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Abstract: In assessing the performance of a diagnostic test, the widely used classification technique is the Receiver 
Operating Characteristic (ROC) Curve. The Binormal model is commonly used when the test scores in the diseased and 

healthy populations follow Normal Distribution. It is possible that in real applications the two distributions are different but 
having a continuous density function. In this paper we considered a model in which healthy and diseased populations 
follow half normal and exponential distributions respectively, hence named it as the Hybrid ROC (HROC) Curve. The 

properties and Area under the curve (AUC) expressions were derived. Further, to measure the distance between the 
defined distributions, a popular divergence measure namely Kullback Leibler Divergence (KLD) has been used. 
Simulation studies were conducted to study the functional behavior of Hybrid ROC curve and to show the importance of 

KLD in classification.  
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1. INTRODUCTION 

In the recent years, the Receiver Operating 

Characteristic (ROC) curve analysis has become a 

popular statistical technique in the field of medical 

diagnosis. Even though it originated during Second 

World War, (Green and Swets, [1]), many researchers 

highlighted its significance in Medicine, Experimental 

Psychology, Finance, Banking, data mining etc., in later 

years. A considerable amount of work has been carried 

out on the methods such as estimation of Area Under 

the Curve (AUC), Maximum Likelihood Estimation, 

Regression Methods for estimating ROC and its related 

measures in the past seven decades of which few are 

mentioned here, Green and Swets [1], Oglive and 

Creelman [2], Dorfman and Alf [3,4], Lusted L.B. [5], 

Bamber [6], Egan [7], Metz CE [8], Swets et al. [9], 

Hanley and Mc Neil [10,11], Hanley [12], Gaddard and 

Hindberg [13], Pepe [14-16], Alonzo and Pepe [17], 

Zhang and Pepe [18], Krazanowski and Hand [19], R 

Vishnu Vardhan and KVS Sarma [20,21]. Further, the 

framework of ROC curve is formulated basing on some 

distributions, Kernel based methods, Bayesian 

approach, Meta Analysis, censored and truncated data. 

The summary measure AUC allows us to compare two 

diagnostic tests and also acts as a measure to 

compare two statistical tools. 

Apart from well-known statistical classification 

procedures like Logistic Regression and Discriminant 

analysis, the ROC curve has its mathematical 
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formulation which helps in fitting and estimating the 

parameters of the curve. The entire classification will 

be carried out on the basis of a threshold value often 

referred to as Gold Standard and determines the true 

condition status. If the condition status is true, it 

indicates the presence of disease, otherwise. 

Two basic measures of ROC curve are sensitivity 

(Sn) and specificity (Sp). Sensitivity refers to the ability 

of a test to detect the condition when it is present and 

Specificity refers to the ability of test to exclude patients 

without the condition. An ROC curve is a plot of 1-Sp 

versus Sn. The construction of ROC curve primarily 

depends on the four possible states which are obtained 

on the basis of a threshold value i.e., TP, TN, FN and 

FP. The resulting curve is called empirical ROC. 

Conventionally, it is assumed that diseased (Y) and the 

healthy (X) individuals follow Normal distribution and 

hence the name Binormal ROC curve, with unknown 

monotonic transformation (Farraggi and Reiser [22]). 

There are two main objectives of ROC curve 

analysis. The first one is to identify the best cutoff in 

some sense and the other one is to choose the best 

test/procedure among several procedures (called 

biomarkers) in terms of AUC. 

In the following section, the ROC methodology, 

AUC and some properties of the binormal model are 

discussed. 

2. BINORMAL MODEL OF ROC CURVE 

Let D denote the individuals in the diseased group 

and H the individuals in the healthy group. Let X and Y 
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denote the random variables denoting the test value in 

the groups H and D respectively. Further assume that 

X~N( H, H
2 ) and Y~N( D, D

2 ), where the parameters 

have their usual meaning. 

Let ‘S’ be the test scores of a diagnostic test and ‘t’ 

be the threshold value or cutoff, which will classify the 

unlabelled individuals into one of the two groups. In 

order to assess the accuracy of this classifier, we need 

to calculate the probability of making an incorrect 

allocation, since such probability provides the rate at 

which future individuals requiring classification will be 

misallocated. Now, we define four possible probabilities 

at this cutoff. 

i. The probability that an individual from D is 

correctly classified. 

True Positive Rate, TP = P(S>t|D)  

(Sensitivity)  

ii. The probability that an individual from H is 

misclassified. 

False Positive Rate, FP = P(S>t|H) 

(1-Specificity) 

iii. The probability that an individual from H is 

correctly classified. 

True Negative Rate, TN = P(S  t|H) 

(Specificity) 

iv. The probability that an individual from D is 

misclassified. 

 False Negative Rate, FN = P(S  t|D). 

These four probabilities describe the performance of 

the test at this cutoff. It is to be noted that for a good 

performance, we require “high” true and “low” false 

rates. 

It is assumed that the mean test score of D group 

will be greater than the mean of the H group i.e.,  

D > H, but no constraints are placed on the standard 

deviations. Now, define S as the total score of the test 

value, then (S-μD)/ D has a standard normal 

distribution in D and (S-μH)/ H has a standard normal 

distribution in H. 

Suppose FPR is x(t), with corresponding classifier 

or cutoff t, then 

x(t) = P(S > t / H) = P Z >
(t μH )

H

 

x(t) =
μH t

H

 

where Z is the standard normal deviate and (.) is the 

normal cumulative distribution function. 

On further simplification, one can get the threshold t 

as, 

t = μH H Zx; where Zx =
1[x(t)]  

The TPR is defined as y(t) at each x(t) with 

threshold t is as follows, 

y(t) = P(S > t D) = P Z >
t μD

D

=
μD c

D

 

y(t) = a + b 1(x)            (1) 

where a =
μD μH

D

, b = H

D

 

Now, here are some properties of ROC curve 

(Krzanowski & Hand [19]). 

Properties of the ROC 

i. Y = h(x) is the mathematical model of the ROC 

curve, where y denotes the true positive rate and 

x denotes the false positive rate. The curve is a 

monotonic increasing function in the positive 

quadrant, lying between y=0 at x=0 and y=1 at 

x=1. 

ii. The ROC curve is unaltered if the classification 

scores undergo a strictly increasing 

transformation. 

iii. The slope of the ROC curve at threshold value ‘t’ 

is given by 

dy

dx
=
P(S > t D)

P(S > t H)
 

The formal definition of AUC is, AUC = y(t)dx(t)
0

1
, 

which shows that the total area under the ROC curve 
(or) domain is 1.0. If A and B are two thresholds such 
that the ROC curve for A nowhere lies below the ROC 
curve for B, then AUC for A must be greater than or 
equal to AUC for B, but the reverse implication is not 
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true because of the possibility that the two curves can 
cross each other. In Figure 1, typical forms of ROC 
curves are presented with varying cutoffs. Higher the 
AUC, better will be the discriminating ability of the test. 
As the distance between the diagonal and the upper 
left corner is more, then that test is said to be the best 
test and can be used for classification. The accuracy of 
a diagnostic test can be explained by using the Area 
under the Curve (AUC) of an ROC curve. AUC 
describes the ability of the test to discriminate between 
diseased and non-diseased. AUC gives us information 
about the general “goodness” of a test and not the 
interpretation of a test result. ROC curve starts at the 
point (0, 0) and ends at (1, 1) and the diagonal line 
separates the area into two halves. AUC can be 
interpreted as a probability that a randomly selected 
subject with disease will have a higher test result 
compared to a normal subject. 

 

Figure 1: Different shapes of ROC curves. 

Bamber [6] interpreted AUC as, “the probability that 

the threshold will allocate a higher score to a randomly 

chosen individual from population D than it will to a 

randomly and independently chosen individual from 

population H”. That is, if SD and SH are the scores 

allocated to randomly and independently chosen 

individuals from D and H respectively, then 

AUC=P(SD > SH)          (2) 

The AUC expression for Binormal model is, 

AUC =
a

1+ b2
           (3) 

Hanley [13], discussed the robustness of the 

binormal model by mentioning two methods for 

estimating the parameters of the ROC curve. One is by 

plotting the ROC points on a Binormal deviate paper 

and the other method which is a formal procedure 

(Maximum Likelihood Estimation) given by Dorfman 

and Alf [4], Ogilive and Creelman [2]. With the Binormal 

form, the ROC curve is a graph generated by two 

overlapping normal distributions and hence it can also 

be referred to as the finite mixture of distributions. 

In next section, a newer version of ROC curve and 

Area under the Curve is proposed and its properties 

are derived. Here, the test scores of healthy (H) and 

diseased (D) populations follow Half-Normal and 

Exponential distributions respectively, hence named it 

as Hybrid ROC (HROC) Curve. 

3. HYBRID ROC (HROC) CURVE METHODOLOGY 

Let us assume that the test scores X and Y of 

healthy and diseased populations follow half-normal 

and exponential distributions respectively. The 

cumulative distribution functions of half-normal and 

exponential distributions are as follows, 

F(x) =
1

0

x 2
exp

x2

2 2 dx; x > 0, 2
> 0         (4) 

Using the change of variable z =
x

2
 then the 

CDF can be rewritten as 

F(x) =
2

e z2

0

x/ 2
dz = erf

x

2
         (5) 

where ‘ ’ is the scale parameter and erf(x) is the error 

function. 

G(y) = 1 exp
y
; y 0, > 0          (6) 

where ‘ ’ is the scale parameter. 

Let x(t) denote the FPR, function for the horizontal 

coordinate and y(t) denote the TPR, vertical coordinate, 

i.e., x(t) = 1-F(t) and y(t) = 1-G(t). 

In the conventional process of classification, higher 

values of test scores attribute to diseased population, 

otherwise. As it is well known that the ROC Curve is a 

function of Sn as a function of 1-Sp. Therefore, to derive 

the proposed HROC Curve, the FPR is defined as 

x(t) = P(S > t H) = 1 erf
t

H 2
 

x(t) = 2 1
t

H

           (7) 
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The threshold value can be obtained by using the 

expression (7) and is given below 

t = H
1 1

x(t)

2
           (8) 

Similarly, TPR is defined as, 

y(t) = P(S > t D) = 1 1 exp
t

D

 

y(t) = exp H

D

1 1
x(t)

2
          (9) 

Here, H, D are the scale parameters of healthy 

(Half-Normal) and diseased (Exponential) populations. 

The expression obtained in equation (9) is the Hybrid 

ROC (HROC) Curve. 

The AUC expression for the Hybrid ROC curve can 

be obtained by integrating (9) over [0, 1].  

i.e., AUC = exp H

D

1 1
x(t)

2
0

1

dx(t)  

AUC = exp
2 H

D

erf 1 1 x(t( )
0

1

dx(t)  

Let t = erf 1(x(t) 1)  

dt =
2
exp (erf 1(x(t) 1))2( )dx(t)  

By substituting the above expression in AUC, one 

can get, 

AUC =
2

exp(kt t 2 )dt
0

 

On further simplification using Mathematica, one 

can get the accuracy measure (AUC) as follows, 

AUC = 1 erf H

2 D

exp H
2

2 D
2       (10) 

Once the ROC Curve and AUC expressions are 

obtained, next step is to derive the properties which 

exhibit the functionality of the HROC Curve. The three 

basic properties of Binormal ROC model (Krazanowski 

and Hand [19]) have been verified for the proposed 

HROC Curve. 

3.1. Properties 

Property 1: Hybrid ROC Curve is Monotonically 
Increasing 

Proof: Let us consider two false positive values P1 

and P2 such that P1 < P2 and 
-1

(.) be a strictly 

increasing function.  

Since P1 < P2 which implies that 

1
P1
2
> 1

P2
2

1 1
P1
2

1 1
P2
2

 

exp H

D

1 1
P1
2

exp H

D

1 1
P2
2

 

ROC(P1) ROC(P2 )  

Hence, the HROC Curve is monotonically 

increasing with its FPR. 

Property 2: Slope of the Hybrid ROC Curve Equals 
the likelihood Ratio 

Proof: The derivative of ROC curve at a given pair 

of coordinates equals the likelihood ratio. Let us 

parameterize x and y in terms of ‘t’ and the derivative 

can be written as 

dy

dx
=

dy
dt

dx
dt

=
g(t)

f(t)
 

The derivatives of the cumulative distribution 

functions F(t) and G(t) are the probability distribution 

functions f(t) and g(t). Therefore the derivative of the 

Hybrid ROC Curve is 

dy

dx
=
g(t)

f(t)
 

dy

dx
=

1

D

exp t
D

( )
2

H

exp t2
2 H

2

        (11) 

where, H > 0, D > 0; t 0 D > H 

On simplifying the above equation (11), we have 

dy

dx
=

H

D 2
exp

t( Dt 2 H
2 )

2 D H
2 0  

which is the ratio of the distribution of diseased scores 

to healthy scores of the two probability densities at the 
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value of ‘t’. This is referred to as likelihood ratio of 

HROC Curve. 

Property 3: The Hybrid ROC Curve is Invariant 
under Strictly Increasing Transformation 

Proof: Let ‘S’ denote the set of scores with s  

and h(.) is strictly increasing function. Let a, b  S and a 

< b, then by using the strictly increasing function, we 

can write h(a) < h(b). 

The transformed random variables U and V from the 

respective healthy and diseased classes are 

P(U  t) = P[h(U)  h(t) & P(V  t) =P[h(V)  h(t)] 

Let us consider the points (x*(t), y*(t)) on the ROC 

Curve for the transformed scores, 

x*(t) = P{h(U) > h(t) |H} = 1-P{h(U)  h(t)} 

    =1-P(U  t) = x(t) 

y*(t) = P(h(V) > h(t)|D}=1-P{h(V)  h(t)} 

   =1-P(V  t) = y(t) 

hus the Hybrid ROC Curve is invariant to 

transformation. 

In the following section, the mathematical and 

practical importance of Kullback-Leibler Divergence 

(KLD) is highlighted. Further simulation studies are 

conducted to study the behavior of Hybrid ROC curve 

and how KLD can be used to explain the proximity 

between the two populations in terms of ROC curve.  

In next section, a brief introduction about the 

divergence measure is given. 

4. KLD AS A MEASURE OF CLASSIFICATION 

The Kullback – Leibler Divergence (KLD) is a 

fundamental equation of information theory that 

quantifies the proximity of two probability distributions. 

KLD is popular because it arises from likelihood theory 

and provides the relative entropy of distribution to a 

reference measure. It is always non-negative and 

equals zero if and only if the two distributions are 

identical. Fisher [23] gave a meaningful introduction 

about the criterion of sufficiency; means that the 

statistic chosen should summarize the whole of the 

relevant information supplied by the sample and 

concern was on the statistical problem of discrimination 

by considering a measure of distance or divergence 

between statistical populations in terms of the measure 

of information.  

Let f(x) and g(x) be two probability density functions 

and it is usually defined as (Kullback and Leibler [24], 

Cover and Thomas [25]),  

KL f g = Ef log
f(x)

g(x)
= f(x) log

f(x)

g(x)
dx    (12a) 

KL g f = Eg log
g(x)

f(x)
= g(x) log

g(x)

f(x)
dx     (12b) 

It is well known that KL[f||g]  KL[g||f] and KL[f||g]  

0 and equality holds if and only if f=g (Burnham and 

Anderson [26]). The smaller KL[f||g] means that "f" is 

preferred and large values of KLD favor "g." KLD is 

sometimes called the information gain by X if ‘f’ can be 

used instead of ‘g’. It is also called the relative entropy 

for using g instead of ‘f’. KL [g||f] measures how easy it 

is to tell apart the two probability distributions (Henson 

& Douglas [27]). Here, a brief review about the 

theoretical developments and practical implications of 

KLD is highlighted. 

Dumonceaux and Antle [28], Kundu and Manglick 

[29] and Pascual [30] worked on the problem of testing 

whether some given observations follow one of the two 

possible distributions. Further, the idea has been 

extended to discriminate between Gamma and Weibull 

distributions (Bain and Englehardt [31], Fearn and 

Nebenzahl [32] and Mohd Saat et al. [33]), between 

Gamma and Log-Normal distributions (Kundu and 

Manglick [34]). Arizono and Ohta [35] used order 

statistics and KLD to test for the normality of a 

distribution based on sampling. Clarke [36] applied 

KLD for stochastic complexity and sample size 

calculation. Song [37] made use of order statistics and 

KLD and proposed a new nonparametric based 

goodness of fit test. Volkau et al. [38], Cabella et al. 

[39] promoted KLD as an application tool for analyzing 

the magnetic resonance images and also to compare 

the performance of two separate tests respectively. 

Hughes and Bhattacharya [40] characterized the 

symmetry properties of Bi-Normal and Bi-Gamma ROC 

curves in terms of KLD between two probability 

distributions which are of cases and controls. 

Further, the major objective is to make use of a test 

statistic that should summarize the whole of the 

relevant information supplied by the sample, namely 

Kullback-Leibler Divergence (KLD) to discriminate 

between one of two possible distributions. Because, 

the KLD will produce better information since it 

incorporates information contained in both the 

populations (distributions). The probability density 
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functions of Half Normal and Exponential distributions 

respectively are 

f(x) =
2

H

e

x2

2 H
2

 

g(x) =
1

D

e
x

D  

The KLD expressions using above density functions 

are as follows 

KL f g = ln D

H

2 1

2
+

H

D

2
       (13) 

KL g f =
D
2

H
2 1+ ln H

D 2
        (14) 

5. SIMULATION STUDIES 

Simulation studies were conducted to illustrate the 

behavior of the Hybrid ROC (HROC) Curve. Samples 

of sizes {50, 100, 200, and 600} were generated at 

various combinations of H = {0.6, 0.8, 1, 1.5} and  

D = {0.9, 1.5, 2} from their respective densities. To 

observe the variation in the HROC Curve, two different 

cases were considered, (i) D = H, where the scale 

values of diseased and healthy populations will be 

equal. (ii) D > H, assuming that the scale parameter 

of diseased population will have greater variation than 

that of the healthy population. 

Table 1 reports the AUC values for two different 

cases of scale parameter along with its KLD values. An 

interesting fact was observed that AUC remain same 

for all sample sizes at various combinations of D & H. 

On considering the first case of the simulation study i.e. 

D = H, the AUC obtained was almost equal to the 

chance line. As we increase the variability in diseased 

population by fixing the scale value of healthy 

population, it is observed that there is a gradual 

increase in the AUC value. Similar kind of experiment 

was carried out by fixing the scale parameter of 

diseased population and varying the values from higher 

to lower of healthy population. Under this also, the AUC 

was increasing gradually, starting its value from 0.5 

and more. Further, the scale parameters of both 

populations were made equal to show that AUC is 

equal to 0.5. The above explained phenomenon is 

visualized in the form of smooth Hybrid ROC Curves. 

In Table 1, the value of KLD reveals the fact that the 

proximity between two probability distributions will be 

closer if the KLD value is closer to zero. More over 

increasing values of KLD imply that the distance or 

divergence between two density curves or distributions 

also increases. If D = H, the KLD value is 0.0717, this 

means that the two distributions are closer to each 

other and more over the AUC value is observed nearer 

to 0.5. In the context of ROC if AUC attains 0.5 then 

the density curves of two distributions will get 

overlapped and as the AUC value increases, the 

discrepancy between two densities also increases. 

Considering the first experiment in Table 1, the KL [g||f] 

takes value 1.0706, which means that the two 

distributions are far away from each other with 1.0706 

units of bits. Basing on the critical values of the 

reference (Exponential) distribution, it can be inferred 

that the samples tend to lie more from diseased 

(exponential population) rather than the healthy (half 

normal population). Hence, a consideration can be 

made that most of the samples are from exponential 

distribution. In the ROC phenomenon, the same 

meaning can be expressed in terms of AUC, i.e., higher 

values of AUC indicates that the samples or individuals 

Table 1: Results of Hybrid ROC (HROC) Curve 

Half-normal 

Distribution 

Exponential 

Distribution 
Experiment 

No. 

H
 

D

 
AUC KL[f||g] KL[g||f] 

1 0.6 0.9 0.6251 0.8761 1.0706 

2 0.6 1.5 0.7351 2.1846 4.5596 

3 0.6 2 0.7844 3.1371 9.1332 

4 1.5 1.5 0.5210 0.0717 0.2260 

5 1 1.5 0.6251 0.8761 1.1119 

6 0.8 1.5 0.6766 1.3984 2.1130 

7 0.6 1.5 0.7351 2.1846 4.5596 
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are being classified correctly with less percentage of 

misclassification. 

Figures 2a & b depict the first case and the latter 

case of the phenomenon. These curves will deviate 

from chance line as the variability between the scales 

of both diseased and healthy populations becomes 

larger, otherwise. On observing the shapes of the 

Hybrid ROC Curves in Figures 2a & b, it is clear that 

the curve is monotonically increasing. 

 

Figure 3: Plot of Kullback - Leibler Divergence Measures. 

Figure 3 shows the Kullback Leibler divergences 

KL[f||g] (the dashed line) and KL[g||f] (the solid line) for 

two densities of Half Normal and Exponential. 

Whenever D > H, then KL[g||f] > KL[f||g]. It is clear 

that as the ratio increases the KL[g||f] attains 

Exponentiality and this indicates that the samples will 

follow exponential distribution, which is the criteria of 

interest. 

6. CONCLUSIONS 

The present work focused on proposing a new form 

of ROC model, by assuming that the healthy and 

diseased populations follow Half-Normal and 

Exponential distributions respectively. Further, the AUC 

expression, basic properties of proposed model were 

derived and the functional behavior of the proposed 

model namely Hybrid ROC Curve was studied by 

considering equality in scale values of two distributions 

as well as varying them in both the distributions. The 

fact we observed that the scale parameter influences in 

showing the variant forms of the Hybrid ROC Curve. 

Simulation studies were conducted to highlight the 

typical forms of Hybrid ROC Curve. It is proved that the 

proposed hybrid ROC curve is a monotonically 

increasing function, slope is a function of likelihood 

ratio and it is invariant under strictly increasing 

transformations. Another attempt made in this paper is 

to show that how the Kullback Leibler Divergence 

measure can also be used for classification. The 

proximity between the two distributions will depend 

upon the ratio of scale parameters of both exponential 

and half normal distributions. Figure 3 depicts the 

information that the samples generated over different 

values of H and D  have the pattern of Exponentiality. 

  

     a       b 

Figure 2: a: Plot of HROC curves at different combinations of D and H when H = 0.6. 

b: Plot of HROC curves at different combinations of D and H when D = 0.6. 
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Thus, KLD can also be used as a divergence measure 

in the context of ROC for binary classification 

problems. 
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