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Abstract: A mating system, previously derived, which is more general than random mating is defined by the gene 
frequency q and a parameter F which measures divergence from Hardy-Weinberg proportions commonly used in genetic 
analysis. F can be viewed as the average coefficient of inbreeding in a population, the use emphasized here. Also it can 
characterize the variation in gene frequency in a stratified population. Taking q as fixed, the distribution of F over values 
admissible under the general mating system is derived by simulation. The mating system may be seen to be based on 
indifference as to choice of mates. This is the first object of the paper. The second uses the derived distribution of F to 
make a Bayesian estimate of F from a single sample of genotypic counts. Such an estimate has a number of uses in 
genetic analysis. 

Keywords: Genetic Equilibrium, Hardy-Weinberg Law, Mate choice indifference, Inbreeding coefficient, Bayesian 

estimation. 

INTRODUCTION 

When analysing a population, at the outset we often 

assume a state of equilibrium. In genetic analysis this 

is often Hardy-Weinberg equilibrium (HWE), expressed 

in the set of proportions 

{q2 ,2q(1 q),(1 q)2}           (1) 

In (1) q is the frequency (proportion) of the first of 

two alleles, here denoted as U and T, in the population 

(see Edwards [1], Mayo [2] and Russell [3]). We restrict 

ourselves to a single autosomal locus with these two 

alleles. More generally, the population will have 

genotypic proportions, as given, in different notation, by 

Morton [4]: 

P(UU) = q
2
(1 – F) + qF           (2) 

P(UT) = 2q(1 – q)(1 – F)          (3) 

P(TT) = (1 – q)
2
(1 – F) + (1- q)F          (4) 

Morton, page 109, introduces F as follows: “We 

seek a single parameter, called the (coefficient of) 

inbreeding F, not dependent on the gene frequencies 

(although its range is so dependent), which will predict 

genotype and mating type frequencies in populations 

not necessarily panmictic (randomly mating).” [4] 

Bittles and Black [5] state “It ... is not surprising that 

the prevailing Western public and medical opinion with 

regard to consanguinity is largely negative.” As can be  
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seen by comparing (1) and (2), when q is very small 

and F is positive, the frequency of type UU may be 

considerably raised relatively under consanguinity (F > 

0). Thus a deleterious trait which is recessively 

inherited will have raised incidence compared with a 

population in which F = 0. Bittles and Black point out 

that there may be countervailing benefits from 

consanguineous unions in some communities [5]. 

At the time of publication (2010), Bittles and Black 

noted that “close-kin marriage continues to be 

preferential in many major populations”. They cite 

Strømme et al. who write “Progressive encephalopathy 

(PE) is a heterogeneous group of individually rare 

diseases, many with an autosomal recessive mode of 

inheritance. We estimated the increased risk of PE 

associated with consanguinity. ... The population 

attributable risk due to parental consanguinity was 

50.3% in the Pakistani sub-population (of Oslo).” [6] 

Consanguineous marriage was defined as a union 

between partners who were first cousins or more 

closely related.  

Bittles and Black have a section on consanguinity 

and “complex diseases”. In many of these, as the label 

suggests, the aetiology is unresolved. These authors 

refer to some of the difficulties of interpretation and 

give a wide-ranging review of these questions. 

Risch [7], writing at the time when the entire DNA 

sequence of Man was about to be revealed, discussed 

the problem of unravelling the genetic basic of complex 

diseases. One such, HBSL, is reported in Taft et al. [8] 

An account of this for the general reader is given by 

Kaminsky and the parents of one of the affected 

children, Stephen and Sally Damiani [9]. OMIM states: 
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“HBSL is caused by homozygous or compound 

heterozygous mutation in the DARS gene (603084) on 

chromosome 2q21.3” and further, “The transmission 

pattern in the families with HBSL reported by Taft et al. 

was consistent with autosomal recessive inheritance.” 

[15] In the light of this it is interesting to note that both 

Sally and Stephen Damiani have Armenian heritage, as 

stated on page 154 of their book Cracking the Code. 

This is relevant to another use of F as a measure of 

variability of gene frequencies between sub-

populations as well as an average coefficient of 

inbreeding. 

As will be clear later, F (F in our notation) does not 

fix mating type frequencies as well as genotype 

frequencies of the ‘standing’ population. Figure 5 in 

Stark and Seneta (2014) demonstrates this fact [10]. 

When F = 0, the frequencies in (2)-(4) reduce to those 

in (1). As Morton points out, F (F) can take negative 

values subject to restrictions decribed below [4]. 

However, for the case of inbreeding, F is positive. 

The object of this paper is twofold: to use our model 

of genetic equilibrium to derive a simple prior 

distribution of F; to use it to make a Bayesian estimate 

of F from a sample of genotypic counts. We have given 

the model earlier but for the reader’s convenience 

repeat the outline here. Next is given the method of 

calculating the prior distribution of F and finally the 

Bayesian estimation of the posterior distribution using a 

sample of counts. 

THE GENERAL MATING EQUILIBRIUM MODEL 

We deal only with a single autosomal locus with two 
alleles  U  and  T  with frequencies in the population 

 
q

 
and 

 
p (q + p = 1) . Throughout 

 
q

 
remains constant 

because this is guaranteed by the nature of  
the selected mating system. A set of frequencies  

of genotypes 
  
{UU ,UT ,TT}  can be represented in  

terms of 
 
q

 
and a measure of departure from Hardy-

Weinberg (HW) form  F  as, say, 

a
  
={q

2
+ Fpq,2 pq 2Fpq, p

2
+ Fpq} . These will vary 

according to  F  and will be denoted generally by 

  
{ f

0
, f

1,
f

2
}, ( f

0
+ f

1
+ f

2
= 1) , that is

  
f

0
= q2

+ Fpq , etc. 

The population is maintained in discrete generations 

according to the mating scheme 

 

UU UU UU UT UU TT

UT UU UT UT UT TT

TT UU TT UT TT TT

 

with commensurate pairing frequencies given by the 

matrix 

  

C =

f
00

f
01

f
02

f
10

f
11

f
12

f
20

f
21

f
22

.  

 C  is symmetric, that is 
 
f

ij
= f

ji
, with row and column 

sums { f
0
, f
1
, f
2
} . This triple of sums is the parental 

frequency distribution. 

Below we use  C  in the extended (row vector) form 

  
u ={ f

00
, f

01
, f

02
, f

10
, f

11
, f

12
, f

20
, f

21
, f

22
}.  

To follow the progression of generations we need 
Mendel’s coefficients of heredity given in matrix form by 

  

M =

1 1 2 0 1 2 1 4 0 0 0 0

0 1 2 1 1 2 1 2 1 2 1 1 2 0

0 0 0 0 1 4 1 2 0 1 2 1

.  

Then the frequency distribution of juveniles is 
calculated from  

  
j = ( Mu)  

which in detail is 

  

j =

f
00
+

f
01
+ f

10

2
+

f
11

4
,

f
01

2
+

f
02
+

f
10
+ f

11
+ f

12

2
+ f

20
+

f
21

2
,

f
11

4
+

f
12
+ f

21

2
+ f

22

.  

The population is in equilibrium, that is: the 
distribution of juveniles is the same as that of adults, if 
and only if matrix C  has, in addition to the properties 
given above, the special property 

f
11
= 4 f

02
= 4 f

20
.           (5) 

The notation used here is a modified version of that 

given in Stark & Seneta [10, 11]. 

Identity (5) allows for non-random mating (NRM) as 

well as random mating (RM).  

A schematic illustration of the admissible region is 
given in Figure 1. The details are explained fully in 
Stark & Seneta [10] and Stark [12]. For a fixed value of 
q, points within the region are given by the set of 

coordinates {F , f
11
, f
01
} . Table 1 gives the coordinates  
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of points in Figure 1. The admissible set of points are 
within the region defined by vertices Q V Z D E A. 

 

Figure 1: Schematic illustration of the bounding region of 

admissible sets of  F ,
  
f
11

and 
  
f

01
for 

  
1 4 <q <1 2 . 

The region defined by vertices O,Q,A, and E are not part of 
the admissible region. The coordinates of the vertices are 

given in Table 1. Other points of reference, not given in 

Table 1, are: O ( q p ,0,0) ; B (( p 2q) / (3p),0,0) ; N 

  
((2 p q) / (3p),0,0) .  

 

Table 1: The Coordinates of the Vertices of the 
Admissible Region as Functions of q  

Vertex F f
11

f
01

A ( p q)2 (4pq) 0 q 1 4

V 1 0 0

D ( p 2q) (3p) 4q 3 0

E (1 4q + 6q2 ) (6pq) 2(4q 1) 3 0

Z (2p q) (3p) 0 2q 3

Q (3q 1) (3q) 0 0

 

THE SAMPLING PROCESS 

As noted in the previous section, each point in the 

admissible space corresponds to a mating system in 

equilibrium. The distribution of genotypes in the 

parental and equally the offspring generations are 

identified by q and F. Since q can be regarded as fixed, 

the ‘universe’ of systems satisfying the conditions of 

pair formation is described by the variation in F. In this 

section we seek the distribution of F by sampling the 

universe and find it to be of simple form. 

The sampling process starts from an arbitrary value 
of q, taken without loss of generality to be in the 

interval 0 < q 1 2 . First, a value of F, the parameter of 

divergence from Hardy-Weinberg form, is selected from 

the uniform distribution over the interval 
  

q p F 1 . 

This leads to the population genotypic distribution 

  
{ f

0
= q2

+ Fpq, f
1
= 2 pq 2Fpq, f

2
= p2

+ Fpq}  

Then 
  
f
11

 is chosen randomly from the uniform 

distribution over the interval 
  
0 f

11
f
1
, leading to 

  
f

02
= f

11
/ 4  and 

  
f

20
= f

02
. Then, if 

  
f

02
f

0
, 

  
f

01
 is 

chosen from the uniform distribution over the interval 

  
0 f

01
f

0
f

02
, otherwise discard the sample. 

Continuing, calculate 
  
f

00
= f

0
f

01
f

02
, 

  
f
10
= f

01
, 

  
f
12
= f

1
f
10

f
11

, 
  
f

21
= f

12
 and 

  
f

22
= f

2
f

20
f

21
. If 

  
f

22
< 0 , discard. Finally, if 

  
f
12

0 , retain the sample 

and add to the pool of admissible systems. 

Cavalli-Sforza and Bodmer give data relating to the 

MN blood-group locus: 47 M, 52 MN, and 12 N 

individuals [13, p. 43]. There are 76 N genes from a 

total 222 and so the frequency of gene N is q = 38/111. 

 

Figure 2: Empirical distribution of  F for q = 38/111. 

Figure 2 shows the result of sampling from a 
population with gene frequency q = 38/111. The result 
supports our conjecture that the set of admissible 
systems can be characterized by specifying q and the 
distribution of F as triangular with base consisting of 

the interval 
  
F F 1 , where 

  
F = (1 4q + 6q

2 ) / (6 pq) , and height 
  
2 (1 F ) , since 

the area of the triangle is unity. 

We denote the observed median value of F in the 

sample as 
 
F . Then the mode of F is calculated by 

  

F = 1
2(1 F )2

1 F
          (6) 

The triangular distribution derived by repeated 

sampling when q = 38/111 is shown in Figure 3. It is a 

simpler and more defensible choice of prior than the 

one given in Stark [12]. 
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Figure 3: Constructed distribution of F  for 
  
q = 38 / 111 .  

(Pr_F stands for probability density of F). 

We applied the same sampling process to several 

values of q and calculated the modes of F from 

equation (6). The results are displayed in Figure 4 

which shows that modes close to zero, some even 

negative, apply over an interval of F. 

 

Figure 4: Modes of  F for a selection of values of q. F_a 
stands for the calculated mode of the empirical distribution of 
F for assumed values of q. 

THE BAYESIAN ESTIMATE OF F 

The probability density function (pdf) of the 

distribution depicted in Figure 3 is simple to calculate. 

The length of the base is 1 – F , where F  = (4q – 1 – 

6q
2
)/(6pq), in this case. Therefore the height of the 

function at the apex  = 2/(1 – F ), since the area 

between the pdf and zero is unity. The slope of the pdf  

 

for values of F between F  and F  is  = /( F  - F ); 

the value of the pdf in this interval is .(F - F ) = 2(F - 

F )/((1 - F )( F  - F )) . The slope of the pdf for values 

of F between F  and 1 is  = /( F  – 1); the value of the 

pdf in this interval is .( F – 1) = 2(F – 1)/((1 - F )( F  – 

1)). We denote the composite pdf from these two 

intervals as P(F), F   F  1. 

The pdf can be used to calculate a Bayesian 

estimate of F. If the value of the fixation index is F, the 

genotypic proportions in the population are 

  
{ f

0
= q2

+ Fpq, f
1
= 2 pq 2Fpq, f

2
= p2

+ Fpq}  

Denoting the genotypic counts by 
  
{n

UU
,n

UT
,n

TT
} , the 

(conditional) probability of observing these counts is 

  

C(F ) =
n!

n
UU

! n
UT

! n
TT

!
f

0

n
UU f

1

n
UT f

2

n
TT  

where n is the sample size. 

If P(F).dF is the prior probability that F lies in an 

infinitesimal interval containing F , then, applying the 

formula of Bayes [14], the posterior probability that it is 

in that interval is 

P’(F).dF = 
P F( ).dF C(F )

P F( ) C(F ).dF
.         (7) 

The posterior distribution of F from (7) for the above 

counts is displayed in Figure 5. 

 

Figure 5: The posterior distribution of  F  computed from 
genotypic counts {12, 52, 47} from which 

  
q = 38 / 111

 
(Pr_F 

stands for probability density of F). 
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