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Abstract: When national policy decisions are to be guided by the results of statistical analyses, it is important, to avoid 

being misled to look beyond the authors’ conclusions and first to assess the study design, measurement and analytic 
methods, in order to decide whether a study’s conclusions rest on a solid foundation. In particular, observational studies 
must be carefully and critically evaluated. Using a study widely cited concerning the effects of low-level lead exposure 

and IQ, we illustrate several methodological errors, long known but often ignored. The goal is not to settle the 
controversies about the effect of lead on IQ, nor to disparage observational studies, for they are the foundation of all 
studies done to guide policy, but to encourage additional care in the use of such studies to address policy questions.  
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1. INTRODUCTION  

“Do No Harm!” is a principle well understood and 

accepted when applied to ethical clinical decision-

making for individual patients. The same principle also 

applies to research conclusions that might affect policy 

decision-making, where an error in design, analysis, or 

interpretation may harm many thousands of people the 

researchers themselves have never seen or will see, 

the target population they are trying to help. To avoid 

being misled, it is important to look beyond conclusions 

and critically assess the study design and statistical 

methods, in order to assess whether a study’s 

conclusions rest on a solid foundation.  

We here use the ongoing controversy of the relation 

of lead to IQ to illustrate some of the red flags that 

cannot be ignored when making research-based policy 

decisions based on statistical analyses. Our goal is not 

to resolve the IQ/lead controversies (e.g., see [1]), for 

the data needed for such resolution are, we would 

argue, not yet available. Nor is the goal to discourage 

observational studies, for such studies are essential in 

the process of understanding risk. The goal is to 

encourage careful, valid, critical and candid analysis of 

such studies, and an awareness of the limitation of 

such studies as a basis of policy decisions.  

2. BACKGROUND  

Observational studies have long been at the center 

of the continuing debate concerning the effect of lead 

on the IQ of children. Minimizing lead sources in the 

environment is laudable; no one believes that lead is 

good for child development. Efforts to reduce lead in 
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the environment have been ongoing at least since 

1970. In the United States [2] between 1976-1980 and 

1988-1991, there was substantial decline in the blood 

lead levels (BLLs), e.g., for children aged 1-5 years, 

from an overall mean of 15.0 μg/dL to 3.8 μg/dL. The 

decrease has largely been attributed to the removal of 

lead from gasoline and the ban on the use of lead in 

soldered cans and paint [2]. However, children may still 

be exposed to lead from a variety of sources such as 

historical emissions of leaded gasoline or industrial 

sources present in air, dust, soil and water, lead-based 

paint in old and deteriorating housing [2], and other 

sources difficult to regulate. Consequently, current 

concern centers on the effects of low levels of blood 

lead (<10 μg/dL) and the question of whether there are 

tolerable levels of lead exposure, i.e., some level of 

lead with so little, if any, effect on IQ that the costs or 

risks of further systematic intervention might exceed its 

benefit.  

A key research study, heavily based on statistical 

methods, the Lanphear et al. study [3] in which 7 

observational studies are “pooled” (the “Pooled Study”) 

is often cited by advisory committees for government 

agencies as compelling evidence of lead effects on IQ 

at low BLLs (See e.g., Centers for Disease Control and 

Prevention, Advisory Committee on Childhood Lead 

Poisoning Prevention Report (2012), United States 

Environmental Protection Agency (USEPA) National 

Ambient Air Quality Standards for Lead (2008); 

USEPA, Integrated Science Assessment for Lead 

(Draft), (2012), and National Toxicology Program, 

Monograph on Health Effects on Low-Level Lead 

(2012)). Should the data in this observational study be 

the basis for policy decisions?  
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3. OBSERVATIONAL STUDIES VERSUS 
RANDOMIZED CLINICAL TRIALS  

The randomized clinical trial (RCT) is generally 

considered to be the “gold standard” in scientific design 

to prove causal association. Unlike observational 

studies, (1) randomization in a well-designed and 

executed RCT results in two (or more) random samples 

from the same population, thus minimizing the chance 

that any association seen reflects comparing two (or 

more) populations differing on more than the specific 

factor of interest. Observational studies attempt to use 

mathematical models to “statistically control” for such 

factors, but the results are much less certain, both 

because all such factors cannot be known, many are 

not measured, and the models used are questionable 

(further discussion below). (2) In a well-done RCT, bias 

in measuring outcome is minimized by “blinding” 

outcome assessment; in observational studies, such 

“blinding’ is often difficult to implement. (3) In a well-

done RCT, researchers control the protocol of delivery 

of the treatment and control conditions, and monitor the 

delivery to ensure “fidelity”; in observational studies, 

what is experienced is determined by factors outside 

the control of the researchers and often unknown to 

them. Not all RCTs are well-done, and there is not, of 

course, guaranteed infallibility of the conclusions even 

in well-done RCTs. The CONSORT guidelines [4-8] 

provide guidance as to which RCTs are more 

trustworthy, and independent confirmation of the 

conclusions is still always necessary. 

In 1997, Moses and Mosteller pleaded: 

“Experimentation: just do it!” [9] urging the wider use of 

well-conducted RCTs as a basis of public health policy 

decisions. Nevertheless, even today, as noted in the 

Wall Street Journal (May 4, 2012): “Despite concerns, 

observational studies have never been more popular”, 

probably because such studies are “easier, cheaper 

and quicker to do”. Ioannidis [10] in a study of highly 

cited research findings, showed that of the four 

observational studies there included, the conclusions of 

three were later contradicted.  

Clearly in any particular context, some RCT designs 

are either not feasible or not ethical: One cannot, for 

example, randomize families to be exposed to various 

levels of lead exposure and track development (as one 

might with laboratory animals) without incurring ethical 

objections. However, one could randomize families with 

newborns who already live in at-risk situations where 

their children would be exposed to lead, to an 

intervention designed to reduce the lead levels in their 

environments, versus a “treatment as usual” control 

group. Randomization ensures that the distribution of 

IQ potential is similar in the two treatment groups. 

Longitudinal follow-up would be the same in both 

groups, “blinded” to group membership. To do such a 

RCT would eliminate the major problems associated 

with interpretation of the results from observational 

studies.  

If such a RCT were done, any number of results 

might be obtained, e.g.:  

• It may be that the intervention is ineffective in 

preserving IQ potential, either because the 

treatment is ineffective in further reducing lead 

exposure, or ineffective in reducing BLLs, or that 

BLL is not a strong causal factor in determining 

IQ.  

• It may be that the intervention is effective in 

preserving IQ potential, but that the effect size of 

that increase is outweighed by the costs and 

risks associated with the intervention. “A nation 

can be ruined by cleverly crafted short-term 

solutions to its long-term problems.” [11].  

• It may be that the intervention is highly effective 

in preserving IQ, but only for a minority in the 

population.  

• In all these situations, finding this result out in a 

limited time RCT would prevent implementing 

policy decisions that are costly, possibly harmful, 

but ineffective.  

• Finally, it may be that the intervention is highly 

effective for most or all, is cost-effective and 

without risks of any clinical or practical 

significance. Those that advocate for policy 

decisions in the absence of a RCT assume this 

would be the result if a RCT were done. But this 

is not a foregone conclusion. Lanphear et al. [12] 

recognized this problem, but nonetheless urged 

that we “acknowledge the limitations of 

observational epidemiology without prohibiting 

us from taking action to protect public health. 

The alternative, to perpetually permit children to 

be exposed to lead and other emerging 

toxicants, is both absurd and unacceptable” (p. 

197). But what if the actions taken to reduce 

BLLs were to do more harm than good? Would 

that not be even more absurd and 

unacceptable?  
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There seems to be a feeling that such a RCT is not 

really necessary, and in some cases, this is correct. 

However, in what follows we will examine a number of 

statistical approaches commonly found in observational 

studies that lead to erroneous conclusions in such 

studies, using the Pooled Study as an illustration.  

4. CORRELATES, RISK FACTORS, CAUSAL 
FACTORS: NOT THE SAME THING!  

The Pooled Study was conducted to address 

questions about lead-associated intellectual deficits at 

BLLs <10 μg /dL. What does it mean to be “lead-

associated”? Only if lead exposure is a causal factor is 

it appropriate to recommend action to reduce lead 

exposure as a means of improving IQ.  

A correlate is a factor that is in some non-specific 

sense associated with another; a correlation coefficient 

indicates the strength and direction of the association 

between two variables, here BLL and IQ. The old 

adage remains true: one cannot infer causation from 

correlation. A risk factor is a correlate that can be 

shown to precede the other factor in time [13]. A risk 

factor may or may not be a causal factor, i.e., if one 

were to remove the risk factor, the subsequent 

outcome may or may not change. A factor might be a 

risk factor but not a causal factor because it is proxy to 

another causal factor [14]. For example, high lead 

exposures seem to be more common in low socio-

economic households, households with parents with 

lower IQ, lower income level, poorer home environment 

and access to health and educational resources, or 

other such factors, genetic or environmental, that also 

influence IQ. It may be that the only reason BLL is 

correlated with low IQ is because it is yet another 

indicator of low socio-economic status [15]. 

Alternatively, it may be that children with lower IQ are 

more likely to exhibit behaviors that increase exposure 

to lead, in which case lower IQ may be a risk factor for 

high lead level rather than vice versa [16]. In either 

such case, manipulating lead levels may have little or 

no effect on IQ.  

In most cases, demonstrating the required temporal 

precedence of the risk factor would require a 

longitudinal study. When the timing of the 

measurement of the risk factor to the outcome is not 

clear, then all that can be claimed is that the two are 

correlates, not that one is a risk factor for the other, and 

assuredly not that one causes the other.  

In the Pooled Study, the primary analytic emphasis 

was on concurrent blood lead level (CL). Of the four 

blood lead concentration measures there considered 

(concurrent, peak, early childhood and lifetime mean), 

the only factor satisfying the temporal precedence 

criterion was early childhood BLL, because it preceded 

the IQ measure at every site. Lack of distinction 

between a correlate, a risk factor and a causal factor is 

a major source of misinterpretation in epidemiological 

studies. All causal factors are risk factors and all risk 

factors are correlates, but not vice versa.  

5. POOLING, MUDDLING, AND META-ANALYSIS  

The Pooled Study considered 7 independent, 

observational studies from 7 different sites, done at 

different times, following different protocols. The sites 

varied in virtually every factor studied, including the two 

primary factors, blood lead index and IQ. (See Crump 

et al. for further discussion of these issues [1]). To treat 

these 7 studies as if they were replicates, and thus to 

“pool” their data creates a serious problem.  

When one draws multiple samples from the same 

population, it is appropriate to “pool” data, i.e., to treat 

the entire dataset as one sample in the analysis. 

However, when each set of data comes from a different 

population, studied at different ages with different 

measures, treating the data as if all were drawn from 

the same population is misleading, a process better 

called “muddling” rather than “pooling”. If all the studies 

addressed the same research question, the preferred 

procedure is to estimate the parameter of interest (e.g., 

a correlation coefficient, a standardized regression 

coefficient, Cohen’s d) in each separate sample, check 

for homogeneity over the sites, and pool the parameter 

estimates (not the data) only if there is no 

heterogeneity, i.e., meta-analysis [17]. If there is 

heterogeneity and the sites are randomly sampled from 

some population of sites, one might estimate the mean 

and standard deviation of the parameter estimates over 

sites for that population of sites. If there is 

heterogeneity and the sites are a sample of 

convenience (as in the Pooled Study), thus not 

representative of any identifiable population of sites, 

one might report the results from each site and explore 

the question as to why sites might differ from one 

another. It is inappropriate to pool the estimates when 

heterogeneity is evidenced, or to assume that sites are 

randomly sampled from a population of sites when that 

is not so. Finally, it is inappropriate even to use meta-

analysis when the various studies address different 

issues [18], the classical “apples and oranges” problem 

in meta-analysis [19, 20].  
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6. SIMPSON’S PARADOX, THE ECOLOGICAL 
FALLACY: PITFALLS OF MUDDLING  

The problem of muddling samples from different 

populations to assess correlation has long been known 

as generating Simpson’s Paradox [3, 21, 22]. The 

correlation coefficient obtained in the muddled sample 

is a weighted combination of the ecological correlation 

between the means of the two variables across the 

samples and the multiple intra-site correlations [23].  

In the Pooled Study, the estimated ecological 

correlation (that between the site means) between IQ 

and CL was -.533, i.e., sites with lower IQ means 

tended to have higher CL means. CL and IQ correlation 

coefficients for each of the 7 sites in the Pooled Study 

are presented in Table 1. The within-site correlations 

ranged from -.007 at Mexico to -.349 at Rochester, 

none anywhere near as large as the ecological 

correlation. The weights in the muddled correlation 

coefficient reflect the proportion of the total variance 

coming from within and between samples and thus 

depend not only on the site differences, but also on the 

varying sample sizes at the sites. The ecological 

correlation does not necessarily correspond to that 

within any site (so interpreting it has been called the 

Ecological Fallacy). In short, the correlation coefficient 

obtained from a muddled sample is an estimate of an 

uninterpretable and meaningless population parameter.  

The within-site correlations between CL and IQ are 

all negative, and range from trivial (Mexico) to 

moderate (Cleveland, Rochester) [24]. The fact that 

they are all negative supports the contention that lead 

is at least a marker for an environment less than 

optimal for development. Sample sizes ranged from 99 

at the Mexico site to 324 at the Port Pirie site. The 

homogeneity of correlation test was here not 

statistically significant at the 5% level (ChiSquare test 

statistic=12.4, p=.053), and the pooled estimate was -

.233, suggesting that, in general, CL might account for 

less than 5% of the variance of IQ, not a strong 

association. Figure 2 in the Lanphear et al. paper [3] (p. 

898) conveys the same message with regard to 

regression coefficients.  

7. ANALYSIS: A MODEL IS A MODEL IS A 
MODEL…  

“Essentially, all (mathematical) models are wrong, 

but some are useful [25] (p. 424);… the practical 

question is how wrong do they have to be to not be 

useful” [25] (p. 74). All statistical analyses are based on 

some mathematical model. For a model to be useful, it 

needs to reflect what is already known about reality (its 

assumptions) in order to gain further understanding of 

reality (hypotheses to be tested, parameters to be 

estimated). Since the conclusions drawn from applying 

a mathematical model are contingent on the 

assumptions made, when assumptions are made that 

do not reflect reality well, the conclusions based on 

those assumptions may also not reflect reality well. In 

the Pooled Study, there was extensive mathematical 

modeling, and some questionable assumptions.  

In the Pooled Sample analysis, essentially two 

models were used: a linear model and a log-linear 

model. The linear model used in the Pooled Study (in 

its simplest form) was essentially this:  

IQ=IQ0-b CL + e, 

where IQ0 is the average IQ of the population with 

CL=0, b>0 indicates how much decrease in IQ would 

be expected for each unit increase in CL, and e is the 

deviation of individual subjects’ IQs from the expected 

IQ, which is assumed to be independent of CL. This 

assumes that, for example, an increase from CL=0 to 

CL=1 results in the same average decrease in IQ as an 

increase from CL from 5 to 6 or from 10 to 11, and that 

IQ approaches zero as CL increases.  

Table 1: Sample Sizes, Arithmetic Means and Standard Deviations for IQ and Concurrent Lead, with the Correlation 
between them, and that Adjusted for the HOME Score 

Site N IQ Concurrent Lead (CL) Correlation IQ versus CL  Adjusted Correlation: IQ versus CL 

Boston 116 116.0 (14.3) 6.1 (3.7) -.255 -.133 

Cincinnati 221 87.0 (11.4) 9.2 (5.3) -.207 -.163 

Cleveland 160 86.7(16.3) 15.6 (6.5) -.328 -.165 

Mexico 99 107.8 (11.0) 8.2 (4.9) -.007 +.027 

Port Pirie 324 106.0(13.7) 13.7 (5.9) -.247 -.130 

Rochester 182 84.9 (14.4) 5.1 (3.5) -.349 -.270 

Yugoslavia 231 74.2 (13.3) 20.9 (15.5)  -.132 -.181 
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The Pooled Study also used a log-linear model, 

essentially:  

IQ=IQ0-b log(CL+1)+e. 

IQ0 remains the same, but now it is assumed that 

an increase from CL=0 to CL=1 is equivalent to that 

from CL=5 to CL=l1, or from CL=10 to CL=21. The 

model now also assumes that the decrease in IQ as CL 

increases is most rapid when CL is nearer zero.  

The major problem here is that both models assume 

that there is no tolerable level of CL, i.e., no range of 

CL near zero when IQ remains approximately equal to 

IQ0. In essence then, the Pooled Study assumed the 

conclusion it wanted to prove.  

An alternative model might have been:  

IQ=IQ0 +e, for CL<c, 

IQ=50+(IQ0-50)e
-b(CL-c)

+e, for CL>c. 

Then as CL increases, IQ approaches a more 

reasonable lower limit of 50, not zero, and 0<CL<c 

indicates the tolerable range of CL. It may well be that 

fitting such a model to the data at each site would 

result in an overall estimate of c=0, in which case, as 

the Pooled Study assumes, there is no support for a 

tolerable level of CL. But now the hypothesis that there 

is no tolerable range of CL could be disproved.  

When using mathematical models that incorporate 

many assumptions it is important to first check each 

assumption carefully against what is known about the 

situation to assure a reasonable correspondence, and 

second to distinguish what is assumed from what is to 

be proven. One cannot assume absence of a tolerable 

level of CL in order to demonstrate that there is no 

tolerable level of CL. 

8. THE PROBLEMS WITH STATISTICAL 
SIGNIFICANCE 

For the last 10-15 years, scholars have emphasized 

the common misunderstanding of what “statistical 

significance” means and expressed concern about its 

misuse [26-31]. Journals have even, on occasion, 

banned the use of the “p-value” [30, 32, 33]. Generally, 

a legitimate “statistically significant result” means that 

the sample size used was sufficiently large to detect 

some deviation from the null hypothesis. Therefore it is 

a comment on study design, not on the size or 

importance of the effect. Consequently, many a 

“statistically significant result” may be of little practical 

importance; many a “non-statistically significant result” 

may be of great importance, but assessed in an 

inadequately powered study. Consequently, 

researchers are urged to report effect sizes 

interpretable to policy makers, with some indication 

(e.g., a confidence interval) of how precisely the effect 

size is estimated. Then policy makers could weigh the 

practical significance of a “statistically significant” effect 

in deciding whether action should be taken.  

A correlation coefficient is one such effect size. As 

can be seen in Table 1, the correlation between CL at 

the various sites and IQ is never large, and even that is 

perhaps exaggerated because it includes effects of 

factors, known and unknown, strongly correlated with 

CL. However, the results are “statistically significant” in 

all but one site (Mexico) simply because the sample 

sizes at those sites were large enough to detect some 

deviation from zero.  

An even more serious problem has to do with the 

legitimacy of the statistical hypothesis-testing done. To 

be legitimate, the hypothesis tested must be ‘a priori’, 

i.e., formulated based on rationale and justification that 

existed before the data were accessed. Looking at 

some or all of the data to develop or modify the 

hypothesis, then testing that hypothesis on the same 

data is called “post-hoc” testing. In “post-hoc” testing, 

inferences based on standard methods are usually 

incorrect and often exaggerated. In the Pooled Study, 

some of the hypotheses were developed by examining 

the data, the most flagrant the selection of CL as the 

primary outcome because it most strongly supported 

the authors’ conclusions (p. 896).  

The Pooled Study also reported testing for 

interactions and collinearities. Finding them to be non-

statistically significant, it then ignored them for testing 

or interpretation of the results. If interactions and 

collinearities are present in the population but ignored 

in the model, the risk of Type I error (a false positive 

conclusion), as well as of Type II error (a false negative 

conclusion), are increased. However, the sample size 

necessary for adequate power to detect interactions or 

collinearities of a size that might affect results is 

generally much larger than that to detect main effects, 

and the methods for detection are often based on 

models that may or may not be appropriate to the 

context. Thus, finding a “non-statistically significant” 

result is no guarantee that these problems are absent 

(In the old adage, “Absence of proof is not proof of 

absence”), and is no justification for ignoring these 

problems in the models used.  
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Finally, the Introduction [3] ( p. 894) indicates that, 

in the Pooled Study, the ‘a priori’ hypotheses 

concerned the effects of BLLs < 10 μg/dL, and were 

based on the Rochester Longitudinal Study and a 

reanalysis of the Boston study data. Since the ‘a priori’ 

hypothesis was based on those studies, it was 

inappropriate then to include the data from those two 

studies in any attempt to test that hypothesis. Of the 

244 children across all sites with peak BLLs < 10 

μg/dL, 144 (59%) were either at the Rochester or 

Boston sites. There were no children at the Port Pirie 

site with peak BLLs < 10 μg/dl; this site should have 

been excluded. The sample sizes at the remaining 

sites (23, 11, 20, 46) were too small to examine the 

gradient of IQ with increasing exposure with peak BLLs 

< 10 μg/dL, particularly when confounding variables 

were to be considered.  

9. THE PROBLEM OF CONFOUNDERS  

The attempts to “control for” or to “adjust for” certain 

variables in analysis of observational study results 

arise from the appropriate concern that the 

subpopulations exposed to different levels of lead differ 

on far more than BLL, and thus the apparent 

correlation between lead level and IQ may actually 

reflect those factors (confounders) rather than lead 

level itself (a concern largely mitigated, but not 

removed, by randomization in a RCT). If so, efforts to 

reduce lead levels that do not also change confounders 

could be doomed to failure. However, in an 

observational study, one never knows all the relevant 

confounders, only those recognized and measured at 

or before the time of measurement of the risk factor of 

interest.  

Moreover, the problem is not only with 

unrecognized confounders. For example, the site 

differences seen in Table 1 were not completely 

ignored in the Pooled Study, but were dealt with by 

“controlling for” site effects in the analysis, but it was 

assumed that there were no site by CL interactions on 

IQ, an assumption at least questionable given the site 

differences seen in Table 1.  

When there are suspected confounding variables 

(site as well as other factors such as the HOME score, 

maternal IQ, etc.), researchers often include those 

factors in a linear model and claim that they have 

“controlled for…” those factors, suggesting that what 

results represents a “purer” estimate of the causal 

effect of lead for all in the population. To illustrate such 

an analysis here, in Table 1, the correlations between 

CL and IQ adjusted for the HOME score are also 

presented. Those correlations are substantially 

reduced and range from r=+.027 at the Mexico site, to 

r=-.270 at the Rochester site. Once again no 

statistically significant heterogeneity of correlation was 

detected across sites (Chi Square statistic=6.2, 

p=.396), with a pooled value of -.157, thus suggesting 

that CL now accounts for perhaps 2.5% of the variance 

in IQ.  

The difficulty is that the methods used to “adjust” 

are often based (as was the partial correlation 

coefficient reported above) on the assumption that the 

association between lead and IQ is linear (or at least 

monotonic) and the same regardless of the level of the 

other factors, i.e., that there is no interactive effect of 

lead and the confounder on IQ. For example, the Home 

score is the strongest correlate of IQ in every US site, 

“an index that reflects the quality and quantity of 

emotional and cognitive stimulation in the home 

environment” [3] itself quite strongly correlated with 

Maternal IQ. If one could stratify the population at each 

site by their HOME scores, the patterns of IQ means as 

a function of lead level within each stratum should be 

monotonic and parallel each other at every site, at least 

at the population level. Such an assumption is often 

untrue.  

To illustrate this point, we attempted to so stratify on 

the HOME score and on ranges of CL, examining only 

those cells with minimally 5 subjects. For no HOME 

stratum could we see the full pattern of mean IQ as a 

function of CL across all 7 sites (evidence of 

collinearities). The closest was when HOME>35 (the 

most advantaged group), where the full pattern is seen 

for 5 of the 7 sites, shown in Figure 1. If these results 

were to be believed (and they should not be!), it would 

appear that the highest IQ is achieved when the 

concurrent lead level is between 5 and 7.5 μg/dL, 

suggesting that a little lead might help IQ! Why should 

we not believe these results? This harkens back to the 

issue of hypothesis-generating versus hypothesis-

testing. There was no ‘a priori’ theoretical rationale or 

empirical justification for a hypothesis that CL between 

5 and 7.5 μg/dL is best for IQ development. This result 

was found in exploration, and should be given 

credibility only if the hypothesis can be tested and 

supported in independent studies. We would venture to 

guess that this result would not be confirmed.  

In attempting this stratification, it was noted that at 

the Boston site, only 1 (0.9% of the total) participant 

had a HOME score< 35 and that one child had a 
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CL>10. At Port Pirie, only 25 (7.7% of the total) had a 

HOME score < 35 and all had CL>10. In contrast, 

Rochester had 167 participants (91.8% of the total) 

with a HOME score < 35, and of those only 10.2% had 

CL>10. Thus, the data of the Pooled Study continue to 

indicate substantial interactions and collinearities 

among Site, CL and HOME.  

In the Pooled Study, consider only two of the 

possible “confounders”: the HOME score and Maternal 

IQ. These two factors are correlated with each other 

(correlations ranging from .292 at Cincinnati to .458 at 

Boston) (see Table 2), since both are indicators of 

socio-economic status. Both are also correlated with 

CL, at some sites, quite strongly. Finally, the strongest 

correlation with IQ in these studies was not with CL, but 

either HOME or Maternal IQ. In short, efforts to further 

control lead levels without concomitant efforts to 

remove other disadvantages of low socio-economic 

status, and perhaps even genetic effects, may not be 

fruitful, and may subject already stressed families to 

even further stress.  

10. DISCUSSION  

There are a number of points, all long known but 

worth reinforcing, that are here made about the general 

statistical approaches to evaluation of a risk factor:  

• Causal inferences drawn from observational 

studies should always be made in very tenuous 

fashion. When comparing a sample from 

populations at different exposure levels, there is 

always the possibility that these populations 

differ on far more than the exposure of interest. 

There are statistical methods (e.g. “adjusting”, 

propensity analysis, [34]) that, carefully used, 

can reduce the possibility of falsely attributing to 

the risk factor of interest that which is caused by 

other related factors. However, since there are 

always factors confounding the association 

between the risk factor of interest, some 

unknown or unmeasured, there must always 

remain some reasonable doubt. Nevertheless, 

because RCTs are difficult and expensive, 

 

Figure 1: HOME score > 35: IQ means by concurrent lead category and site. 

Table 2: Correlation among Confounded Factors in the Full Sample and the Number and Percentage of that Full 
Sample with CL<10 μg/dL, and with Peak Lead Level <10 μg/dL 

Site HOME  
vs. CL 

Maternal IQ 
 vs. CL  

HOME 
 vs. Maternal IQ  

CL<10 μg/dL Peak Lead <10 μg/dL  

Boston -.351 -.115 .458 96 (82.8%) 41 (35.3%) 

Cincinnati -.211 -.196 .292 146 (66.2%) 23 (10.4%) 

Cleveland -.414 -.369 .430 32 (20.0%) 11 (6.9%) 

Mexico -.143 -.214 .370 70 (70.7%) 20 (20.2%) 

Port Pirie -.399 -.318 .406 88 (27.2%) 0 (0.0%) 

Rochester -.344 -.270 .343 165 (90.7%) 103 (56.6%) 

Yugoslavia +.028 +.083 .403 91 (39.4%)  46 (19.9%) 
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observational studies can constitute a valuable 

first approach to understanding the association 

between a risk factor of interest and an outcome. 

However, these observational studies should be 

carefully designed, conducted, analyzed, and 

judiciously interpreted. If, in such studies, it can 

be documented that the association between the 

risk factor and outcome is strong (not merely 

statistically significant), and remains strong even 

after confounders are carefully explored, a RCT 

may not be necessary. But when the association 

is weak (even if statistically significant) and 

becomes substantially weaker after confounders 

are explored, it is risky to base policy decision on 

such data.  

• It is inappropriate to assume that a conclusion is 

true, and then, if the data do not contradict that 

assumption, to claim that the conclusion has 

been shown to be true.  

• It is important to distinguish correlates from risk 

factors from causal factors. All causal factors are 

risk factors, and all risk factors are correlates, 

but not vice versa.  

• When dealing with samples from different 

populations addressing the same research 

question (e.g., different studies or sites), the 

preferred method is a meta-analytic approach. In 

the absence of heterogeneity among the 

populations in the parameter estimated, the 

meta-analysis will yield essentially the same 

results as would the pooled analysis, but where 

there is heterogeneity, the results obtained by 

applying these two approaches may be 

drastically different.  

• In any study, observational or RCT, the primary 

focus of attention should be on estimation of 

interpretable effect sizes and their confidence 

intervals, either in addition to, or in place of, p-

values. Then the issue of clinical or policy 

significance of a statistically significant result is 

based on assessing the magnitude of the effect 

size, the precision with which it is estimated, 

and, most importantly, consideration of the 

impact of such an effect on the population in 

question. It would be useful to estimate how 

many families currently lead-exposed would 

require intervention (at what cost per family and 

at what burden to those families) in order to 

increase the IQ of the children by a sufficient 

number of points to make a difference in their 

lives. Generally a 2-3 point difference in IQ will 

make very little difference.  

• Mathematical models play an important role in all 

statistical analyses. However, it is the 

responsibility of the analysts to check that all 

assumptions made by the model are reasonable 

in the context in which they propose to use it, 

and to avoid assuming the desired conclusion. 

Nikola Tesla early in the 20
th

 century is quoted 

as saying [35]: “Today's scientists have 

substituted mathematics for experiments, and 

they wander off through equation after equation, 

and eventually build a structure which has no 

relation to reality.” That is even a greater danger 

today, with the readily available computer 

programs that easily fit very complex models to 

any dataset.  

• A distinction must be made between exploratory 

studies meant to generate hypotheses to be 

tested in future independent studies (and to 

provide empirical justification for those 

hypotheses as well as information on how best 

to design such studies), and a hypothesis-testing 

study. Whether observational or RCT, 

hypothesis-testing studies must have certain “a 

priori” hypotheses, with the appropriate rationale 

and justification; a design appropriate to those 

hypotheses; an analytic approach set up before 

the data are accessed; and should be 

adequately powered to test those hypotheses. 

When that hypothesis testing is completed, it 

would be wasteful not to explore the data further, 

both to provide greater insight into the 

conclusions drawn on the primary hypotheses as 

well as to generate hypotheses that might 

broaden or deepen understanding of the issues 

to be tested in future studies. However, the 

researchers should not test hypotheses on the 

same data that generated them, or present the 

hypotheses so generated as “conclusions” 

before independent validation.  

We propose that the evidence Lanphear et al. 

presented to support their conclusion is not convincing, 

and should not be used to guide policy decisions. In 

1994, Pocock and Smith [17], using meta-analysis, 

pointed out that: “While low level lead exposure may 

cause a small IQ deficit, other explanations need 

consideration…. Even if moderate increases in body 

lead burden adversely affect IQ, a threshold below 
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which there is negligible influence cannot currently be 

determined. Because of these uncertainties, the degree 

of public health priority that should be devoted to 

detecting and reducing moderate increases in 

children’s blood lead, compared with other important 

social detriments that impede children’s development, 

needs careful consideration.” (p. 1189). Almost 20 

years later, that conclusion has not changed.  

In general, when considering whether to base policy 

decisions on observational studies, great care must be 

taken to consider the sampling, measurement, design 

and analytic decisions made in the study and the 

impact of those decisions on the credibility of results. 

Even then, the emphasis should be on effect sizes 

interpretable in terms of impact on society if policy 

actions are taken, rather than on statistical significance, 

and due consideration should be given to the harm that 

could result from unnecessary or ill-considered 

interventions. In general, it is advisable that 

policymakers asking for evalutions and conclusions 

from research studies consult a panel of experts not 

involved in producing those studies to ensure objective 

such evaluations.  
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