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Abstract: This paper investigates the performance of ten methods for constructing a confidence interval estimator for 
the population standard deviation by a simulation study. Since a theoretical comparison among the interval estimators is 
not possible, a simulation study has been conducted to compare the performance of the selected interval estimators. 

Data were randomly generated from several distributions with a range of sample sizes. Various evaluation criterions are 
considered for performance comparison. Two health related data have been analyzed to illustrate the application of the 
proposed confidence intervals. Based on simulation results, some intervals with the best performance have been 

recommended for practitioners. 
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1. INTRODUCTION 

A term often is used in the Inferential Statistics is 

known as confidence interval (CI). It measures the 

chance that a value will fall between a lower and an 

upper bound of a probability distribution. Given a 95% 

CI, say for an example, a stock XYZ’s return will fall 

between 5.3% and 10.5% over the next year. It means 

that we are 95% confident that the return of holding 

XYZ stock over the next year will fall between 5.3% 

and 10.5%. It is well-known that the most commonly 

used scale estimator, namely sample standard 

deviation (S) is very important in many statistical 

applications which provides a logical point estimate of 

the population standard deviation ( ). The classical chi-

square 100(1- )% CI for  is based on the assumption 

that the underlying distribution of data is normal with no 

outliers. Unfortunately, this assumption for constructing 

CI for  is very sensitive to normality assumption [1, 2]. 

Many research papers in literature shows that S is not 

an efficient scale estimator in skewed and/or leptokurtic 

distributions. As a result, it is not robust to slight 

deviations from normality, see [3] for details. Thus, 

when the parent population is far from normal, 

achieved confidence level of CI of  is far from the 
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nominal level. Despite S being the most efficient scale 

estimator for normal distribution and often used to 

construct the )%1(100
 

CI for  but the basic 

question is what happens if the data are not from a 

normal distribution but instead from heavier tails or 

from skewed distributions. Thus, the need for 

alternatives to the classical chi-square 100(1 )%
 
CI 

for  comes to play. Although much work has been 

done on improving CI for population mean [4-7], 

improving robustness for CI for  is still greatly 

unexplored. 

The aim of this paper is (i) to evaluate and compare 

several available methods for constructing CI for  and 

(ii) based on extensive simulation and numerical 

examples to seek evidences to recommend some CI 

with best performance for researchers. Performances 

of the proposed methods are investigated through a 

Monte Carlo simulation study based on some 

evaluation criteria such as coverage probability, 

average width and SD of width. The coverage 

probability naturally varies from distribution to 

distribution for a given procedure, but a good 

procedure should keep this variation small. 

Furthermore, we want a CI whose endpoints are 

generally close together, thus a small average width is 

good [8]. Two health related data are used to illustrate 

the results given in the paper. 
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The organization of the paper is as follows. In 

section 2, different alternative methods for constructing 

CI for  are presented. A Monte Carlo simulation study 

with flowchart is outlined in section 3. To illustrate 

findings of the paper, some real life data are analyzed 

in section 4. Finally, some concluding remarks and 

future research are presented in section 5. 

2. METHODS FOR CONSTRUCTING CI FOR  

Suppose that x1, x2,…,xn is a random sample of size 

n from the normal distribution, i.e. Xi ~ N(μ,
2 )

 
for all 

i, then 
(n 1)S2

2
=
1
2

(Xi X
i=1

n

)2 ~ n 1
2

, where 

S2 = 1
n 1

(Xi X)2

i=1

n

 
is the sample variance. 

2.1. Exact CI 

The classical chi-square )%1(100
 
CI for  is 

given as follows: 

LCL =
(n 1)S2

2
,(n 1)

2
and UCL =

(n 1)S2

1
2
,(n 1)

2
      (1) 

Where 

2

2
 and 

1
2

2

 

are the ( /2)
th

 and (1-( /2))
th 

percentile points of the 2
 
distribution with (n-1) df.  

2.2. Robust CI 

The exact CI for  in (1) is sensitive to minor 

violations of the normality assumption. Bonett [9] show 
that (1) has an asymptotic coverage probability of 
about 76, 63, 60 and 51 for the Logistic, the Student 
t(7), the Laplace and the Student t(5) distributions 
respectively. These results are not very acceptable as 
symmetric distributions are not easily distinguishable 
from a normal distribution unless n is large. Also, the 

exact CI for  in (1) as demonstrated by Lehman [10] is 

highly sensitive to the presence of outliers and/or to 
departure from normality.  

Following above, [2] proposed an alternative to the 

exact 100(1 )%  CI for  based on [11] estimator, Qn  

[2]. A brief description of this method is given below:  

Instead of assuming Xi ~ N(μ,
2 ) , let x1, x2,…,xn 

be a random sample of size n from a continuous, 
independent and identically distributed random 

variable. The 100(1 )%  robust CI for  is as follows: 

LCL =
DQn

Z

2

+ D1
and UCL =

DQn
Z
1
2

+ D1
        (2) 

where D = 1.28 n *dn , An approximation result of D for 

larger values of n can be calculated as follows: 

D =

(1.28 n )(
n

n +1.4
) for odd values of n

(1.28 n )(
n

n + 3.8
) for even values of n

 

D1 = 1.28 n , Qn is the [11] estimator defined as 

Qn = 2.2219 Xi X j ; i < j ; i = 1, 2, 3, ...,n ; j = 1, 2, 3, ...,n{ }
g{ }

, 

and g =
h

2
(
n

2
/ 4 ) where h =

n

2
+1 (i.e., 

roughly half the number of observations). Here the 

symbol .( )  represents combination and symbol .[ ]  is 

used to take only integer part of a fraction. Qn estimator 

is the g-th order statistic of 
n

2
 inter-point distances. 

The value 2.2219 is chosen to make Qn a consistent 
estimator of scale for normal data (For values of dn see 
[2].  

2.3. Bonett CI 

Let Xi ~ N(μ,
2 ) for all i. [9] proposed the following 

(1- )100% CI for :  

LCL = sqrt( exp ln(c ˆ 2 ) Z /2se{ } ) and UCL = 

sqrt( exp ln(c ˆ 2 ) + Z /2se{ } ),        (3) 

where Z /2 is two-sided critical z-value, 

se = c[{ ˆ4 (n 3) / n} / (n 1)]1/2 , c = n/(n-Z /2) and 

ˆ4 = n (Yi μ̂)4

i=1

n

/ ( (Yi μ̂)2 )2 . 

2.4. Steve Large Sample Normal Approximations CI 

Steve [12] proposed the following )%1(100
 
CI 

for : 

LCL =
S2

1 Z

2

ˆ 1

n

and UCL =
S2

1+ Z

2

ˆ 1

n

       (4) 

where ˆ  is the kurtosis estimator. 
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2.5. Hummel, Banga and Hettmansperger CIs 

2.5.1. Log asymptotic Approximation (Ln Asympt) 
CI 

Because of high skewness of the distribution S
2
 for 

small n, [1] hereafter HBH, using the method of 

applying natural log to S
2
 in (4) (i.e. by adjusting 

skewness) proposed the following )%1(100 CI  

for : 

LCL = sqrt(s2 exp Z

2

ˆ 1

n

)  and  

UCL = sqrt(s2 exp Z

2

ˆ 1

n

)         (5) 

2.5.2. Adjusted Degrees of Freedom (AdjDF) CI 

To find a better CI, HBH adjusted DF (i.e. (n-1)) of 

the exact CI for  in (1) and proposed the following 

)%1(100
 
CI for : 

LCL =
r̂S2

2
, r̂

2
and UCL =

r̂S2

1
2
, r̂

2
       (6) 

where r̂ =
2n

ˆe + (
2n

n 1
)

 and ˆe  is the estimate of 

kurtosis excess (e.g. for normal distribution 
ˆe = ˆ 3 = 0 because ˆ =3 for normal distribution) 

which is defined as  

ˆe =
n(n +1)

(n 1)(n 2)(n 3)

(xi x )4

S4i=1

n 3(n 1)2

(n 2)(n 3)
    (7) 

If a random sample comes from the normal 

population, then r = n-1 and (6) reduces to (1). 

2.5.3. Modified Adjusted Degrees of Freedom (B-C 
AdjDF) CI 

Due to low coverage probabilities of UCL of the 

AdjDF method (see equation 6), HBH adjusted only 

100(1- )% UCL in the following way: 

UCLB C = sqrt(S2
2r̂

1 , r̂
2

+ C1
n +1

(n 1)(2 + r̂)
1 )  (8) 

where 

C (r) = 2Z r +
2

3
(Z2 1)r +

1

9 2
(Z 3 7Z )r

3

2

1

405
(6Z 4 +14Z2 433)r2 +

1

4860 2
(9Z5 + 256Z 3 433Z )r

5

2

and other terms are defined as above. 

2.6. Bootstrap CIs 

Let X
(*)

 = X1
(*)

, X2
(*)

, …, Xn
(*) , where the i

th
 sample is 

denoted by X
(i)

 for i=1,2 ,…, B and B is the number of 

bootstrap samples. Compute  for all bootstrap 

samples. 

2.6.1. Proposed Non-Parametric Bootstrap CI 

Order the SDs of all bootstrap samples as 

follows: S(1)
* S(2)

* S(3)
* .... S(B)

* . 

CI for population : 
 

LCL = S[( /2)B]
*  and UCL = S[(1 ( /2))B]

*        (9) 

2.6.2. Proposed Parametric Bootstrap 2

 
CI 

CI for population :  

LCL = S (n 1) / *2
/2,(n 1)  and  

UCL = S (n 1) / *2
1 ( /2),(n 1)      (10) 

where /2
*2 and 1 ( /2)

*2 are ( /2)th and (1-( /2))th 

sample quintiles of 2 =

 

(n -1)S2

ˆB
, 

 

ˆB =
1
B-1

(xi
*

- x )2

i=1

B

 

is the bootstrap SD, xi
*
 
is the 

ith bootstrap sample mean and x  is the bootstrap 

mean. 

2.6.3. Cojbasic and Tomovic (CT) CI 

Based on t-statistic, [13] proposed the following 
nonparametric bootstrap t CI for : 

Iboot = S
2 t̂ ( ) var̂(S2 )        (11) 

where S
2
 is the sample variance, t̂ ( )  is the  

percentile of T* defined as T* =
S2* S2

var̂(S2*)
, 

*2

S  is a 

bootstrap replication of statistic S
2
 and var̂(S2 ) is a 

consistent estimator of S
2 

, defined by 
 
2 4 / (n -1) . 
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3. SIMULATION STUDY  

Since, a theoretical comparison among selected 

intervals is not possible, a simulation study has been 

conducted to compare performances of the selected 

intervals. The simulation plan and discussion of the 

results are given in this section.  

3.1. Simulation Plan 

MATLAB [14] programming language was used to 

run the simulations and to make necessary tables.  

The flowchart of our simulation is as follows:  

We used random samples of sizes n = 15, 25, 50 

and 100. Random samples are generated from various 

symmetric (light and heavy tailed) and skewed 

distributions which are:  

(a) Standard normal distribution N(0,1) with 

skewness zero. 

(b) Gamma(3,1) distribution with skewness 2. 

(c) t-distribution with 8 df with skewness 2. 

(d) Beta(5,1) distribution with skewness -1.8232. 

(e) Lognormal distribution with mean 3 and SD 0.75 

with skewness 3.2629. 

(f) Chi-square distribution with 7 df with skewness 

1.0690. 

We used 5000 replications and 1500 bootstrap 

samples for each sample size n. The most common 

95% CI ( =0.05) for confidence coefficient is used. It is 

well known that if data are from a symmetric 

distribution (or n is large), coverage probability will be 

exact or close to (1- ). So coverage probability is a 

useful criterion for evaluating CI. Another criterion is 

the width of CI. A shorter width (tighter CI) gives a 

better CI. It is obvious that when coverage probability is 

the same, a smaller width indicates that method is 

appropriate for the specific sample. In order to compare 

performance of various intervals, the following criteria 

are considered: (i) Coverage probabilities (below, 

coverage, and above), (ii) Mean width and (iii) SD of 

width. Below (above) rate of a CI is the fraction out of 

5000 samples that resulted in an interval that lies 

entirely above (below) the true value of . The 

coverage probability is found as sum of lower rate and 

upper rate and then subtracted from total probability of 

1. Simulation results are reported in Tables 1-6 

respectively for different selected distributions and for 

better understanding graphical methods are selected.  

3.2. Simulation Results and Discussions 

In Tables 1-6, we have tabulated performances of 

the selected intervals for standard normal, gamma, t, 

beta, lognormal and chi-square distributions. For better 

understanding, the cover rate is presented in Figures 1-

6.  

Table 1 and the Figure 1 present the simulation 

results for the normal distribution case. It is not a 

surprise to see the ordinary chi square interval to 

perform the best with very close coverage to the 

nominal value across all sample sizes selected. 

Nonparametric confidence interval seems to have the 

second best performance in the normally distributed 

data. In general, it is apparent that coverage probability 

increases as the sample size increases. On the other 

hand, the AdjDF confidence interval seems to 

underestimate the coverage probability for all sample 

sizes in the normally distributed data. 

Table 2 and Figure 2 present the simulation results 

for the Gamma distribution case. The robust, 

nonparametric and the parametric bootstrap confidence 

intervals seem to perform better especially for large 

sample size (n=100). The classical chi-square, the 

AdjDF, the B-C and the CT nonparametric bootstrap 

seems to underestimate the coverage probability for 

data from the Gamma distribution. 

Table 3 and Figure 3 present the simulation results 

for the t distribution with 8 degrees of freedom. For 

sample size at least 50, Bonett and nonparametric 

confidence interval seems to have better performance 

compared to others, with the AdjDF and B-C still 

underestimating the coverage probability. In Table 4 

and Figure 4, we have presented simulation results for 

the Beta (5,1) distribution. In the presence of the 

negatively skewed data, we observe that for sample 

sizes of at least 50, Bonett, Steve, Ln_A, non-

parametric and parametric bootstrap intervals have 

confidence cover rate close to the nominal level. We 

see that with increasing sample sizes, confidence 

probability close to the nominal level. The AdjDF and 

B-C intervals cover rate found below the nominal level. 

Table 5 and the Figure 5 report the simulation 

results for the lognormal (3,0.75) distribution in the 

case of highly skewed data. It is easy to see that in the 

presence of highly skewed data, the robust, the 
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Table 1: Coverage Probabilities for N(0,1) Distribution with Skewness 0 

 Selected CIs 

Criterion O_Chi Robust Bonett Steve Ln_A AdjDF B-C N_Boot P_Boot CT_B 

n=15 

Below rate 0.0264 0.0200 0.1208 0.0376 0.0348 0.1092 0.1092 0.0284  0.0088 0.1160 

Cover rate 0.9480 0.8412 0.8724 0.8928 0.8672 0.7168 0.7972 0.9580  0.7688 0.8840 

Over rate 0.0256 0.1388 0.0068 0.0696 0.0980 0.1740 0.0936 0.0136  0.2224 0.0000 

Mean width 0.8329 1.0382 0.6297 1.0785 0.6340 0.8298 0.9000 0.6305  0.7517 1.4321 

SD width 0.1581 0.2450 0.1544 1.9774 0.1979 0.3386 0.3813 0.1742 0.1427 0.5347 

n=25 

Below rate 0.0260 0.0064 0.0664 0.0244 0.0264 0.0812 0.0920 0.0236  0.0208 0.0744 

Cover rate 0.9488 0.8592 0.9280 0.9228 0.9096 0.7304 0.8084 0.9560  0.7900 0.9244 

Over rate 0.0252 0.1344 0.0056 0.0528 0.0640 0.1884 0.0996 0.0204  0.1892 0.0012 

Mean width 0.6069 0.7224 0.5563 0.6435 0.5122 0.5956 0.6323 0.5087  0.5010 1.1309 

SD width 0.0864 0.1262 0.1081 0.3150 0.1282 0.1748 0.1985 0.1171 0.0713 0.3195 

n=50 

Below rate 0.0256 0.0164 0.0436 0.0276 0.0252 0.0920 0.0812 0.0192  0.0304 0.0736 

Cover rate 0.9492 0.8796 0.9528 0.9256 0.9192 0.7324 0.8156 0.9648  0.8980 0.9244 

Over rate 0.0252 0.1040 0.0036 0.0468 0.0556 0.1756 0.1032 0.0160  0.0716 0.0020 

Mean width 0.4076 0.4883 0.4311 0.4102 0.3727 0.4004 0.4111 0.3740  0.3869 0.7858 

SD width 0.0418 0.0568 0.0625 0.0893 0.0693 0.0794 0.0872 0.0650 0.0396 0.1608 

n=100 

Below rate 0.0212 0.0084 0.0256 0.0248 0.0232 0.0616 0.0616 0.0260  0.0912 0.0504 

Cover rate 0.9548 0.9080 0.9708 0.9352 0.9360 0.7660 0.8352 0.9524  0.9028 0.9468 

Over rate 0.0240 0.0836 0.0036 0.0400 0.0408 0.1724 0.1032 0.0216  0.0060 0.0028 

Mean width 0.2829 0.3254 0.3225 0.2839 0.2710 0.2808 0.2802 0.2700  0.2506 0.5698 

SD width 0.0199 0.0257 0.0336 0.0413 0.0366 0.0391 0.0413 0.0364 0.0176 0.0798 

Notes: O_Chi: Ordinary Chi-Square given in (1), Ln_A: Ln Asympt given in (6), B-C: B-C AdjDF given (8), N_boot: Non-parametric Bootstrap given (9), P_Boot: 
Parametric Bootstrap given in (10) and CT_B: Cojbasic and Tomovic Bootstrap given (11). 
 

Table 2: Coverage Probabilities for Gamma (3,1) Distribution with Skewness 2 

 Selected CIs 

Criterion O_Chi Robust Bonett Steve Ln_A AdjDF B-C N_Boot P_Boot CT_B 

n=15 

Below rate 0.1768 0.4680 0.2820 0.1144 0.0432 0.0244 0.0244 0.0180  0.0016 0.1520 

Cover rate 0.6684 0.5312 0.6848 0.7892 0.7232 0.6092 0.6420 0.9596  0.5564 0.3816 

Over rate 0.1548 0.0116 0.0332 0.0964 0.2336 0.3664 0.3336 0.0224  0.4420 0.4664 

Mean width 2.4183 2.0736 2.3142 5.6337 2.5880 4.4530 4.7586 2.3897  7.4903 12.1519 

SD width 0.8442 0.6773 1.3126 11.0832 1.7162 4.8174 4.8161 1.3158 2.6147 9.4641 

n=25 

Below rate 0.1768  0.3184 0.2028 0.0980 0.0296 0.0024  0.0024  0.0224  0.0116 0.1288 

Cover rate 0.7008  0.6700 0.7780 0.8208 0.7860 0.6156  0.6428  0.9376  0.7140 0.5988 

Over rate 0.1224  0.0008 0.0192 0.0812 0.1844 0.3820  0.3548  0.0400  0.2744 0.2724 

Mean width 1.7816 1.4084 2.2379 4.8849 2.3184 3.2109 3.4970 2.2018  3.6328 9.3015 

SD width 0.4844 0.3415 1.1357 8.6046 1.3475 2.6915 2.8628 1.1391 0.9877 5.3407 

n=50 

Below rate 0.1616 0.2212  0.1388  0.0808  0.0200  0.0000 0.0000 0.0288  0.0660  0.3916 

Cover rate 0.7212 0.7788  0.8504  0.8624  0.8388  0.6304 0.6524 0.9308  0.8760  0.6024 

Over rate 0.1172 0.0000  0.0108  0.0568  0.1412  0.3696 0.3476 0.0404  0.0580  0.0060 

Mean width 1.2041  0.9492  1.8702  3.3232  1.8320  2.1591  2.3344  1.7957  1.8317  7.0344  

SD width 0.2346 0.1596 0.7854 5.9067 0.8649 1.2837 1.4334 0.7681 0.3569 2.8281 

n=100 

Below rate 0.1496 0.0188 0.0996 0.0652 0.0172 0.0000 0.0000 0.0268  0.0196 0.3112  

Cover rate 0.7452 0.9812 0.8904 0.8864 0.8760 0.6860 0.7036 0.9436  0.9580 0.6608  

Over rate 0.1052 0.0000 0.0100 0.0484 0.1068 0.3140 0.2964 0.0296  0.0224 0.0280  

Mean width 0.8440 0.6297 1.5048 1.8336 1.4417 1.5695 1.6593 1.3960  1.3418 4.9846 

SD width 0.1199 0.0738 0.5275 1.3004 0.5606 0.7000 0.7901 0.4941 0.1907 1.4385 

Notes: See Table 1. 
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Table 3: Coverage Probabilities for t Distribution with 8 df and Skewness 2 

 Selected CIs 

Criterion O_Chi Robust Bonett Steve Ln_A AdjDF B-C N_Boot P_Boot CT_B 

n=15 

Below rate 0.0604 0.0380 0.1796 0.0544 0.0296 0.0040 0.0040 0.0256  0.0340 0.0556 

Cover rate 0.8736  0.8724 0.8108 0.8752 0.8316 0.7440 0.8024 0.9436  0.5816 0.5892 

Over rate 0.0660  0.0896 0.0096 0.0704 0.1388 0.2520 0.1936 0.0308  0.3844 0.3552 

Mean width 0.9472 1.1172 0.7719 1.6057 0.8095 1.1377 1.2388 0.7695  0.7509 1.9770 

SD width 0.2237 0.2884 0.2868 2.2909 0.3718 0.7900 0.8440 0.2974 0.1774 0.9815 

n=25 

Below rate 0.0516  0.0488  0.1096  0.0468  0.0228  0.0096  0.0096  0.0288  0.0072  0.1112  

Cover rate 0.8844  0.8876  0.8820  0.8940  0.8728  0.7196  0.7800  0.9524  0.8656  0.8488  

Over rate 0.0640  0.0636  0.0084  0.0592  0.1044  0.2708  0.2104  0.0188  0.1272  0.0400  

Mean width 0.6935  0.7807  0.7091  1.1304  0.6875  0.8385  0.9046  0.6511  0.8742  1.4628  

SD width 0.1257 0.1509 0.2298 3.0172 0.2735 0.4204 0.4736 0.2150 0.1584 0.5432 

n=50 

Below rate 0.0496  0.0376  0.0628  0.0384  0.0200  0.0272  0.0272  0.0200  0.4380  0.4644  

Cover rate 0.8928  0.9008  0.9288  0.9120  0.9072  0.6488  0.7088  0.9508  0.5568  0.5352  

Over rate 0.0576  0.0616  0.0084  0.0496  0.0728  0.3240  0.2640  0.0292  0.0052  0.0004  

Mean width 0.4726  0.5315  0.5754  0.6401  0.5276  0.5842  0.6133  0.6466  0.3665  1.0958  

SD width 0.0640 0.0689 0.1908 0.4586 0.2121 0.3110 0.3413 0.2206 0.0497 0.3309 

n=100 

Below rate 0.0488 0.0724  0.0468  0.0376  0.0212  0.0572  0.0572  0.0232  0.0456  0.1204  

Cover rate 0.8976 0.9028  0.9472  0.9232  0.9136  0.5928  0.6556  0.9508  0.8992  0.8580  

Over rate 0.0536 0.0248  0.0060  0.0392  0.0652  0.3500  0.2872  0.0260  0.0552  0.0216  

Mean width 0.3260  0.3529  0.4318  0.4238  0.3855  0.4047  0.4122  0.3678  0.3505  0.7504  

SD width 0.0302 0.0317 0.1023 0.2323 0.1111 0.1277 0.1419 0.0936 0.0325 0.1412 

Notes: See Table 1. 

 
Table 4: Coverage Probabilities for Beta(5,1) Distribution with Skewness -1.8232 

 Selected CIs 

Criterion O_Chi Robust Bonett Steve Ln_A AdjDF B-C N_Boot P_Boot CT_B 

n=15 

Below rate 0.0740  0.4108  0.2000  0.0832  0.0412  0.1060  0.1060  0.0284  0.0200  0.2176  

Cover rate 0.8716 0.5892 0.7864  0.8336  0.7920  0.6488 0.7236  0.9432  0.6196  0.7824  

Over rate 0.0544  0.0000 0.0136  0.0832  0.1668  0.2452  0.1704  0.0284  0.3604  0.0000 

Mean width 0.1156  0.1171  0.0956  0.2150  0.1006  0.1453  0.0505  0.0996  0.1364  0.0281  

SD width 0.0280 0.0327 0.0343 0.3474 0.0454 0.0980 0.0109 0.0396 0.0330 0.0135 

n=25 

Below rate 0.0696  0.2652  0.1200  0.0544  0.0328  0.0908  0.0908  0.0220  0.0392  0.1968  

Cover rate 0.8724  0.7312  0.8672  0.8724  0.8532  0.6716  0.7356  0.9504  0.8932  0.8032  

Over rate 0.0580  0.0036  0.0128  0.0732  0.1140  0.2376  0.1736  0.0276  0.0676  0.0000 

Mean width 0.0848  0.0817  0.0881  0.1462  0.0857  0.1054  0.1139  0.0841  0.1425  0.0202  

SD width 0.0155 0.0176 0.0263 0.2009 0.0319 0.0486 0.0550 0.0281 0.0260 0.0073 

n=50 

Below rate 0.0648  0.1872  0.0672  0.0448  0.0224  0.0500  0.0500  0.0152  0.0000 0.1668  

Cover rate 0.8856  0.7988  0.9260  0.9056  0.8992  0.6904  0.7428  0.9632  0.9060  0.8284  

Over rate 0.0496  0.0140  0.0068  0.0496  0.0784  0.2596  0.2072  0.0216  0.0940  0.0048  

Mean width 0.0574  0.0554  0.0705  0.0779  0.0649  0.0715  0.0752  0.0640  0.0623  0.0151  

SD width 0.0072 0.0080 0.0156 0.0355 0.0176 0.0215 0.0243 0.0165 0.0078 0.0038 

n=100 

Below rate 0.0604  0.1160  0.0372  0.0272  0.0212  0.0280  0.0280  0.0172  0.0072  0.1152  

Cover rate 0.8832  0.8548  0.9560  0.9312  0.9268  0.7108  0.7636  0.9656  0.9760  0.8708  

Over rate 0.0564  0.0292  0.0529  0.0416  0.0520  0.2612  0.2084  0.0172  0.0168  0.0140  

Mean width 0.0398  0.0367  0.0083 0.0511  0.0473  0.0496  0.0453 0.0470  0.0592  0.0110  

SD width 0.0035 0.0037 0.0038 0.0112 0.0091 0.0100 0.0123 0.0088 0.0053 0.0020 

Notes: See Table 1. 
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Table 5: Coverage Probabilities for Lognormal (3,0.75) Distribution with Skewness 3.2629 

 Selected CIs 

Criterion O_Chi Robust Bonett Steve Ln_A AdjDF B-C N_Boot P_Boot CT_B 

n=15 

Below rate 0.3172  0.4216  0.3736  0.1628  0.0368  0.0000 0.0000 0.0228  0.0156  0.4196  

Cover rate 0.4912  0.5736  0.5952  0.7452  0.6444  0.5772  0.6080  0.9608  0.5132  0.4640  

Over rate 0.1916  0.0048  0.0312  0.0920  0.3188  0.4228  0.3920  0.0164  0.4712  0.1164  

Mean width 17.7645  14.5656  18.2198  40.2524  20.8625  38.9665  41.1572  19.3970  90.2271  704.1570  

SD width 7.8449 4.6017 13.1559 65.5073 17.1091 50.7715 49.9112 13.8067 39.8449 821.7863  

n=25 

Below rate 0.3024  0.3176  0.2964  0.1528  0.0324   0.0000 0.0000 0.0204  0.0000 0.3776  

Cover rate 0.5364  0.6820  0.6728  0.7660  0.6952  0.5792  0.6328  0.9480  0.5956  0.5108  

Over rate 0.1612  0.0004  0.0308  0.0812  0.2724  0.4208  0.3672  0.0316  0.4044  0.1116  

Mean width 13.2422  9.9536  18.7886  40.5456  20.0204  31.4447  33.7228  18.3004  34.6845  596.1258  

SD width 5.0325 2.2631 13.5612 62.0221 16.0029 41.2178 41.0870 12.6592 13.1812 587.3846 

n=50 

Below rate 0.2764  0.0768  0.2260  0.1272  0.0164  0.0000 0.0000 0.0204  0.0004  0.4704  

Cover rate 0.5876  0.9232  0.7596  0.8016  0.7628  0.6448  0.6396  0.9576  0.6632  0.5128 

Over rate 0.1360  0.0000 0.0144  0.0712  0.2208  0.3552  0.3604  0.0220  0.3364  0.0168  

Mean width 9.1533  6.6811  17.3491  34.3152  17.5468  23.0647  25.0409  16.1378  14.3138  433.2265  

SD width 2.6139 1.0451 11.4679 59.6452 12.5365 24.3287 25.5348 9.8277 4.0876 284.9240 

n=100 

Below rate 0.2444  0.0008 0.1716  0.1040  0.0156  0.0000 0.0000 0.0296  0.0176  0.4296  

Cover rate 0.6468  0.9592 0.8164  0.8404  0.8072  0.6756  0.6416  0.9468  0.9368  0.5220  

Over rate 0.1088  0.0400 0.0120  0.0556  0.1772  0.3244  0.3584  0.0236  0.0456  0.0484  

Mean width 6.4167  4.4301 14.6205  26.8553  14.4405  16.9179  18.2981  13.4852  17.7357  287.7666  

SD width 1.3627 0.4745 8.3297 70.4268 8.7546 13.3320 14.7615 7.1230 3.7666 135.2810 

Notes: See Table 1. 

 
Table 6: Coverage Probabilities for Chi-Square Distribution with 7 df and Skewness 1.0690 

 Selected CIs 

Criterion O_Chi Robust Bonett Steve Ln_A AdjDF B-C N_Boot P_Boot CT_B 

n=15 

Below rate 0.0724  0.1528  0.1840  0.0648  0.0360  0.0764  0.0764  0.0264  0.1532  0.1488  

Cover rate 0.8508  0.8444  0.8024  0.8528  0.8172  0.5656  0.6044  0.9572  0.8204  0.8328  

Over rate 0.0768  0.0028  0.0136  0.0824  0.1468  0.3580  0.3192  0.0164  0.0264  0.0184  

Mean width 3.0788  3.4975  2.5061  5.5108  2.6211  3.7393  4.0583  2.5767  2.4435  21.2189  

SD width 0.7257 0.8745 0.9375 15.5594 1.2302 2.7713 2.9290 1.0379 0.5760 10.1998 

n=25 

Below rate 0.0700 0.0700  0.1316  0.0620  0.0276  0.0392  0.0392  0.0228  0.0836  0.1488  

Cover rate 0.8592  0.8592  0.8564  0.8688  0.8424  0.6300  0.6564  0.9540  0.8592  0.8364  

Over rate 0.0708  0.0708  0.0120  0.0692  0.1300  0.3308  0.3044  0.0232  0.0572  0.0148  

Mean width 2.2420  2.4122  2.3007  4.1157  2.2285  2.7416  2.9575  2.1686  5.0641  15.8237  

SD width 0.4268 0.4348 0.8170 9.2627 0.9808 1.5614 1.7454 0.8474 0.9639 6.1527 

n=50 

Below rate 0.0596  0.0444  0.0868  0.0552  0.0240  0.0100  0.0100  0.0180  0.0716  0.1156  

Cover rate 0.8768  0.8928  0.9052  0.8976  0.8720  0.6700  0.7000  0.9540  0.8592  0.8464  

Over rate 0.0636  0.0628  0.0080  0.0472  0.1040  0.3200  0.2900  0.0280  0.0692  0.0380  

Mean width 1.5237  1.5237  1.8825  2.1810  1.7332  1.9215  2.0238  1.6930  1.5027  11.1350  

SD width 0.2070 0.2070 0.5673 1.7014 0.6389 0.8118 0.9183 0.5671 0.2041 3.0723 

n=100 

Below rate 0.0512  0.0608  0.0580  0.0496  0.0156  0.0060  0.0060  0.0220  0.0000 0.1456  

Cover rate 0.8880  0.9144  0.9348  0.9116  0.9084  0.7136  0.7660  0.9592  0.8812  0.8528  

Over rate 0.0608  0.0248  0.0072  0.0388  0.0760  0.2804  0.2280  0.0188  0.1188 0.0016  

Mean width 1.0569  1.0912  1.4382  1.4200  1.2940  1.3614  1.3921  1.2733  1.0750  7.7087  

SD width 0.1029 0.0928 0.3456 0.5167 0.3783 0.4243 0.4686 0.3516 0.1047 1.5074 

Notes: See Table 1. 
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Figure 1: Coverage Probabilities for selected intervals for data from the N(0,1) distribution. 

 

 

Figure 2: Coverage Probabilities for selected intervals for data from the G(3,1) distribution. 

 

 

Figure 3: Coverage Probabilities for selected intervals for data from the t distribution with 8 df. 
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Figure 4: Coverage Probabilities for selected intervals for data from the Beta(5,1) distribution. 

 

 

Figure 5: Coverage Probabilities for selected intervals for data from the lognormal (3,0.75) distribution. 

non-parametric and the parametric intervals have 

coverage rate close to 0.95 for large samples. The 

classical chi-square, AdfDF, B-C and CT 

nonparametric bootstrap intervals underestimates the 

coverage probability.  

Table 6 and Figure 6 report simulation results for 

the chi-square distribution with 7 df. It is observed from 

these results that with increasing sample sizes, 

coverage probability for selected intervals converge to 

the nominal probability of 0.95 except the AdjDF and 

the B-C intervals. 

These two intervals although have an increase in 

coverage probability with an increase in the sample 

size n, still underestimate coverage rate.  

Overall, according to our simulation results, CIs 

such as robust interval, Bonnet interval, Steve interval, 

Ln_Asymptinterval and the nonparametric bootstrap 

interval have the best performance and thus can be 

recommended for researchers.  

4. REAL DATA APPLICATION 

To illustrate the findings of the paper, two health 

related data are analyzed in this section. 

4.1. Example 1 

A study by Aizenberg et al. [15] examined the 

efficacy of sildenafil, a potent phospho-diesterase 

inhibitor in the treatment of elderly men with erectile 

dysfunction induced by antidepressant treatment for 

major depressive disorder. The ages of 10 enrollees 

were:  

74, 81, 70, 70, 74, 77, 76, 70, 71, 72 

Suppose we are interested to construct most 

common 95% CI for  of ages of elderly men in the 

population. Sample mean, sample standard deviation 
and sample skewness of age are 73.5000, 3.6591 and 
0.7961 respectively. The statistical software EasyFit 
developed by mathwave data analysis and simulations 
company was used to fit 60 distributions to this data 
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set. A goodness-of-fit procedure is performed on all 60 
distributions and their performances are ranked based 
on the goodness-of-fit measure. According to 
mathwave, the distribution which best fits the age data 
is the Gumbel Max distribution which ranked number 
one using the Kolmogrov-Simrnov test. The location 
and scale parameters of the Gumbel Max distribution 

obtained are μ =71.853 and =2.853, respectively. The 

variance of the Gumbel Max distribution is given by 
2

6

2 . By substituting the scale estimate , an estimate 

of the Gumbel Max population standard deviation is 

 13.389 =3.659. The resulting 95% CIs and 

corresponding confidence widths are provided in Table 
7 and in the Figure 7 for better understanding. A careful 
inspection of those intervals reveals that all of them 
captured the true parameter value of 3.659 except the 
robust interval. Among the intervals that captured the 
true parameter value, Bonett interval has the narrowest 
width followed by the nonparametric interval and the 
Ln_A interval. 

Table 7:Confidence Intervals Estimate of  for Age Data 

Example 

Method 95% CI Width 

O_Chi (2.5168,6.6801) 4.1632 

Robust (4.4911,12.9234) 8.4323 

Bonett (2.3065,4.8535) 2.5470 

Steve (2.7303,8.1034) 5.3731 

Ln_A (2.4575,5.4481) 2.9905 

AdjDF (2.4716,7.0100) 4.5384 

B-C (2.4716,7.4909) 5.0194 

N_Boot (1.9120,4.7842) 2.8723 

P_Boot (2.8374,7.2850) 4.4476 

CT_B (1.1279,5.0016) 3.8737  

 

Figure 7: Confidence interval width for age data example. 

4.2. Example 2 

A study tested the tumorigenesis of a drug. Rats 

were randomly selected from litters and given the drug. 

The times of tumor appearance (TTA) were recorded 

as follows [16]: 

101, 104, 104, 77, 89, 88, 104, 96, 82, 70, 89, 91, 39, 

103, 93, 85, 104, 104, 81, 67, 104, 104, 104, 87, 104, 

89, 78, 104, 86, 76, 103, 102, 80, 45, 94, 104, 104, 76, 

80, 72, 73 

Sample mean, sample standard deviation and 

skewness of the TTA data are 88.7805, 15.9930 and -

1.21718 respectively. Similar to example 1, using 

EasyFit software, the distribution with the best fit was 

found to be the general Pareto distribution with 

parameters: location, scale, and shape given by 

μ =51.381, =125.8, and =-2.3636, respectively. The 

variance of the general Pareto distribution is given by 

 

Figure 6: Coverage Probabilities for selected intervals for data from the chi-square distribution with 7 df. 
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Variance =

2

(1 )2 (1 2 )
, <

1

2
 

 Thus, the variance of the general Pareto 

distribution is 244.2363, and hence an estimated 

population standard deviation of the general Pareto 

distribution is 15.628. We are interested inconstructing 

95% CI for  of the time until a tumor appearance. The 

resulting CI and corresponding confidence widths are 

reported in Table 8 and widths of CI are presented in 

Figure 8 for better understanding. A careful inspection 

of the intervals in Table 8 reveals that all confidence 

intervals captured the true parameter value of 15.628, 

except the robust interval. Among the nineintervals 

captured the true parameter value, we found that CT_B 

has the shortest width, followed by robust and the chi-

square intervals, respectively. 

Table 8: Confidence Intervals Estimates of  for the TA 

Data 

Method 95% CI Width 

O_Chi (13.1304,20.4631) 7.3326 

Robust (16.1379,23.2821) 7.1442 

Bonett (11.5967,21.0496) 9.4529 

Steve (12.7921,24.1947) 11.4026 

Ln_A (12.0687,21.1932) 9.1245 

AdjDF (12.3689,22.6357) 10.2668 

B-C (12.3689,23.3562) 10.9873 

N_Boot (11.2756,20.2355) 8.9599 

P_Boot (12.6710,22.4034) 9.7324 

CT_B (12.6797,19.4429) 6.7632 

 

 

Figure 8: 95% interval width for the TA data. 

5. CONCLUSION 

This article generalizes the work conducted by [2]. 

An extensive simulation study has been conducted to 

compare the performance of several interval estimators 

for the population standard deviation. We considered 

the classical chi-square interval, the robust interval, the 

Bonett interval, the Steve interval, and three intervals 

proposed by [1] and three versions of bootstrap 

intervals. Various symmetric (light and heavy tailed) 

data and skewed data (positive and negatively 

distributed data) are evaluated. Our simulation results 

advise that the robust interval, the Bonnet interval, the 

Steve interval, the Ln_A interval, the nonparametric 

bootstrap intervals can be recommended for use by 

researchers. Some Real-life data are considered to 

illustrate the application of the proposed confidence 

intervals which also supported the simulation study to 

some extent. 

We hope that findings of this paper will be helpful 

for applied researchers who want to select the proper 

method(s) for confidence interval for the parameter, 

population standard deviation.  

ACKNOWLEDGEMENTS 

The authors are thankful to the editor and referee 

for their valuable comments that improved the 

presentation of the paper greatly. 

REFERENCES 

[1] Hummel R, Banga S, Hettmansperger TP. Better confidence 
intervals for the variance in a random sample. Minitab 

Technical Report 2005; Retrieved from: 
http://www.minitab.com/support/documentation/answers/One
Variance.pdf 

[2] Abu-Shawiesh M, Banik S, Kibria BMG. A simulation study 
on some Confidence intervals for estimating the population 
standard deviation. SORT 2011; 35(2): 83-102. 

[3] Tukey JW. A survey of sampling from contaminated 
distributions. In Olkin I, et al. Eds. Contributions to Probability 
and Statistics, Essays in Honor of Harold Hotelling. Stanford: 
Stanford University Press 1960; pp. 448-485.  

[4] Banik S, Kibria BMG. Comparison of some parametric and 

nonparametric type one sample confidence intervals for 
estimating the mean of a positively skewed distribution. 
Commun Stat Simul Comput 2010a; 39: 361-389. 
http://dx.doi.org/10.1080/03610910903474530 

[5] Banik S, Kibria BMG. Comparison of some test statistics for 
testing the mean of a right skewed distribution. J Stat Theory 

Appl 2010b; 8: 77-90. 

[6] Shi W, Kibria BMG. On some confidence intervals for 
estimating the mean of a skewed population. Int J Math Educ 

Sci Technol 2007; 38: 412-421. 
http://dx.doi.org/10.1080/00207390601116086 

[7] Baklizi A, Kibria BMG. One and two sample confidence 
intervals for estimating the mean of skewed populations: An 
empirical comparative study. J Appl Stat 2009; 36: 601-609. 
http://dx.doi.org/10.1080/02664760802474298 

[8] Gross AM. Confidence interval robustness with long-tailed 
symmetric distributions. J Am Stat Assoc 1976; 71: 409-416. 
http://dx.doi.org/10.1080/01621459.1976.10480359 

 



Estimating the Population Standard Deviation with Confidence Interval International Journal of Statistics in Medical Research, 2014, Vol. 3, No. 4      367 

[9] Bonett DG. Approximate confidence interval for standard 

deviation of non-normal distributions. Comput Stat Data Anal 
2006; 50: 775-782. 
http://dx.doi.org/10.1016/j.csda.2004.10.003 

[10] Lehman EL. Testing Statistical Hypothesis, John Wiley, New 
York 1986. 
http://dx.doi.org/10.1007/978-1-4757-1923-9 

[11] Rousseuw PJ, Croux C. Alternatives to the median absolute 
deviation. J Am Stat Assoc 1993; 88: 1273-1283. 
http://dx.doi.org/10.1080/01621459.1993.10476408 

[12] Steve A. Mathematical Statistics. Prentice Hall College 
Division 1990. 

[13] Cojbasic V, Tomovic A. Nonparametric confidence intervals 

for population variance of one sample and the difference of 

variances of two samples. Comput Stat Data Anal 2007; 51: 

5562-5578. 
http://dx.doi.org/10.1016/j.csda.2007.03.023 

[14] MATLAB. version 7.10.0. Natick, Massachusetts: The 
MathWorks Inc 2010. 

[15] Aizenberg D. Weizman A, Barak Y. Sildenafil for selective 
serotonin reuptake inhibitor induced erectile dysfunction in 

elderly male depressed patients. J Sex Marital Ther 2003; 
29: 297-303. 
http://dx.doi.org/10.1080/00926230390195533 

[16] Mantel N, Bohidar NR, Ciminera JL. Analysis of litter-
matched time-to-response data, with modifications for 

recovery of interlitter information. J Cancer Res 1977; 37: 
3863-3868. 

 
Received on 24-06-2014 Accepted on 26-10-2014 Published on 06-11-2014 

 
http://dx.doi.org/10.6000/1929-6029.2014.03.04.4 

 


