accurately. The bias in the treatment coefficient is very 

small. There is some small reduction in the coverage 

for cov in the robust models and upon further 

inspection, this can be attributed to some skewness in 

the distribution of cov. The standard model 

underestimates the treatment coefficient even for a 

sample size of 1000. Note, cov cannot be compared 

across the two models. The log-transformed model 

achieves similar bias to the robust model but the 

fractional polynomial model offers little improvement 

over the standard model. 

MODEL DIAGNOSTICS 

Two model diagnostics are explored for the new 

model, (i) residuals based on standard Schoenfeld 

residuals [8] and (ii) an analytical form of an influence 

function following the method of Reid and Crapeau [9]. 

Residuals 

Schoenfeld residuals for a particular covariate are 

calculated using the partial derivative of the partial log-

likelihood function with respect to the covariate’s 

associated parameter and evaluating this at the 

maximum likelihood estimate. For robust model 4, 

there are two parameters  and  and so two 

Shoenfeld type residuals will be calculated. 

Differentiating the log-likelihood with respect to  gives 

ii=1

N exp xi( ) 1

1+ exp xi( ){ }

exp x j( ) 1( ) exp x j( )( )
1+ exp x j( ){ }

2j R

exp x j( )
1+ exp x j( )j R

 

and with respect to , 

  

ii=1

N 1( )xi

1+ exp xi( )

1( )x exp x j( )

1+ exp x j( ){ }
2j R

exp x j( )
1+ exp x j( )j R

.  

Table 1: Results of Fitting the Standard and the Robust Model to Data Simulated from the Standard Model ( =0) 

Standard model New model 

N Param. Est. (s.e.) Bias Acc. Cov. ACIL Est. (s.e.) Bias Acc. Cov. ACIL 

trt 0.128 (0.231) 0.022 0.054 0.94 0.848 0.129 (0.227) 0.021 0.052 0.93 0.844 
100 

cov 0.05 (0.005) 0 0 0.99 0.022 0.05 (0.005) 0 0 0.92 0.02 

trt 0.127 (0.134) 0.023 0.018 0.69 0.518 0.126 (0.133) 0.024 0.018 0.68 0.516 
250 

cov 0.05 (0.003) 0 0 0.68 0.013 0.049 (0.004) 0.001 0 0.63 0.012 

trt 0.151 (0.093) -0.001 0.009 0.97 0.361 0.144 (0.097) 0.006 0.009 0.94 0.36 
500 

cov 0.05 (0.002) 0 0 0.96 0.009 0.049 (0.002) 0.001 0 0.92 0.009 

trt 0.152 (0.063) -0.002 0.004 0.95 0.253 0.148 (0.067) 0.002 0.005 0.93 0.252 
1000 

cov 0.05 (0.002) 0 0 0.93 0.006 0.049 (0.002) 0.001 0 0.78 0.006 
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The individual terms to the right in the overall sums 

give the Shoenfeld type residuals, a pair for each 

observed survival time. The residuals are not linked to 

x directly, but to the terms to the left within the overall 

sums. 

Influence Function 

The influence function measures the rate of change 

in a statistical functional when there is a small amount 

of contamination from another distribution and is 

defined as 

 

I x( ) = lim 0

T 1( )F + x T F( ){ }
,  

where T is the statistical functional giving the para-

meter of interest, F is the underlying distribution of the 

data and x is the contamination introduced into the 

distribution. Replacing F by Fn, the empirical 

distribution function, T(Fn), will be the estimate of T(F) 

and the corresponding empirical influence function will 

measure the dependence of the estimate on particular 

data values. 

Table 2: Simulation Results to Assess Fitting of the Robust Model 

N Param. Standard model New model 

 Est. (s.e.) Bias Acc. Cov. ACIL Est. (s.e.) Bias Acc. Cov. ACIL 

100 trt 0.127 (0.203) 0.023 0.042 0.954 0.811 0.154 (0.204) 0.004 0.042 0.9522 0.820 

cov 0.003 (0.002) 0.056 (0.028) 0.006 0.001 0.916 0.094 

cov 6.35 (3.682) 1.35 15.381 0.968 13.206 

250 trt 0.132 (0.130) 0.018 0.017 0.95 0.515 0.152 (0.135) 0.002 0.018 0.938 0.507 

cov 0.002 (0.001) 0.052 (0.016) 0.002 0 0.932 0.055 

cov 5.313 (1.120) 0.313 1.353 0.968 4.33 

500 trt 0.135 (0.092) 0.015 0.009 0.946 0.355 0.154 (0.091) 0.004 0.008 0.938 0.356 

cov 0.002 (0.001)     0.051 (0.010) 0.001 0 0.932 0.037 

cov  5.197 (0.725) 0.197 0.565 0.966 2.911 

1000 trt 0.131 (0.061) 0.019 0.004 0.954 0.25 0.150 (0.061) 0 0.004 0.964 0.25 

cov 0.001 (0.001)  0.050 (0.007)) 0 0 0.914 0.026 

cov  5.067 (0.493) 0.067 0.247 0.962 1.984 

N Param. log transformed models Fractional polynomial model 

 Est. (s.e.) Bias Acc. Cov. ACIL Est. (s.e.) Bias Acc. Cov. ACIL 

100 trt 0.156 (0.220) -0.006 0.048 0.952 0.813 0.122 (0.249) 0.028 0.063 0.914 0.777 

cov 0.357 (0.083) 

cov 

250 trt 0.146 (0.129) 0.004 0.017 0.95 0.505 0.136 (0.169) 0.014 0.029 0.932 0.503 

cov 0.344 (0.049) 

cov 

500 trt 0.147 (0.092) 0.003 0.008 0.948 0.355 0.14 (0.131) 0.01 0.017 0.928 0.353 

cov 0.344 (0.035) 

cov 

1000 trt 0.145 (0.062) 0.005 0.004 0.95 0.25 0.137 (0.079) 0.013 0.006 0.95 0.249 

cov 0.341 (0.025) 

cov 
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Read and Crepeau establish the influence function 

for the proportional hazards model. They show this to 

be 

   

I = A 1 ( ) i zi z j exp z j( ) / exp z j( )RiRi{ }
+A 1( )Ci ( )

 

where 

   

A( ) = n 1
ii=1

N
z jz j

T exp z j( ) / exp z j( )RiRi

zj
Ri

exp z j( ) / exp z j( )Ri{ } zj
Ri

exp z j( ) / exp z j( )Ri{ }
T

 

and 

Ci ( ) = exp T zi( )

jtj ti

zk exp
T zk( ) / exp T zTk( )Rj{ }

2

Rj

zi jtj ti
1 / exp T zk( )Rj{ }

 

The algebra involved to arrive at this result is heavy 

and not particularly informative. A similar result was 

found for the robust models 1, 2, 3 and 4 where the 

algebra was even more involved and lengthy and so is 

not repeated here. Details are available from the 

authors and also will appear in a PhD thesis written by 

Jackson. 

APPLICATION TO DATA FROM THE ESPAC 3 
TRIAL 

Robust model 4 was applied to data from the 

ESPAC-3 trial set up to investigate the effect of 

adjuvant chemotherapy on patients with resectable 

pancreatic cancer. Of particular interest are the group 

of patients who had pancreatic ductal 

adenocarcinomas (PDAC) and for whom a value of 

post operative CA19.9 was recorded (n=759). It is 

reasonably assumed that information for this covariate 

is missing completely at random and no bias is 

introduced by considering a complete case analysis. 

Previously published analyses [10] are followed, forcing 

the terms `Resection Margin' (Negative vs. Positive) 

and `Treatment Arm' (5FU vs. Gemcitabine) into the 

model as stratification factors. Also identified as 

important are `Lymph Nodes' (Negative vs. Positive), 

`Tumour Differentiation' (Poor vs. Moderate vs. Well) 

and `Smoking Status' (Never vs. Past vs. Present vs. 

Missing). 

Figure 1 gives a histogram of CA19.9 values which 

is seen to have a very skewed distribution and prone to 

extreme value observations. The median (inter quartile 

range) is 24 (10, 63) but there are a number of 

observations greater than 1,000; only values up to 

2,000 are displayed, the largest recorded being 37,000. 

 

Figure 1: Histogram of post operative CA19.9 values. 

Four models were fitted to the data, (i) standard Cox 

proportional hazards with raw CA19.9 data (Reference 

model), (ii) standard Cox proportional hazards with log 

transformed CA19.9 (Log model), (iii) a fractional 

polynomial model for CA19.9 (Frac. polyn. model) and 

(iv) robust model 4(Robust model). Table 3 shows the 

log-likelihood, Akaiki’s information criterion (AIC), the 

model coefficients and their estimated standard errors. 

For the reference model, small estimates of  and for 

the estimated standard error are obtained. This is a 

consequence of the large extreme values observed. 

Taking as an example, the median value for CA19.9 as 

24, a hazard ratio of 1.02 is obtained showing very 

modest increases in the baseline hazard. For extreme 

values of 2,000, 5,000 and 37,000, hazard ratios of 

1.17, 1.49 and 18.9 are obtained. A clinician, however, 

may find it difficult to believe that a patient with CA19.9 

value of 37,000 has an instantaneous risk of death of 

almost 20 times that of a patient with a zero value. The 

log-transformed model gives an improved model fit as 

shown by an AIC of 6882 compared to 6912 for the 

reference model. The hazard ratios for the reference 

values of 24, 2,000, 5,000 and 37,000 for CA19.9 are 

1.95, 4.93, 5.90 and 9.11 respectively. Here, extreme 

hazard ratios are avoided to a small extent. Patients 

with a median value of CA19.9 are almost twice more 

likely to die at any given time point as those with a zero 

value.  
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The fractional polynomial model had the lowest AIC 

with a value of 6847. The fractional polynomial that was 

produced was 

 

1

100

CA19.9 +1
+ 2 log

CA19.9 +1( )
100

 

This pair of transformations chosen by the fractional 

polynomial software might not be interpretable by 

clinicians and one problem with fractional polynomial 

regression is that a new data set generated under the 

same conditions can easily give rise to different 

transformations. As an illustration, the ESPAC 3 data 

were randomly split into two equal sized subsets of the 

data and fractional polynomial models fitted separately 

to both. The functional form of the two fractional 

polynomials differed. They were 

1 CA19.9 +1( ) / 1000{ }
0.5

+ 2 log CA19.9 +1( ) / 1000{ }  

and 

1 CA19.9 +1( ) / 100{ }
2
+ 2 log CA19.9 +1( ) / 100{ }  

Returning to the fractional polynomial model fitted to 

the whole dataset, for the reference points of 24, 2,000, 

5,000 and 37,000,hazard ratios of 1.73, 3.64, 4.55 and 

7.79 are obtained.  

 

Figure 2: Hazard ratios plotted against log (CA19.9) for the 
four fitted models. 

Model 4 has an AIC value of 6861 which is less 

than that for the log transformed model but more than 

that for the fractional polynomial model. The upper 

asymptote is 3.77 which corresponds to a maximum 

Table 3: Results of Fitting Four Models to the ESPAC 3 Pancreatic Adenocarcinoma Survival Data 

Model 

 (i) Reference (ii) Log (iii) Frac. polyn. (iv) Robust model 2 

  Log-lik. AIC Log-lik. AIC Log-lik. AIC Log-lik. AIC 

  -3447 6912 -3432 6882 -3412 6847 -3420 6861 

Factor Level coef. s.e. coef. s.e. coef. s.e. coef. s.e. 

Resec. Margin Neg. 

 Pos. 0.21 0.09 0.19 0.09 0.20 0.09 0.18 0.09 

Treatment 5FU 

 Gem. -0.12 0.08 -0.10 0.08 -0.11 0.08 -0.09 0.08 

Lymph N. Neg. 

 Pos. 0.55 0.10 0.48 0.10 0.46 0.10 0.46 0.10 

Tumour Diff. Poor 

 Mod. -0.29 0.10 -0.29 0.10 -0.27 0.10 -0.30 0.10 

 Well -0.64 0.15 -0.62 0.15 -0.69 0.15 -0.63 0.15 

Smoke Never 

 Past 0.09 0.10 0.08 0.10 0.07 0.10 0.08 0.10 

 Present 0.24 0.12 0.26 0.12 0.27 0.12 0.27 0.12 

 Missing 0.22 0.18 0.22 0.18 0.21 0.18 0.17 0.18 

CA19.9  1=0.02 3.87e-3 3.77 0.70 

  7.95e-5 1.54e-5 0.21 0.03 2=0.32 0.03 0.01 0.00 

The fractional polynomial fitted was 1  100/(CA19.9+1) + 2  log{(CA19.9+1)/100. 



A Robust Parameterization for Unbounded Covariates International Journal of Statistics in Medical Research, 2014, Vol. 3, No. 4      337 

hazard ratio of also 3.77. A hazard ratio of 1.19 is 

obtained for the median CA19.9 value of 24. The other 

reference values of 2,000, 5,000 and 37,000 all have a 

hazard ratio of 3.77 obtained from the upper 

asymptote. From a clinical perspective, this is the most 

attractive model with modest small increases in the 

CA19.9 resulting in modest increases in the hazard 

ratio and larger values curtailed to ensure that 

unrealistically large hazard ratios are not obtained. This 

is highlighted in Figure 2 where the hazard ratio is 

plotted against log (CA19.9) for all four models. The 

hazard ratio for the log transformed model follows an 

exponential curve while for the standard Cox model the 

hazard ratio follows a curve exp (exp(x)) because the 

x-axis is on the log-scale. For the fractional polynomial 

model the hazard ratio first decreases and then 

increases which is unrealistic in practice and could 

make clinical interpretations troublesome. Furthermore, 

there is no value of CA19.9 that has zero effect on the 

baseline hazard function within the observed range of 

data and this may affect confounding in other 

covariates as the baseline hazard function is amended 

to account for this. This can be seen somewhat in the 

analysis of the ESPAC-3 dataset with some 

amendments in the point estimates, especially for the 

Tumour Differentiation covariates. Model 2 has the 

desired shape of curve for the hazard function and is 

bounded whereas all other models can have the 

hazard ratio increase indefinitely. 

Model diagnostics 

Model diagnostics were calculated for the four 

models, firstly residuals and then influence measures. 

Figure 3 shows Shoenfeld residuals for the parameters 

associated with CA19.9 for the four models fitted. The 

scales on the graphs are not comparable. The 

residuals from the extreme values can be seen in the 

plot for the reference model and also the two plots for 

the fractional polynomial model. The variance of 

residuals for the log model decreases as survival time 

increases. The two plots for robust model 4 show how 

the asymptote controls the residuals and also shows 

that the variability of the residuals with time is much 

less than for the other models. 

Figure 4 shows the influence measures obtained for 

the four models, plotted against log (CA19.9) and 

where crosses mark observed events and circles 

censored events. For the reference model, there is no 

obvious relationship of the influence measures with 

 

Figure 3: Schoenfeld residuals for the four models. 



338     International Journal of Statistics in Medical Research, 2014, Vol. 3, No. 4 Jackson and Cox 

CA19.9, whereas for the log-transformed model there 

is a central point of CA19.9 around the value 4. Either 

side of this point, there is a general divergence with 

both small and large values of CA19.9 having relatively 

large effects upon parameter estimation. For the 

fractional polynomial model, the influence measures 

associated with the {(x+1)/100}
-1

 term show that very 

small values of CA19.9 can have a disproportionally 

large influence upon parameter estimation. There are 

also some large positive influence measures 

associated with log (CA19.9) values greater than 6. For 

the term given by log {(x+1)/100}, there is a similar 

relationship to that seen for the log transformed model 

although here the divergence from some central point 

is less pronounced. Large values of CA19.9 are again 

associated with typically large, positive influence 

measures. For robust model 4, there is neither the 

divergence away from some central point, nor any 

large influence measures associated with small values 

of CA19.9. However, the parameter  is associated 

with some large positive influence measures. This is to 

be expected, as this is the parameter associated with 

setting the upper asymptote. The estimate of the 

parameter is driven by the amount of `large' data that 

are observed and any single data value can have a 

relatively large effect on the estimate. Upon first 

inspection of the plot for , apart from two large 

influence measures, there is fairly flat relationship with 

log(CA19.9), even at large values. Upon closer 

inspection, there is some change in the relationship 

between log (CA19.9) values of 4 and 6, and again 

between 6 and 8. This change, although small, can be 

seen to correspond to the points in the function that are 

chiefly concerned with the growth of the functional 

relationship and immediately afterwards as the 

asymptote is approached. 

DISCUSSION 

A method has been given to robustly model a 

continuous covariate in the Cox proportional hazards 

situation that automatically guards against extreme 

values and sets asymptotes for the minimum and 

maximum hazard ratios. This can be very useful in the 

clinical context. The model was successfully 

demonstrated on survival data following resection for 

pancreatic adenocarcinoma where CA19.9 is used as a 

biomarker. The distribution of CA19.9 is highly skewed 

and so was a good candidate for the robust 

parameterization.  

 

Figure 4: Influence measures for the four models. 
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