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Abstract: Continuous blood glucose monitoring systems (CGMS) capture interstitial glucose levels at frequent intervals 
over time, and are used by people with diabetes and their health care professionals to assess glycaemic variability. This 
information helps to adjust treatment to achieve optimum glycaemic control, as well as potentially providing early warning 

of imminent and dangerous hypoglycaemia. Although a number of studies has reported the possibilities of predicting 
hypoglycaemia in insulin dependent type 1 diabetes (T1DM) patients, the prediction paradigm is still unreliable, as 
glucose fluctuations in people with diabetes are highly volatile and depend on many factors. Studies have proposed the 

use of linear auto-regressive (AR) and state space time series models to analyse the glucose profiles for predicting 
upcoming glucose levels. However, these modelling approaches have not adequately addressed the inherent 
dependencies and volatility aspects in the glucose profiles. We have investigated the utility of generalized autoregressive 

conditional heteroscedasticity (GARCH) models to explore glucose time-series trends and volatility, and possibility of 
reliable short-term forecasting of glucose levels. GARCH models were explored using CGMS profiles of young children 
(4 to <10 years) with T1DM. The prediction performances of GARCH approach were compared with other contemporary 

modelling approaches such as lower and higher order AR, and the state space models. The GARCH approach appears 
to be successful in both realizing the volatility in glucose profiles and offering potentially more reliable forecasting of 
upcoming glucose levels.  
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INTRODUCTION 

Hypoglycaemia is associated with a number of 

blood glucose lowering therapies, but is a particular 

problem for patients with type 1 diabetes (T1DM) 

receiving insulin therapy. Insulin is the most effective 

method of lowering blood glucose, and is an essential 

element of treatment for people with type 1 and longer 

duration type 2 diabetes. Hypoglycaemia, in which 

blood glucose levels become unacceptably low, can 

lead to acute mental and physical impairment with 

possible progression to coma if not treated promptly, 

and repeated episodes confer an increased risk of 

future cardiovascular events [1]. Patients who 

recognize the early symptoms of hypoglycaemia can 

take corrective action, but a significant number of 

patients become hypoglycaemia unaware with little or 

no warning of imminent danger. With increasing 

emphasis on the need to keep blood glucose levels as 

close to normal as possible to minimize the risk of 

diabetic complications, the likelihood of iatrogenic 

hypoglycaemia becomes ever greater. 

Continuous Blood Glucose Monitoring Systems 

(CGMS) help improve glycaemic control in people with 

diabetes and the guidelines for diabetes management 

suggest the use of CGMS as a supplemental tool in  
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those with hypoglycaemia unawareness and/or 

frequent hypoglycaemic episodes [2]. These devices 

measure interstitial glucose concentrations, typically 

every one to five minutes, providing real-time 

information about the direction, magnitude and duration 

of glucose fluctuations. At present, self-monitored 

blood glucose (SMBG) finger prick checks are used 

most frequently but provide sparse information at only 

a few time points in a day, typically 1 to 7, whereas 

CGMS can provide detailed 24-hour glucose profiles 

over several days.  

The ability to continuously monitor and reliably 

interpret CGMS data streams in real time could, 

crucially, provide advance information on upcoming 

potentially hazardous glucose levels in time for 

corrective action to be taken [3-11]. Additionally, real-

time CGMS analysis could offer new clinically-relevant 

indices of glucose control that would form the basis for 

automated informed choice of therapeutic strategies 

and dietary adjustments needed to help patients 

optimize their diabetes management [12, 13]. Such 

clinical advantages, however, will only be achieved if 

the extensive “time based” chaotic glucose profiles can 

be explored using valid mathematical methods that 

provide clinically-relevant information [14, 15]. Several 

statistical methodologies for predicting upcoming 

glucose values from SMBG or CGMS data have been 

proposed over the last decade [3, 4, 10, 14, 16-24]. 

The statistical and machine-learning based approaches 

have included generalized linear auto-regressive 
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models, state space models, stochastic models and 

neural network approaches. Although these 

approaches have addressed the fluctuations in the 

blood glucose measures over time, most of them do 

not adequately address the ‘volatility’ aspects in the 

continuously measured glucose time-series data. Given 

the nature of volatility in the glucose data and the 

inherent complexities and dependencies therein, there 

is a need to explore more robust and generic method 

classes to analyses the CGM data. The rapid 

development in CGMS and artificial pancreas 

technologies provides a challenging new opportunity, 

which if resolved, will help to open a new horizon of 

treatment options for people with diabetes [25]. 

Prior to 2005, when CGMS technology was not 

generally available, several attempts were made to 

address the challenging issue of forecasting glucose 

values using SMBG profiles. Several dynamic 

physiological models and empirical models were 

proposed to describe glucose-insulin interactions in 

type 1 and type 2 diabetic patients: Desai et al. (2002) 

[16] used autoregressive models to predict upcoming 

glucose values and Magni et al. (2006) [17] proposed a 

stochastic volatility model to extract the variability in 

SMBG measures. Briegel et al. (2002) [18] described a 

non-linear state space model to model the blood 

glucose fluctuations in diabetic patients. Cox et al. [10] 

addressed the issue of predicting severe 

hypoglycaemia using SMBG measures in a study of 

both type 1 and type 2 diabetes patients.  

As continuously measured glucose values retain a 

large degree of temporal correlation between 

successive glucose values, it is possible to explore the 

applicability of autoregressive time-series models to 

predict future glucose values [10, 14, 20-24, 26]. 

Sparacino et al. (2008) [14] used an autoregressive 

(AR) model of order one, AR(1), which continuously 

adapts the model coefficient to predict glucose 

concentrations up to 60 minutes ahead. Eren-Oruklu et 

al. [24, 27] addressed the issue of short-term prediction 

of upcoming glucose levels using low-order linear AR 

and autoregressive moving average (ARMA) models. 

They also evaluated this algorithm further to predict 

hypoglycaemia and provide early warning 

hypoglycaemic alarms. Gani et al. [19, 20] examined 

the possibility of predicting upcoming glucose values 

using data driven higher-order linear AR models. These 

analyses were based on 1- and 5-minute CGMS 

profiles from three different devices in both type 1 and 

type 2 diabetes patients [19]. The authors reported that 

near-future glucose predictions were attained only 

when raw glucose measurements were smoothed and 

the model coefficients were regularized. Smoothing the 

volatile time-series glucose data however loses the 

background physiological reasons behind the glucose 

fluctuations, and is likely to create an artificial 

prediction environment.  

A data driven state space model was suggested by 

Wang et al. (2014) [28] to quantify the patient-specific 

effects of insulin dose and meal intake on blood 

glucose fluctuations. Sudharsan et al. (2015) [9] have 

recently discussed the use of machine learning 

techniques for hypoglycaemia prediction in patients 

with type 2 diabetes. Daskalaki et al. (2012) [26] 

compared glucose prediction performance with an AR 

model that uses only glucose information, an AR model 

with external insulin input, and an artificial neural 

network (ANN) utilising both glucose and insulin 

information. They reported superior performance of the 

ANN approach compared to the AR approach.  

Prediction accuracy of various models in these 

studies was mainly evaluated in terms of error in 

glucose predictions (root mean square error (RMSE)) 

and Clarke Error Grid analysis (CG-EGA) [21, 29]. 

Facchinetti et al. (2011) [21] proposed a J-index to 

compare different prediction strategies.  

We believe that the trend and inherent volatility in 

glucose realizations cannot adequately be captured by 

employing only a data driven AR process. Blood 

glucose dynamics in individuals with insulin-treated 

diabetes is a continuous process dependent on the 

temporal pattern of at least three external behavioural 

factors: dose of insulin injected, amount and nature of 

food intake, and extent of physical activity, as well as 

internal factors such as glucose counter-regulation. 

The volatility of a glucose series is not constant over 

time; periods of relatively low volatility and periods of 

relative high volatility tend to be grouped together on 

many occasions, especially in insulin treated patients. 

In other words, the current level of volatility tends to be 

positively correlated with its levels during immediately 

preceding periods. However, this is not necessarily true 

for all diabetic patients or for different insulin regimens. 

CGMS data have demonstrated that there are often 

substantial postprandial increases in plasma glucose 

levels in patients who use pre-meal doses of rapid-

acting insulin, even in those with satisfactory HbA1c 

(glycated haemoglobin) levels [30]. The frequent 

episodes of asymptomatic hypoglycaemia, especially 

overnight, have been common, and the CGMS systems 

may be less accurate at very low glucose levels [30]. 



190     International Journal of Statistics in Medical Research, 2015, Vol. 4, No. 2 Paul and Samanta 

We have addressed these challenging 

methodological issues related to the realization of trend 

and volatility aspects in CGMS time-series profiles to 

achieve short-term prediction of upcoming glucose 

values using generalizations of the deterministic 

autoregressive conditional heteroscedasticity (ARCH) 

approach [31-34]. ARCH models have been used 

extensively in modelling financial volatility [34]. They 

seek to explore time-dependent volatility as a function 

of observed prior volatility. Unlike AR models, ARCH 

models assume that the unexplained variation in 

glucose level (error) is heteroscedastic. Generalized 

autoregressive conditional heteroscedastic (GARCH) 

models consider the moments of a time series as 

variant, that is, the error term (real value minus 

forecasted value) do not have a constant variance, as 

with an autoregressive integrated moving average 

(ARIMA) process [32]. The variance of error terms is 

assumed to be serially correlated and can be modeled 

by an AR process. Thus, a GARCH process can 

measure the implied volatility of a time series due to 

glucose peaks and nadirs. Volatility models like 

GARCH can also account for the structural 

components in the volatility, such as fasting and post-

prandial scenarios, along with other physiological 

components. In this paper we explore the utility of the 

GARCH class of models to revisit the problem of 

predicting upcoming blood glucose values from CGMS 

time-series data in a clinically relevant manner. We 

have explored the performance of GARCH model to 

predict glucose values for the next 30-40 minutes at 

both very low and very high glucose fluctuation levels. 

The performance of GARCH modeling approach was 

compared with lower and higher order AR, and the 

state-space model. 

THE DATA 

The data used for this study were taken from a 

subset of 172 patients participating in a randomized 

clinical trial to assess the efficacy and safety of real-

time CGMS in the Diabetes Research in Children 

Network (DirecNet) who agreed to provide CGMS 

profiles et is a network consisting of 5 clinical centers 

and a coordinating center who investigate the potential 

use of glucose monitoring technology and its impact on 

the management of T1DM in children. They studied 

overnight counter regularity responses to spontaneous 

hypoglycaemia in young (3-8 y/o) vs. older (12-18 y/o) 

children with T1DMproviding an opportunity to evaluate 

CGMS profiles under hypoglycaemic conditions. 

The patients visited a clinic after the 6 weeks of 

optimizing glycaemic control. The parents were 

instructed to have the child use the CGM on a daily 

basis and were provided training to use the device. The 

CGM was used for a minimum of 4 days continuously. 

No additional data, including the patients’ food and 

activity diary were available. We randomly chose six 

patients out of 172 on the basis of the availability of 

both hypoglycaemia and hyperglycaemiain the same 

time series profile during the course of CGM 

assessment. Choice of only 6 patients for presentation 

in this study from among the patients participating in 

the same trial is deemed adequate, as this may be 

looked upon as an initial technology demonstration. 

This study used the FreeStyle Navigator CGM made by 

Abbott Diabetes Care, the Guardian REAL Time CGM 

made by Medtronic MiniMed and the DexCom SEVEN 

PLUS CGM made by DexCom Inc [35].  

METHODS 

For this exploratory applied methodological study, 

we investigated four different methods of forecasting: 

AR models of higher and lower orders, state space 

model, and the GARCH model. The AR models and the 

state space models have already been investigated by 

researchers in the context of analysing self-monitored 

glucose levels and the glucose measures from the 

CGMS. A brief description of each model is provided 

below. 

Autoregressive (AR) Models 

The autoregressive model specifies that the output 

variable / measurement depends linearly on its own 

previous values. AR(p) models for time series are 

Markov processes with dependence of higher order 

than lag 1 in the univariate setup [34]. For example, a 

process is AR (1) when the current value is based on 

the immediately preceding value, whereas AR (2) (p=2) 

has the current value based on previous two values. 

The simplest AR model is AR(0) which has no 

dependence between the terms. A general AR(p) 

model is as follows 

yt = i yt i + t
i=1

p

         (1) 

where 
 t N(0, v)  for t = 1, 2, …. These models are 

multiple regression models but with lagged values as 
predictors. These are considered as very flexible 
models in handling a wide range of time series 
patterns. The coefficients are generally estimated by 
ordinary least square estimation by minimizing 

y
2
, where  is the design matrix representing the 
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lagged values of y. The order of the AR models are 
selected based on the RMSE. Usually, RMSE 
decreases quickly with the increase in the order up to 
some order and then more slowly. An order where 
RMSE curve flattens is chosen as an appropriate order. 
Akaike Information Criterion (AIC) is also another 
common measure for choosing the AR order.In our 
study we considered both AR model of higher order as 
reported by Gani et al. (2010) [19], and lower order AR 
as well as discussed by Desai et al. (2002) [16]. 

State Space Models 

In the context of time series, state space models 

allow an observed time series being explained by some 

state variables which are usually a stochastic process 

[34]. State space is widely used in time series analyses 

where the model uses state variables to describe a 

system by a set of first order differential equations, 

rather than n
th

 order differential equations. The state 

variable can be unobserved. A simpler state space 

model is as follows. 

State : xt+1 = At xt + vt           (2) 

Observation : yt = Bt xt + t          (3) 

where the state variable xt is a vector-valued stochastic 

process and the yt is the observed time series. The vt  

in the State (Equation 2) model is a Gaussian error 

 
N(0, v ) and t N(0, ) . It is also assumed that the 

error terms are uncorrelated to each other. Apart from 
time, the coefficients At and Bt could also depend on 
policy variables in the context of finance. Estimation of 
the statespace model involves Kalman filter which 
allows to construct the likelihood function associated 
with the model [34]. The Kalman filter is used to 
recursively obtain conditional mean and variances of 
both unobserved and measured (dependent) variables. 

ARCH / GARCH Models 

In econometrics, the ARCH models are used to 

characterize and model observed time series 

measures. It is assumed that the current measure not 

only depends on the past measure(s), but also 

depends on the variability in the past measure(s). The 

original ARCH model devised by Engle [36] modelled 

the variance of the regression residuals as a linear 

function of the lagged values of the squared regression 

residuals. A typical ARCH(p) model can be defined as 

 
yt = xt + t , t D(0, t

2 )           (4) 

t
2
= ao + ai t i

2

i=1

p
(Conditional Variance)         (5) 

where  is the structural parameter, t
2
 is the 

innovations and ai are the ARCH parameters with p 
lags. t

2
 is the volatility at time t. D may be normal or 

variants of t-distribution. This model was generalized 
by Bollerslev [32] to include the lagged values of the 
conditional variance – the GARCH model. A typical 
GARCH (p, q) model specification will extend the 
residual variance as 

t
2
= ao + ai t i

2

i=1

p
+ gj t j

2

j=1

q
        (6) 

where gj are the GARCH parameters. This describes 

the volatility process as dependent on its own lagged 

values and on the residuals of the mean equation. The 

GARCH coefficients capture the autoregressive 

structure of the conditional volatility process and 

GARCH (1, 1) would imply that both p and q are equal 

to unity. The GARCH model may be looked upon as an 

autoregressive moving average (ARMA) process in the 

squared innovations or residuals also [32]. It provides 

parsimonious models that are easy to estimate and has 

been proven to be surprisingly successful in predicting 

conditional variances. A GARCH (p, q) model can be 

shown to be equivalent to a particular ARCH ( ) 

model. A GARCH (1, 1) model, containing only three 

parameters in the conditional variance equation, allows 

an infinite number of past squared errors to influence 

the current conditional variance.  

A typical GARCH (1, 1) model with additional AR 

component of order 2 [GARCH (1, 1) – AR (2)] can be 

formulated as 

yt = xt + 1yt 1 + 2yt 2 + t , t D(0, t
2 )          (7) 

t
2
= ao + a1 t 1

2
+ g1 t 1

2            (8) 

where i’s are AR parameters associated with the 

autoregressive order. 

The Model Estimation, Validation and Diagnostics 
Aspects 

The presence of ARCH effect in time-series data 
can be tested using a simple Lagrange Multiplier (LM) 
test. Since ARCH model implies an AR process for the 
squared residual t

2
, the LM test for ARCH effects can 

be constructed based on auxiliary regression 

t
2
= a0 + ai t i

2
+ ut

i=1

p

 where ut = t
2

t
2  is a 

martingale difference sequence. Under the null 
hypothesis that there are no ARCH effects, 

a1 = a2 = . = ap = 0,  the test statistic LM = T. R
2 

has 

an asymptotic chi-square distribution with p degrees of 
freedom, where T is the sample size and R

2
 is 
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computed from the regression mentioned above. 
Although the LM test is constructed from an ARCH 
model, Lee et al. (1995) [37] have shown that it also 
has the power against more general GARCH 
alternatives and so can be used as a general 
specification test for GARCH effects. 

 The exploration of the distribution of error 

component (innovation) plays a crucial role in the 

assessment of GARCH model fits. The likely leptokurtic 

innovation distribution plays an important role in 

determining the relative performance of the two 

competing GARCH model estimation methods, namely 

the maximum quasi-likelihood estimator (QMLE) based 

on a Gaussian likelihood (QMLE) and the log-

transform-based least absolutely deviations estimator 

(LADE) [31, 38].  

In general, GARCH model fitting assumes student-t 

underlying distribution to capture the fat tails 

(leptokurtosis) of innovation that is frequently observed 

in high frequency data series in financial studies. As 

the nature of this distribution for blood glucose data is 

completely unknown, we have compared both normal 

and t-distribution in terms of model fitting and out-of-

sample forecasting ability. Wilhelmsson (2006) [39] 

showed that allowing for a leptokurtic error distribution 

leads to significant improvements in variance forecasts 

compared to using the normal distribution. They 

compared nine different error distributions (variants of 

t-distribution) and found that allowing for skewness and 

time variation in the higher moments of the residual 

distribution does not further improve forecasts. It is 

worth mentioning here that in the context of non-

normality, the usual standard error estimate will be 

inappropriate. For models with normality assumption, 

we have used quasi-maximum likelihood estimates of 

variance-covariance matrix that is robust to symmetric 

non-normality in the disturbances.  

The most challenging problem in time-series based 

forecasting (especially with the economics and finance 

data) is the evaluation of the ability of the model to 

appropriately forecast the volatility in the time-series. 

Many “loss function” based measures have been 

proposed to evaluate the forecasting of conditional 

variance [40]. Two most widely used loss functions in 

the literature are root mean squared error (RMSE) and 

absolute mean squared error (AMSE) loss functions. 

To evaluate the ability of the GARCH models to 

capture the volatility in the blood glucose profiles we 

have used the RMSE and AMSE: 

 

RMSE :
1

m
(yt yt )

2

t=1

m
 ,         (9) 

 

AMSE =
1

m
yt yt ,t=1

m
        (10) 

where yt is the observed glucose measurements at 

time t and 
 
yt  is the predicted glucose measurements. 

We have also computed the relative error (RE) of the 
prediction ability of other models compared to G(1,1) in 
both hypo and hyperglycaemic situations. The RE is 
defined as 

RE = (RMSEG(1,1) - RMSEother)/RMSEG(1,1) *100      (11) 

The RE indicates the amount of prediction error (in 

percentage) in higher and lower order AR and the state 

space model in comparison to G (1, 1).  

RESULTS 

All time-series measures of glucose levels (in 

mmol/L) from the individual CGMS profiles from the 6 

patients are provided in the first columns of Figures 1A 

and B. We conducted formal statistical tests (as 

described in the method section) to evaluate the 

presence of ARCH effect in the individual time series. 

For all six CGMS profiles, the LM test was highly 

significant, even up to lag 10, clearly suggesting the 

presence of ARCH effects. The high volatility and the 

significant autoregressive process (as tested) of these 

CGMS profiles can also be seen from the time-series 

plots in Figures 1A and B.  

The second columns of Figures 1A and B represent 

the zoomed graphs of original glucose measures and 

the predicted glucose measures by four different 

methods under hypoglycaemic scenario. Similarly, the 

third columns in Figures 1A and B represent the 

zoomed plots of original and predicted glucose 

measures under hyperglycaemic scenario. The dotted 

perpendicular lines represent the time point at which 

the dynamic prediction for 30 – 40 minutes by different 

methods started. We considered blood glucose level 

less than 3.2 mmol/L as hypoglycaemia region and 

higher than 12 mmol/L as hyperglycaemia region.  

As evident from Figure 1 and Table 1, that GARCH 

model performed better in terms of prediction 

performance compared to the other models in 

comparison. While predicting for hypoglycaemia, the 

RMSE and AMSE estimates were the smallest with G 

(1, 1) fits for all 6 profiles, compared to those obtained 

from the other models. Only for one patient’s profile 
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Figure 1: (A) Column 1 - CGMS profiles from three of the six selected patients; Column 2 - zoomed graph of predicted glucose 
levels from different models in hypoglycaemia region, with dotted vertical line presenting the start of dynamic prediction; Column 
3 - zoomed graph of predicted glucose levels from different models in hyperglycaemia region, with dotted vertical line presenting 
the start of dynamic prediction. 

(B) Column 1 - CGMS profiles from the second set of three of the six selected patients; Column 2 - zoomed graph of predicted 
glucose levels from different models in hypoglycaemia region, with dotted vertical line presenting the start of dynamic prediction; 
Column 3 - zoomed graph of predicted glucose levels from different models in hyperglycaemia region, with dotted vertical line 
presenting the start of dynamic prediction. 

(Patient ID 104, Table 1), the RMSE estimate was 

higher for prediction in hyperglycaemia region with the 

G(1,1) model fit, compared to one of the comparator 

models, with the negative estimates of RE at 7%, 12% 
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and 24% with higher AR, state space and lower AR 

models respectively. The relative errors for higher order 

AR, lower order AR and state space models in 

comparison with G (1, 1) were in general remarkably 

higher, ranging from 14% to 54% in the hypoglycaemia 

region, and between 12% to 222% in the 

hyperglycaemia region. 

The GARCH model fits were highly significant for all 

the patient profiles (Wald test). The AR parameters 

within the GARCH formulation were highly significant 

on both lags 1 and 2 for all the models. We note here 

that in all cases models were fitted without intercept for 

the structural components.  

The observed glucose levels from the CGM profile 

and the model-based predicted glucose values from 

the G(1, 1) models are presented in Figure 2. This 

figure also contains the residual (observed – predicted 

glucose values) over time. As evident from the 

predicted glucose and prediction residuals in Figure 2, 

in the absence of any additional behavioral and dosing 

Table 1: Forecasting Comparisons between Four Models, G(1,1), Higher Order AR, Lower Order AR and State Space 
Model for Six Randomly Selected CGMS Profiles Shown in Figure 1 (A and B) 

Models G(1,1) Higher Order AR Lower Order AR State space 

 Hypo Hyper Hypo Hyper Hypo Hyper Hypo Hyper 

Patient ID 16 

RMSE 0.84 0.42 1.13 0.90 1.11 1.05 1.00 1.09 

RE (in %)   34% 114% 32% 151% 19% 160% 

AMSE 0.78 0.26 1.01 0.74 0.99 0.84 0.86 0.92 

Min, Max (-1.22, 0.46) (-0.02, 0.91) (-1.58, -0.25) (0.18, 1.66) (-1.56, -0.27) (0.15, 1.97) (-1.41, 0.00) (0.24, 1.94) 

Patient ID 25 

RMSE 0.76 0.95 1.11 1.17 0.87 0.73 1.13 1.40 

RE (in %)   45% 23% 14% 23% 47% 46% 

AMSE 0.67 0.70 0.94 1.03 0.71 0.54 0.96 1.23 

Min, Max (-0.38, 1.19) (-0.19, 1.82) (-1.84, -0.27) (0.33, 1.88) (-1.55, -0.16) (0.01, 1.37) (-1.84, -0.28) (0.41, 2.20) 

Patient ID 42 

RMSE 1.01 1.97 1.22 2.28 1.48 2.43 1.41 2.34 

RE (in %)   21% 16% 47% 23% 40% 19% 

AMSE 0.74 1.71 0.87 2.06 1.03 2.18 0.97 2.11 

Min, Max (-1.90, 0.29) (-0.16, 3.16) (-2.29, 0.22) (0.29, 3.32) (-2.72, 0.01) (0.26, 3.58) (-2.59, 0.04) (0.29, 3.45) 

Patient ID 73 

RMSE 0.55 0.52 0.83 1.36 0.64 1.21 0.74 1.67 

RE (in %)   51% 163% 17% 133% 35% 222% 

AMSE 0.43 0.31 0.72 1.30 0.53 1.13 0.64 1.58 

Min, Max (-0.96, -0.05) (-1.14, 0.02) (-1.33, -0.19) (0.52, 1.72) (-1.08, -0.10) (0.37, 1.55) (-1.19, -0.16) (0.59, 2.08) 

Patient ID 104 

RMSE 0.92 3.39 1.96 3.14 2.10 2.56 1.48 2.98 

RE (in %)   112% -7% 128% -24% 61% -12% 

AMSE 0.73 3.01 1.47 2.86 1.58 2.30 1.09 2.70 

Min, Max (-1.51, 0.31) (-0.66, 5.08) (-3.29, -0.01) (0.79, 4.51) (-3.53, -0.01) (0.53, 3.67) (-2.51, 0.12) (0.73, 4.29) 

Patient ID 145 

RMSE 0.93 2.63 1.19 3.94 1.43 2.94 1.21 4.03 

RE (in %)   29% 50% 54% 12% 31% 53% 

AMSE 0.78 2.13 1.09 3.22 1.24 2.32 1.10 3.30 

Min, Max (-1.57, -0.15) (-0.73, 4.67) (-1.82, -0.38) (0.40, 6.50) (-2.35, -0.31) (0.40, 6.50) (-1.84, -0.39) (0.43, 6.63) 
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information on individual patients, the simple G (1, 1) 

model with AR component can only partially capture 

the volatility in the glucose profile. The residual (error) 

level from the model fit (dotted lines at level ‘0’ of 

horizontal axis) is relatively high at volatile regions 

when the glucose levels fall or increase rapidly (Figure 

2). However, the 30-40 minute prediction performance 

was promising. The forecasting performance of the 

GARCH model was compared with AR and state space 

models using RMSE (Equation 9) and AMSE (Equation 

10). Table 1 displays the RMSE, AMSE and the RE for 

all relevant modelling approaches for both 

hypoglycaemic and hyperglycaemic episodes in 

individual CGM profiles.  

DISCUSSIONS 

The main aim of this study was to explore the utility 

of the GARCH modeling approach in understanding the 

trend and volatility of highly chaotic glucose profiles, 

and its ability to reasonably forecast upcoming glucose 

levels. The GARCH models have been able to capture 

the volatility in the glucose time-series to a great 

extent. The forecasting ability looks promising despite 

the highly chaotic scenario (Figure 1) and the use of 

the minimum possible structural information relating to 

day-to-day fluctuations in glucose values. These 

fluctuations in glucose levels are of course not purely 

random. Various physiological aspects, including the 

real time activities of the patients and the insulin intake 

time, play a major role in the variations of glucose 

levels. 

The observed AMSE ranging between 0.55 mmol/L 

to 0.78 mmol/L in the hypoglycaemic region is really 

promising. The estimated minimum and maximum 

prediction error (Min, Max in Table 1) in the 

hypoglycaemia region is mainly due to irregular 

behavior of the realized glucose levels produced by the 

system below 2.5 mmol/L. This particular problem has 

also been reported earlier [30].  

In terms of the forecasting, the key issue is the 

variance of the error terms and what makes them large. 

Here the dependent variable is the average glucose 

realization over a period of five minutes and the 

variance of the realized glucose represents the risk 

level for the patients. These are time series 

applications, but it is nonetheless likely that 

heteroscedasticity is an issue. Given the nature of 

glucose fluctuations in patients with T1DM, it is 

clinically obvious that some time periods are riskier 

than others; that is, the expected value of the 

magnitude of error terms at some times is greater than 

at others. This aspect is clearly evident from the 

residual plots, along with the observed and predicted 

glucose levels shown in Figure 2. The residuals are 

clearly higher during the sudden peaks in the glucose 

fluctuations. Moreover, these risky times are not purely 

random, especially in patients treated with insulin. 

Instead, there is a degree of autocorrelation in the 

 

Figure 2: The observed and predicted glucose measures along with the model-based residuals based on training data from 
three selected patients, using G (1, 1) fit. The selected profiles are from Patient ID 16, 25 and 73 respectively.  
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riskiness of glucose realizations. The ‘volatility 

clustering’ issue is realized here and the proposed G(1, 

1) have been able to capture the complexities to a 

great extent. However, other clinically important 

structural information need to be fed into the class of 

models to understand the system better and to capture 

the fluctuations more accurately. Better understanding 

of the volatility aspects through such models should 

enhance clinical decision making concerning the 

likelihood of an upcoming hypoglycaemic or 

hyperglycaemic episode. 

Some CGM devices incorporate early warning 

alarms for hypoglycaemia, generally by extrapolating 

the rate of change of glucose concentration. The 

performance of early alarms is highly dependent on the 

value of the threshold and prediction horizon selected 

[35, 41-43]. A high frequency of false alarms is 

reported particularly for predicting hypoglycaemia 

glucose levels below 4.0 mmol/L, which limits their 

credibility and use by patients [42, 43]. The 

fundamental issue with the currently available alarm 

systems is the background methodologies for 

prediction. As reported, most of these systems use the 

simple ‘rate of change’ of glucose levels along with 

other basic control-level information which do not take 

into account the volatility aspects in the glucose 

measures. Therefore, there is a need to improve the 

current methodologies to predict hypoglycaemia more 

accurately from CGM data. The development of ARCH 

class of models can play a great role in this direction. 

While the progress on research work for the 

development of “artificial pancreas” is promising, 

development of more robust methodological support for 

risk prediction will be of great value.  
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