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Abstract: Race is often included as an independent variable in health services research, especially in recent studies of 
racial and ethnic disparities in health care. Although self-reported information on race exists in large electronic health 

records (EHR) data, these data are sometimes missing. Recently Bayesian Improved Surname Geocoding method 
(BISG) is used to estimate the probability distribution of race categories for those with missing information on race. The 
BISG estimated probability distribution has been used in reporting health care measures but not in statistical modellings 

with dichotomous events as outcomes. We propose two approaches to accommodate available distribution probability of 
an independent categorical variable (e.g., race) in logistic regression models: 1) a direct substitution approach and 2) a 
partial information maximum likelihood estimator (PIMLE). In examining the association between race and up-to-date 

immunization status of children by three years old from an integrated health care organization, 11.3% of 14,903 children 
have missing self-reported race information but have BISG estimated probability distribution for the six race/ethnicity 
categories. We employed the direct substitution approach and PIMLE approach to analyze the under vaccination data. 

Both approaches included all observations and thus yielded smaller standard errors of estimated coefficients compared 
to the complete data analyses. Our simulation study showed that the direct substitution approach and PIMLE yielded 
nearly unbiased coefficient estimates and preserved efficiency when the missing rate of the independent categorical 

variable was up to 30%.  

Keywords: Race and ethnicity, Bayesian Improved Surname Geocoding, up-to-date immunization, direct 

substitution approach, partial information maximum likelihood estimator. 

1. INTRODUCTION 

Demographic characteristics such as race are 

important independent variables (risk factors or 

predictors) in health services research. Self-reported 

information on race has been considered as superior to 

other sources such as observed race [1]. Self-reported 

information on race often exists in large electronic 

health records (EHR) data; however, these data are 

sometimes missing. Reasons for missing race data 

include the patient declining to report this information or 

the provider failing to obtain or document this 

information. 

Recent focus on racial and ethnic disparities in 

health care has encouraged health care organizations 

to increase their effort to fill in missing race and 

ethnicity data [2,3]. While ideally race would be self-

reported by all patients, other approaches such as the 

recent Bayesian Improved Surname Geocoding 

method (BISG) have been developed to compensate 

for missing information on race [4,5]. BISG utilizes a 

Bayesian approach to combine racial/ethnic data from 

last names and geographic units to calculate the 

probability distribution of race categories for a given 

individual whose self-reported race/ethnicity is missing 
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in EHR. In 2008, Kaiser Permanente, an integrated 

health care organization, began applying the BISG 

algorithm to geocoded member addresses to link to 

Census Bureau data which describes the racial/ethnic 

composition of census block groups [6]. Based on 

members’ address and surname analysis using the 

Census Bureau’s list of more than 150,000 surnames 

and their association with race/ethnicity, an individual’s 

probability distribution is estimated for the following six 

standardized mutually-exclusive racial/ethnic 

categories: Asian or Pacific Islander, Black or African 

American, Hispanic or Latino, American Indian or 

Alaska Native, Multiracial, and White. In this paper, we 

use A, B, H, N, M and W to denote these six 

categories, respectively. Adjaye-Gbewonyo et al. [6] 

validated the classification of race/ethnicity based on 

the BISG and concluded that BISG may be useful for 

classifying race/ethnicity of health plan members when 

needed for health care studies. They also showed that 

sensitivity and specificity of classification varied by 

race/ethnic group: using a cutoff of 0.5, sensitivity for A, 

B, H, N, M and W was 64.4, 71.8, 71.0, 0.0, 0.3, and 

85.2 percent, respectively; specificity was 99.6, 91.1, 

99.0, 100.0,100.0, and 76.8 percent, respectively. It 

remains of great interest in health care research how to 

use the newly available probability distribution 

information without classifying race/ethnicity along with 

existing self-reported race information in analyzing 

EHR data. 
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Analyzing outcomes with covariates (e.g., race) 

missing is challenging. Usually multiple imputation can 

be used to impute missing values of important 

independent variables such as race in analyzing 

outcomes [7-9]. In a recent study examining the 

association between initial antihyperglycemic therapy 

and patient-level baseline characteristics, to enable 

inclusion of patients for whom data were missing on 

race (17.4%), the authors employed multiple 

imputations, imputing each missing value five times 

using site-specific distributions of race [9,10]. With the 

availability of BISG estimated race probability 

distribution, other approaches may be more 

appropriate and more efficient. Recently McCaffrey and 

Elliott [11] suggested a direct substitution approach and 

a partial information maximum likelihood estimator 

approach for a linear regression model with missing 

binary independent variable but its probability 

distribution is available.  

This paper focuses on dichotomous dependent 

variable (e.g., up-to-date immunization status of 

children) and independent categorical variable (i.e., 

race). We propose logistic regression models that use 

1) the direct substitution approach and 2) a partial 

information maximum likelihood estimator when 

missing independent variable is categorical (e.g., race). 

We then demonstrate these two methods in analyzing 

up-to-date immunization status of children by three 

years old in an integrated health care organization. We 

also conduct simulation study to evaluate these two 

approaches regarding their bias and efficiency. 

2. STATISTICAL METHODS 

2.1. Statistical Models with a Categorical Variable 
as an Independent Variable without Missing 

Suppose a categorical independent variable z  has 

K  levels. Let yi  be the dependent variable for the ith 

subject where i =1 to n. For example, yi =1 if the 

immunization status of a child is up-to-date and yi =0 if 

the immunization status of a child is not up-to-date. 

Also let μ1( i ) = r + Iiz k + xi ,  where r  is the 

coefficient for the reference category of the categorical 

independent variable, ak  is the coefficient for category 

k(k r),k = 1  to K 1, Iiz  is the indicator variable for the 

categorical independent variable equal to 1 if z = k  and 

equal to zero if z k,xi  is a row vector of covariates 

(does not include z ) and  is a column of 

corresponding coefficients. Then the probability of 

yi = 1  can be written as p1( i ) (yi = 1) =
exp(μ1( i ) )

1+ exp(μ1( i ) )
 in a 

logistic regression model. The following log likelihood 
for the ith subject can be obtained  

ll1(i ) = yi log(p1(i ) )+ (1 yi )log(1 p1(i ) )          (1) 

In analyzing binary outcome with independent 

categorical variables, a categorical independent 

variable appears in the analytic dataset as a single 

variable. Statistical software (e.g., SAS) creates a 

design matrix in initiating analytic procedures so that 

the parameters in equation (1) can be estimated 

accordingly [12]. For example, if a classification 

variable z  has K  levels, then its main effect has 

degrees of freedom (K 1) , and the design matrix has 

(K 1)  columns that correspond to the (K 1)  levels of 

z . Overall log likelihood across subjects can be 

obtained and can then be maximized to obtain the 

maximum likelihood estimates (MLE). 

2.2. A Direct Substitution Approach when some 
Values of a Categorical Independent Variable are 
Missing but Supplemented with Probability 
Distribution 

We propose statistical models for binary outcomes 
with some of the independent categorical variable 
missing but supplemented with probability distribution. 

Let dk  denote the probability for category level k , 

where dk =1 for each individual. In analyzing data 

with probability distribution for missing values of a 
categorical variable, a similar design matrix as the one 
without missing information must be created. For 
demonstration purposes, let the rth category be the 

reference group, r (k). For the ith individual with 

missing value for a categorical variable, we let 

i = dik k  where k  is the coefficient for the kth 

category and k r  in order to avoid a full rank matrix 

problem. Let μ2( i ) = r + i + xi , where definitions of 

r , xi  and  remain the same as in (1), then 

p2( i ) (yi = 1) =
exp(μ2( i ) )

1+ exp(μ2( i ) )
. Again, for the Kaiser 

Permanente example, let A, B, H, N, M and W denote 
Asian and Pacific, Black, Hispanic, Native American, 
Multiracial, and White races. For example, if a member 
has missing self-reported race value but has the 
following probability distribution for his/her race, diA = 
0.2, diB = 0.1, diH = 0.5, diM = 0.15, diN = 0.0, diW = 0.05, 
using White as the reference group, then 

i = 0.2 A + 0.1 B + 0.5 M + 0 N.  The following log 

likelihood can be obtained for an individual with missing 
self-reported race, 
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ll2(i ) = yi log(p2(i ) )+ (1 yi )log(1 p2(i ) )          (2) 

For those with self-reported race information 

available, log likelihood values can be obtained as in 

(1). Then the overall log likelihood values across 

individuals can be calculated and can be maximized to 

obtain MLEs of s . This approach is similar to the 

direct substitution method proposed by McCaffrey and 

Elliott [11] for a linear model using predicted 

probabilities for a dichotomous independent variable 

rather than the actual variable.  

2.3. A partial Information Maximum Likelihood 
Estimator when some Values of a Categorical 
Independent Variable are Missing but 
Supplemented with Probability Distribution 

McCaffrey and Elliott [11] also proposed a partial 
information maximum likelihood estimator (PIMLE) for 
the linear model with dichotomous independent 
variable. In this paper, we derive the PIMLE for logistic 
regressions with categorical independent variables. Let 

pik  represent the probability of outcome (y = 1)  if an 

individual belongs to kth category, 

pik (yi = 1) =
exp(μik )

1+ exp(μik )
,  where μik = r + k + xi ,  the 

log partial information likelihood for subject i with 
missing categorical variable is, 

ll3(i ) = dik[yi log(pik )+ (1 yi )log(1 pik )]k=1

K
        (3) 

where k r . For those with race information available, 

log likelihood values can be obtained as in (1). Then 

the overall log likelihood values across individuals can 

be calculated and can be maximized to obtain MLEs of 

s . MLEs from models (2) and (3) can be obtained in 

SAS PROC NLMIXED using general (ll).  

3. AN EXAMPLE 

Under vaccination of young children is a public 

health challenge in the US and worldwide [13]. Recent 

outbreaks of vaccine-preventable diseases such as 

measles are an apparent result of under vaccination in 

some communities in the US [14,15]. Examining the 

association between race and childhood immunization 

is of interest to vaccination researchers and policy 

makers [16]. In examining the association between 

race and up-to-date vaccination status by three years 

of age, 14,903 children born in Kaiser Permanente 

Colorado (KPCO) between January 1
st
 2004 and 

December 31 2009 and with three years of continuous 

enrollment were followed for their up-to-date 

immunization status by three years. The up-to-date 

immunization status was assessed using CDC’s 

National Immunization Survey combined series 

completion criteria of receiving 4 doses of diphtheria, 

tetanus and pertussis (DTaP), 3 doses of polio, 1 dose 

of measles, mumps and rubella (MMR), 3 or 4 doses of 

Haemophilus influenza type b(Hib) (based on whether 

they received the conjugate vaccine), 3 doses of 

Hepatitis B, 1 dose of varicella, and 4 doses of 

Pneumococcal conjugate (PCV) by 3 years of age [17]. 

Among 14,903 children, 11.3% had missing self-

reported race information but had probability 

distribution for the six race/ethnicity categories as 

computed by the BISG algorithm; 13,602 children 

(91.27%) were up-to-date at 3 years of age. The 

probability distributions for the six race/ethnicity 

categories were similar between those with and without 

self-reported race information (Table 1). 

Table 1: Mean (standard Deviation) of BISG Estimated 
Probabilities for the Six Race Categories by the 
Availability of Self-Reported Race 

 Available race 

N=13217 

Missing self-reported race 

N=1686 

White 0.76 (0.34) 0.75 (0.34) 

Black 0.04 (0.12) 0.04 (0.11) 

Asian Pacific 0.04 (0.16) 0.04 (0.16) 

Hispanic 0.15 (0.31) 0.15 (0.31) 

Native 0.01 (0.02) 0.01 (0.03) 

Multiple race 0.01 (0.02) 0.01 (0.02) 

 

We conducted three analyses to the under 

vaccination data: a) complete data analysis which 

included only those individuals who have self-reported 

race. A conventional logistic regression model was 

employed to obtain odds ratios (OR) with White as the 

reference category; b) entire population analysis with 

the direct substitution approach which included those 

with self-reported race and those without self-reported 

race but with probability distribution of the six 

categories; c) entire population analysis with PIMLE 

approach which included those with self-reported race 

and those without self-reported race but with probability 

distribution of the six categories. For analyses b) and 

c), models (2) and (3) in Section 2 were fit. SAS 

programs for fitting these two models were provided in 

Appendix A. 

In the complete data analyses, the point estimate of 

OR for Native race was very large and the range of 

95% confidence intervals is extremely wide, indicating 

estimation instability due to low prevalence of the 
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Native race in the population (Table 2). With inclusion 

of those with missing self-reported race, both the direct 

substitution and the PIMLE yielded stable estimation of 

ORs and confidence intervals for the Native race 

category. Comparing to the results from complete data 

analyses, the direct substitution and PIMLE yielded 

comparable point estimates of ORs for other race 

categories (Black, Asian Pacific, Hispanic and 

Multiracial races) with White as the reference group 

although ORs from both direct substitution and PIMLE 

were slightly underestimated for Black, Asian Pacific 

and Hispanic. In general, the 95% confidence intervals 

of ORs from the direct substitution and PIMLE are 

narrower than those from the complete data analyses. 

This is consistent with the fact that the direct 

substitution and PIMLE approach included all subjects 

in the analyses. 

4. SIMULATION STUDY AND RESULTS 

We also conducted a simulation study to evaluate 

the performance of the direct substitution method and 

PIMLE using the complete data set (N= 13,217). We 

used the following simulation strategy as in Xu et al. 

[18]. Briefly, while keeping the covariates (gender and 

race variables) in the complete data set, we used the 

coefficients from the complete data analyses of the 

Kaiser under vaccination data to simulate the outcome 

(up-to-date vaccination) based on the following 

probabilistic model 

prob(yi = 1 ˆ r , ˆ k ,
ˆ ) =

exp( ˆ r + Iiz ˆ k + gender
ˆ)

1+ exp( ˆ r + Iiz ˆ k + gender
ˆ)

 

where yi = 1  if a child’s immunization status is up-to-

date and yi = 0  if not, Iiz  is an indicator variable for 

race categories, Iiz =1 if z = k , otherwise Iiz =0 with 

White being the reference; the estimated intercept, 

ˆ
r =2.318; ˆ

k  were estimated coefficients for race 

categories with ˆ A = 0.677 , ˆ B = 0.0.270 , ˆH = 0.182 , 

ˆ
N = 11.212 , and ˆM = 0.332 , indicating that White is 

more likely under vaccinated in this population. The 

coefficient for gender (gender =1 if male) is ˆ = 0.028 . 

Note that exponentiation of these estimated coefficients 

results in ORs from the complete data analyses in 

Table 2. 

For each Monte Carlo sample, we randomly 

assigned missing self-reported race value in the 

complete dataset in which both self-reported race and 

BISG estimated probability distribution of race 

categories were available. For each rate of missing 

self-reported race, 5000 random samples were 

generated from the complete dataset by randomly 

assigning missing self-reported race. We then 

conducted four analyses: 1) an analysis which 

excluded those individuals with missing self-reported 

race; 2) the direct substitution approach; 3) the PIMLE 

approach and 4) multiple imputation. For the multiple 

imputation approach, each missing race was imputed 

five times using the distribution of race in the complete 

dataset as in Raebel et al. [9]; five separate models 

were fit; then coefficient estimates and their standard 

errors were pooled from these five models [9,10]. Six 

rates of missing self-reported race were evaluated: 0% 

(without missing race information), 10%, 20%, 30%, 

50% and 70%. The analytic results without missing 

race information (footnotes in Table 3) served as gold 

standards for comparing the results from the four 

analyses. For convenient comparison among these 

three analytic approaches, we reported mean 

coefficients and mean of standard errors of coefficients 

instead of ORs and their confidence intervals to 

evaluate bias and efficiency of these two methods. 

Table 3 showed the mean coefficients (mean 

standard errors) in the simulation study. As expected, 

Table 2: Odds Ratios (95% Confidence Intervals) of Gender and Race Categories* 

 Complete data analyses 

(n=13217) 

The direct substitution 

(n=14903) 

PIMLE 

(n=14903) 

Male gender  1.03 (0.91 1.16)  1.04 (0.93 1.16)  1.04 (0.92 1.16) 

Black 1.31 (0.93 1.84)  1.29 (0.93 1.79)  1.27 (0.93 1.73) 

Asian Pacific 1.97 (1.34 2.89)  1.95 (1.36 2.79)  1.90 (1.34 2.70) 

Hispanic 1.20 (1.02 1.41)  1.16 (0.99 1.35)  1.15 (0.99 1.34) 

Native 7.40x10
4
 (0.00 5.87x10

163
) 3.53 (0.32 39.0) 2.13 (0.42 10.77) 

Multiple race 1.39 (0.97 2.01)  1.44 (1.00 2.07)  1.42 (1.00 2.02) 

PIMLE: partial information maximum likelihood estimator. 
*Reference for gender is Female and reference group for the racial/ethnic categories is White. 
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Table 3: Simulation Study: Mean Coefficients (Mean Standard Errors) from 5000 Replicates by Different Missing Rates 

Methods Parameters 10% missing 20% missing 30% missing 50% missing 70% missing 

Intercept 2.32 (0.05) 2.32 (0.06) 2.32 (0.06) 2.32 (0.07) 2.32 (0.09) 

Male gender 0.03 (0.07) 0.03 (0.07) 0.03 (0.08) 0.03 (0.09) 0.03 (0.12) 

Black 0.29 (0.19) 0.29 (0.20) 0.29 (0.21) 0.30 (0.25) 0.31 (0.33) 

Asian Pacific 0.70 (0.21) 0.70 (0.22) 0.70 (0.24) 0.71 (0.29) 0.75 (0.38) 

Hispanic 0.18 (0.09) 0.18 (0.09) 0.19 (0.10) 0.19 (0.12) 0.19 (0.15) 

Native 12.01 (332.39) 11.92 (341.91) 11.95 (375.08) 12.15 (491.49) 11.79 (603.43) 

Exclude those 

with missing 
race 

Multiple race 0.35 (0.20) 0.35 (0.21) 0.35 (0.23) 0.36 (0.27) 0.38 (0.35) 

Intercept 2.32 (0.05) 2.32 (0.05) 2.32 (0.05) 2.32 (0.05) 2.32 (0.05) 

Male gender 0.03 (0.06) 0.03 (0.06) 0.03 (0.06) 0.03 (0.06) 0.03 (0.06) 

Black 0.28 (0.18) 0.28 (0.19) 0.28 (0.19) 0.29 (0.21) 0.29 (0.23) 

Asian Pacific 0.69 (0.20) 0.69 (0.21) 0.69 (0.21) 0.69 (0.22) 0.69 (0.24) 

Hispanic 0.18 (0.09) 0.18 (0.09) 0.19 (0.09) 0.17 (0.09) 0.17 (0.10) 

Native 7.82 (7.25) 5.63 (4.93) 4.60 (3.95) 3.51 (3.07) 2.83 (2.68) 

Direct 
substitution 

Multiple race 0.35 (0.20) 0.35 (0.21) 0.35 (0.22) 0.36 (0.27) 0.37 (0.34) 

Intercept 2.32 (0.05) 2.32 (0.05) 2.33 (0.05) 2.34 (0.05) 2.35 (0.05) 

Male gender 0.03 (0.06) 0.03 (0.06) 0.03 (0.06) 0.03 (0.06) 0.03 (0.06) 

Black 0.27 (0.17) 0.25 (0.17) 0.23 (0.17) 0.20 (0.17) 0.16 (0.17) 

Asian Pacific 0.67 (0.20) 0.65 (0.20) 0.63 (0.20) 0.58 (0.20) 0.54 (0.20) 

Hispanic 0.18 (0.08) 0.17 (0.09) 0.17 (0.09) 0.15 (0.09) 0.14 (0.09) 

Native 1.49 (1.34) 0.94 (0.95) 0.67 (0.77) 0.37 (0.60) 0.22 (0.51) 

PIMLE 

Multiple race 0.33 (0.19) 0.32 (0.20) 0.31 (0.21) 0.28 (0.23) 0.23 (0.25) 

Intercept 2.32 (0.05) 2.33 (0.05) 2.34 (0.05) 2.36 (0.05) 2.37 (0.05) 

Male gender 0.03 (0.06) 0.03 (0.06) 0.03 (0.06) 0.03 (0.06) 0.03 (0.06) 

Black 0.26 (0.19) 0.23 (0.19) 0.20 (0.20) 0.15 (0.22) 0.09 (0.23) 

Asian Pacific 0.61 (0.21) 0.53 (0.22) 0.45 (0.22) 0.31 (0.22) 0.18 (0.23) 

Hispanic 0.16 (0.09) 0.15 (0.09) 0.13 (0.10) 0.10 (0.11) 0.06 (0.11) 

Native 10.10 (306.10) 8.55 (280.02) 7.12 (244.09) 4.97 (197.48) 3.56 (154.85) 

Multiple 
imputation 

Multiple race 0.30 (0.20) 0.27 (0.21) 0.23 (0.22) 0.17 (0.23) 0.10 (0.24) 

PIMLE: partial information maximum likelihood estimator; the mean coefficients (standard errors) from the complete data analysis are 2.32 (0.05), 0.03 (0.06), 0.28 
(0.18), 0.70 (0.20), 0.18 (0.08), 12.02 (313.59), and 0.34 (0.19) for Intercept, Male gender, Black, Asian Pacific, Hispanic, Native, and Multiple race, respectively. 

when observations with missing race were excluded, 

the mean standard errors of estimated coefficients 

increased for gender and all categories of race while 

the mean coefficients remained nearly unbiased. The 

Direct Substitution approach produced the same 

coefficients and standard errors for intercept and 

gender as those without race information missing due 

to no loss of observations. It yielded nearly unbiased 

coefficients and similar standard errors to gold 

standard for all race categories for the rates of missing 

self-reported race up to 30%. When the rates of 

missing self-reported race increased to 50% and 70%, 

the coefficients remained unbiased but their standard 

errors were overestimated slightly except for the Native 

category. 

Similar to the direct substitution approach, the 

PIMLE approach produced the same coefficients and 

standard errors for intercept and gender due to no loss 

of observations. With increasing rates of missing self-

reported race, the PIMLE approach yielded 

underestimated coefficients for all categories while the 

estimates of standard errors remained consistent with 

those without race information missing. When 50% of 

self-reported race were missing, the estimated 

coefficient for Black decreased 40% (from 0.28 to 
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0.20); for Asian Pacific, the estimated coefficient 

decreased 17.1% (from 0.7 to 0.58); for the Hispanic, 

the estimated coefficient decreased 16.7% (from 0.18 

to 0.15); for multiracial, the estimated coefficient 

decreased 7.8% (from 0.34 to 0.28). 

The results using the multiple imputation approach 

were also reported in Table 3. While the standard 

errors of coefficients changed slightly with rates of 

missing race increasing, the estimated coefficients 

decreased significantly with missing rates of race 

increasing. Compared to the PIMLE approach, the 

multiple imputation approach underestimated 

coefficients more. 

5. DISCUSSION 

We proposed two approaches to accommodate 

available distribution probability of an independent 

categorical variable (e.g., race) in logistic regression 

models when some of the independent categorical 

variable missing: 1) the direct substitution approach 

and 2) a partial information maximum likelihood 

estimator. These two methods included all 

observations and thus yielded smaller standard errors 

of estimated coefficients in analyzing up-to-date 

immunization status of children by three years old. Our 

simulation study showed that, when the missing rate of 

the independent categorical variable was up to 30%, 

the direct substitution approach and PIMLE yielded 

coefficient estimates and their standard errors similar to 

those without race missing. For a given missing rate of 

race, the multiple imputation approach yielded the most 

biased coefficient estimates due to the fact that it just 

used the raw probabilities of race categories in the 

complete dataset. 

When the missing rate was 50% or higher, the 

direct substitution produced greater standard errors of 

the categorical variable’s coefficients and thus the 

efficiency decreased. However the standard errors 

were still less than those from the analyses that 

excluded observations with missing values. The PIMLE 

approach underestimated coefficients of the categorical 

variable’s coefficients when the missing rate was 50% 

or higher. Thus the direct substitution approach is 

preferred when the missing rate was 50% or higher. 

There are some limitations in this study. First, the 

sample size in both example application and simulation 

study is large. For a large sample size data, the impact 

of different missing rates of the independent categorical 

variable may not be dramatic, especially on the 

standard errors of coefficients. The performance of 

these two approaches for small and medium size of 

datasets is unknown. A missing rate of 30% may result 

in significant bias of coefficient estimation and less 

efficiency (larger standard error) for a small or medium 

dataset. Second, we used the estimated coefficients of 

race categories from the KPCO example to simulate 

the outcome; thus the performance may differ when the 

effects of race categories on a dichotomous outcome 

differ.  

The process of these two newly proposed methods 

is relatively simpler and easier to implement with SAS 

codes provided in Appendix A than multiple imputation. 

Our simulation showed that both the direct substitution 

and PIMLE improved efficiency by accommodating the 

available BISG estimated probability distribution and 

yielded nearly unbiased coefficient estimates when the 

rate of missing categorical variable is not higher (e.g., 

less than 30%) while multiple imputation using raw 

distribution of race categories yielded biased coefficient 

estimates. 
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APPENDIX A 

SAS codes for analyzing under immunization data with 

missing self-reported race 

*PR_. are indicator variables (0 or 1) for available race 

categories; 

*BISG_PR_. are estimated probabilities for missing 

race information. 

******************************************; 

*Direct substitution method using all data; 

******************************************; 

proc nlmixed data=underimmunization; 

parms alpha=0.2 beta_A=0.6 beta_B=0.1 beta_H=0.1 

beta_N=0.2 beta_M=0.1 beta_sex=0.2; 
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if missing_race=0 then xbeta=alpha + 

(PR_BLACK)*beta_B +(PR_HISP)*beta_H + 

(PR_API)*beta_A + (PR_AIAN)*beta_N + 

(PR_MULTI)*beta_M +sex*beta_sex; 

else xbeta=alpha + (BISG_PR_BLACK)*beta_B 

+(BISG_PR_HISP)*beta_H + (BISG_PR_API)*beta_A 

+ (BISG_PR_AIAN)*beta_N + 

(BISG_PR_MULTI)*beta_M +sex*beta_sex; 

p=exp(xbeta)/(1+exp(xbeta)); 

loglike=y*log(p)+(1-y)*log(1-p); 

model y~general(loglike); 

ods output ParameterEstimates=direct 

(keep=Parameter Estimate StandardError); 

run; 

******************************************; 

**PIMLE method using all data; 

******************************************; 

proc nlmixed data= underimmunization; 

parms alpha=0.2 beta_A=0.6 beta_B=0.1 beta_H=0.1 

beta_N=0.2 beta_M=0.1 beta_sex=0.2; 

xbeta_A=alpha+ beta_A+sex*beta_sex; 

xbeta_B=alpha+ beta_B+sex*beta_sex; 

xbeta_H=alpha+ beta_H+sex*beta_sex; 

xbeta_N=alpha+ beta_N+sex*beta_sex; 

xbeta_M=alpha+ beta_M+sex*beta_sex; 

xbeta_W=alpha+sex*beta_sex; 

py_A=exp(xbeta_A)/(1+exp(xbeta_A)); 

py_B=exp(xbeta_B)/(1+exp(xbeta_B)); 

py_H=exp(xbeta_H)/(1+exp(xbeta_H)); 

py_N=exp(xbeta_N)/(1+exp(xbeta_N)); 

py_M=exp(xbeta_M)/(1+exp(xbeta_M)); 

py_W=exp(xbeta_W)/(1+exp(xbeta_W)); 

if missing_race=0 then loglike=PR_API*(y*log 

(py_A)+(1-y)*log(1-py_A))+ 

PR_BLACK*(y*log(py_B)+(1-y)*log(1-

py_B))+PR_HISP*(y*log(py_H)+(1-y)*log(1-py_H)) 

+PR_AIAN*(y*log(py_N)+(1-y)*log(1-

py_N))+PR_MULTI*(y*log(py_M)+(1-y)*log(1-

py_M))+PR_White*(y*log(py_W)+(1-y)*log(1-py_W)); 

else loglike=BISG_PR_API*(y*log(py_A)+(1-y)*log(1-

py_A))+ BISG_PR_BLACK*(y*log(py_B)+(1-y)*log(1-

py_B))+BISG_PR_HISP*(y*log(py_H)+(1-y)*log(1-

py_H)) 

+BISG_PR_AIAN*(y*log(py_N)+(1-y)*log(1-

py_N))+BISG_PR_MULTI*(y*log(py_M)+(1-y)*log(1-

py_M))+BISG_PR_White*(y*log(py_W)+(1-y)*log(1-

py_W)); 

model y~general(loglike); 

ods output ParameterEstimates=PIMLE(keep= 

Parameter Estimate StandardError);; 

run; 
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