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Abstract: This paper develops a general methodology of nonparametric and semiparametric regression for group testing 
data, relating group testing responses to covariates at individual level. We fit nonparametric and semiparametric models 
and obtain estimators of the parameters and the nonparametric regression function by maximizing penalized likelihood 

function. For implementation, we develop a modified EM algorithm with individual responses as complete data and 
observed group testing responses as observed data. Numerical results based on simulations and chlamydia data 
collected in a Nebraska study show that our estimation methods perform well for estimating both the individual 

probability of positive outcome and the prevalence rate in the population. 
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1. INTRODUCTION 

Group testing, or pooled testing, where the samples 

are tested in pools instead of at individual level, was 

first introduced by Dorfman [1] to reduce cost and 

increase efficiency of tests. Under the assumption that 

the group testing result is positive if at least one 

individual sample in the corresponding pool is positive 

and negative if none of the individual samples in that 

pool are positive, Dorfman [1] showed that his 

proposed group testing method can significantly reduce 

the total number of tests compared to individual tests. 

Since then, the group testing method has been widely 

used in blood or urine screening, chemical compound 

screening in drug discovery, infectious disease 

diagnostic tests and molecular biology screening; see, 

for example, Stramer et al. [2], Xie et al. [3], Remlinger 

et al. [4], Lindan et al. [5], Rours et al. [6], Du and 

Hwang [7] and reference therein. 

Many papers discussed the issue of optimal designs 

in attempt to find optimal group size which minimizes 

the total number of tests under various scenarios; see, 

for example, Dorfman [1], Yao and Hwang [8], Hughes-

Oliver and Swallow [9], Phatarfod and Sudbury [10] 

and Brookmeyer [11]. But the group testing method can 

also be used to estimate model parameters such as the 

overall prevalence of the disease in large population 

and others. Chen and Swallow [12] showed that group 

testing can substantially reduce the mean square error 

of the estimator of prevalence rate and the cost per unit  
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information under certain conditions. Vansteelandt, 

Goetghebeur and Verstraeten [13] suggested that 

testing pools can lower false positive and false 

negative rates in low prevalence cases and yield more 

precise prevalence estimators. Huang and Tebbs [14] 

demonstrated that despite the loss in information, 

pooling by group testing can provide robust and 

improved parameter estimators in terms of mean-

squared error under structural measurement error 

models. Depending on the purpose of study, the group 

testing schemes and the information contained in the 

group testing results may vary. If the objective is to 

identify all positive individuals, all samples in the pools 

with positive group testing results may be retested. In 

this case, the individual sample responses are all 

available. In many other cases, the individual outcomes 

can not be implied completely from the group testing 

results, either by design (see, e.g., Gastwirth and 

Hammick [15] to protect privacy) or due to testing 

errors and other considerations (see, e.g., Gastwirth 

and Hammick [15], Vansteelandt et al. [13], Xie [16], 

Chen, Tebbs and Bilder [17]).  

In many studies, the individual covariate 

information, such as age, gender, and general health 

information, is available and it is of interest to explore 

whether such information is related to the responses or 

not. Parametric regression methodologies have been 

developed to analyze the relationship between the 

group testing responses and the covariate variables. 

Vansteelandt et al. [13] directly maximized the 

likelihood function of the group testing responses. Xie 

[16] considered the individual responses as the 

complete data and the observed testing results as 

observed data respectively, and applied an EM 
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algorithm to fit regression models. Furthermore, Chen, 

Tebbs and Bilder [17] studied heterogeneous 

populations and included a random effect covariate in 

regression models. In addition, Huang and Tebbs [14] 

and Huang [18] considered regression analysis of 

group testing samples in the situations when covariates 

have measurement errors. So far, the research on the 

regression method in group testing has focused on 

parametric models. Nonparametric or semiparametric 

regression models have not been considered in 

analysis of group testing samples, partly due to the 

difficulty of performing nonparametric regression on 

missing data especially with potentially correlated 

testing responses.  

In this paper, we extend the parametric regression 

analysis of Xie [16] to nonparametric and 

semiparametric regression analyses. We use a 

penalized maximum likelihood method and a modified 

EM algorithm to overcome the difficult of missing 

information and potentially correlated responses. 

Penalized likelihood contains the likelihood function 

and a roughness penalty term in which a smoothing 

parameter controls the trade-off between goodness-of-

fit and smoothness. Green and Silverman [19] provided 

a thorough discussion on the penalized maximum 

likelihood method for nonparametric and semi-

parametric regression and generalized linear models. 

Green [20] applied the EM algorithm to the penalized 

maximum likelihood estimator and pointed out that the 

parameter can represent a smooth function that has 

been discretized. In our work, we combine the 

algorithms in Green and Silverman [19] and the 

methodologies in Green [20], and apply the EM 

algorithm to the nonparametric and semiparametric 

regression for group testing data. The results of 

numerical examples show that our estimation methods 

perform well in estimating both the individual probability 

of positive outcome and sample prevalence rate. In the 

simulation studies, we consider two pooling strategies, 

‘alike’ and ‘random’ for comparison, and it turns out that 

‘alike’ pooling provides notable improvement of the 

estimators. This result is consistent with that reported 

by Bilder and Tebbs [21] in parametric models.  

The rest of the paper is organized as follows. In 

Section 2, we present the models, estimation 

methodology and algorithms. In Section 3, simulation 

studies are conducted to illustrate the implementation 

and to evaluate the performance of the proposed 

estimation methods for nonparametric and 

semiparametric models. In Section 4, we provide 

further discussion and summaries. 

2. ESTIMATION METHOD 

2.1. Notations and Models 

We assume, without loss of generality, that samples 
from N  subjects are grouped into, say, n  pools. These 
n  pools are tested first, and some individuals or 
subsets of the n  pools are further tested, depending 
on the group testing scheme and the purpose of the 
study. Following Xie [16], for i =1,…, N , we denote by 

yi  whether the sample from the ith  individual is 

positive or not; it equals 1 if it is positive and 0 if it is 
negative. Also, we suppose that m  tests in total are 
performed on m  (usually m n ) sets of individuals, 

say g
1
, g

2
,…, g

m
, where the sets correspond to the 

pools as well as some subsets of the pools or some 
regrouped pools or some selected individuals, 
depending on the group testing scheme used. 

Corresponding to the m  sets of 
 
g1, g2 ,…, gm , denote 

by the m  testing results as t = t
1
,…, t

m( ) ; The testing 

result ti  equals 1 if it is positive and 0 otherwise. As in 

Xie [16], we assume that the testing methods may not 
be perfectly accurate and the notions of sensitivity and 
specificity are used to specify the accuracy of the 
testing methods. Here, sensitivity is the probability of a 
positive sample being tested positive and specificity is 
the probability of a negative sample being tested 
negative. Let  and  denote the sensitivity and 

specificity respectively, then we have 0 < 1  and 

0 < 1 . Under this assumption, ti  can be decided by  

ti =Wi1 y
j
>0

j gi
( )

+ 1 Vi( )1
y

j
=0

j gi
( )

, 

where Wi  and Vi  are independent Bernoulli random 

variables equal to 1 with probabilities  and  

respectively and 1( )  is the indicator function. Note that, 

depending on the testing scheme used, these observed 
testing results ti ’s may or may not be correlated; see, 
Section 3 for an example.  

When covariate variables and testing response of 
each individual subject are available, we can often use 
generalized linear regression models to model the 
individual response. If we assume that the covariates 
are linearly related to the individual response through a 

link function h ( ) , we can construct a parametric 

generalized linear model:  

h P yi =1( ) = xi
T .           (1) 

If the relationship is not linear and we’d rather model it 
by an unknown smooth function, we can use a 
nonparametric generalized linear model:  
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h P yi =1( ) = f vi( ) .           (2) 

If we think that some covariates are linearly related and 
some are related by an unknown smooth function, we 
can use a semiparametric generalized linear model: 

h P yi =1( ) = xi
T + f vi( ) .          (3) 

Here, in Models (1) – (3), xi  is a p 1  covariate vector 

for the parametric linear regression and vi  is a 

covariate variable for the regression of non-parametric 

component. The link function h ( )  is a known 

monotonic function. The most commonly used link 
function for binary responses is the logit link function 

  
h p( ) = logit p( ) = log p 1 p( )( ) .  

Model (1) has been discussed in [16]. In this paper, we 
are interested in estimating the unknown smooth 

function f ( )  in Model (2) and the unknown parameters 

 and the unknown smooth function f ( )  in Model (3), 

assuming that we only know the observed testing 

responses t = t
1
,…, t

m( )  but not the individual-level 

responses 
    
y = y

1
,…, y

N( ) . 

Sometimes, it is possible to identify all the individual 

testing results 
    
y = y

1
,…, y

N( )  from the testing results 

    
t = t

1
,…, t

m( ) . In this case, we can simply fit the 

aforementioned models directly to the individual testing 

results y = y
1
,…, y

N( ) . However, in many other cases, 

the individual testing results can not be fully determined 
from the group testing results. Our focus is on the more 
complicated latter case, and the earlier case can be 
regarded as a simple special case of the latter one. 
Note that, for some testing schemes, the explicit 

formula for the likelihood function of 
    
t = t

1
,…, t

m( )  

(observed likelihood) may be very complicated or even 
unavailable. Direct maximization of the observed 
likelihood function could be a tedious task, if not 
impossible. On the other hand, the log-likelihood 
function of complete data has simple form for 
generalized linear models. We develop in the rest of 
this section a set of EM algorithms for nonparametric 
and semiparametric generalized linear models. 

2.2. Estimation Method and EM Algorithm for 
Nonparametric Model 

Under model (2), the joint density function of 

y
1
,…, y

N( )  is 

   
p y

1
,…, y

N
| f

1
,…, f

N( ) = e
y

i
f
i

log 1+e
fi( )i=1

N

, 

where fi = f vi( ) . We consider 
    
y = y

1
,…, y

N( )  as the 

complete data, which is not completely observed. The 

observed data are the m  testing results t = t
1
,…, t

m( ) . 

Depending on the testing schemes, sometimes the joint 

density of observed samples t = t
1
,…, t

m( )  can be very 

complicated with no explicit formula. We denote by 

p t
1
,…, t

m
| f

1
,…, f

N( )  the joint density of observed 

samples 
    
t = t

1
,…, t

m( ) . We define a penalized observed 

log-likelihood function as  

    
l

p
f( ) = log p t

1
,…, t

m
| f

1
,…, f

N( ) 2 f " v( )
2

dv ,      (4) 

where f = f
1
,..., f

N( )  and  is the smoothing 

parameter. Our task is to obtain an estimator of f ( ) , 

say f̂ ( ) , by maximizing (4).  

Note that, we can write that 

( ) ( )1 1 1log , , | , , log | , ,m N Np t t f f p f f= y� � �

( )1log | , , , Np f fy t � . By taking the conditional 

expectation on both sides, conditional on t  and 

( )1
, , Nf f� �� , it follows 

 

( ) ( )

( )

1 1 1 1

1 1

log , , | , , log | , , | , , ,

log | , , , | , , , ,

m N N N

N N

p t t f f E p f f f f

E p f f f f

= y t

y t t

� �� � � �

� �� �

 (5) 

for any set of given parameters ( )1
, , Nf f=f � �� � . Define  

( ) ( ) ( )

( ) ( ) ( )

2

1 1

2

1

1

| log | , , | , , , 2 "

| , , , log 1 2 " .i

def

N N

N
f

i N i

i

Q E p f f f f f v dv

E y f f f e f v dv
=

=

= +

f f y t

t

� �� � �

� ��

 

By (5) and Jensen's inequality, we can show that  

( ) ( ) ( ) ( )| |p pl l Q Qf f f f f f� � � � ,          (6)  

for any two sets of parameters f  and f� . Thus, by (6), 
each time when we update our parameter values from 

f�  to 
{ } ( )any

argmax |Q=
f

f f f� , we have ( ) ( ) 0p pl lf f�  

and thus the value of ( )pl f  will increase from ( )pl f�  to 

( )pl f . Following the reasoning of the standard EM 

algorithm and also Green [20], we design a modified 

EM algorithm to obtain an estimate of ( )1
, , Nf f=f � : 
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For a selected set of starting values [ ]( )ivf 0  of ( )ii vff =  

for Ni ,,2,1 �= , we iterate the following E and M steps 

until [ ] [ ]1k k+
f f  is very small.  

E-step: For given f k[ ] vi( )  for i =1,…, N  at the kth  

iteration, 
 
k = 0, 1, 2,…, calculate the conditional 

expectations 

c
i

k
= E y

i
| t

1
,…, t

m
, f

k
v
1( ) ,…, f

k
v

N( ) , i =1,…, N .  

M-step: Given c1
k[ ] ,…, cN

k[ ]( )  for a fixed 
 
k = 0, 1, 2,…, 

update the estimates at the k +1( )
th

 iteration, 

fi
k+1[ ] = f k+1[ ] vi( ) , for 

 
i =1,…, N , by maximizing the 

following penalized log-likelihood function: 

ci
k[ ] fi log 1+ e fi( )

i=1

N

2 f " v( )
2
dv .         (7) 

For a fixed , maximizing [7] can be solved via 

iterating on the penalized weighted least squares 
problem (refer to Gu [22]) 

  

min b
i

z
i

f
i( )

2

i=1

N

+ f " v( )
2

dv ,         (8) 

where ( )
2

1i if f

ib e e= +
� � , [ ]( )k

i i i i iz f c b b= +� , 

( )1i if f

ib e e= +
� �  and ( )ii vff

~~
=  is evaluation of ( )ivf  in 

previous iteration. For notation simplicity and without 
loss of generality, we re-arrange the indexes i , so that 

N
vvv �

21
 (i.e., the ordered 

( ) ii
vv = , for Ni ,,1�= ). 

By Green and Silverman [19], the solution of problem 
(8) is a natural cubic spline and the penalty term can be 
written as 

   
f " v( )

2

dv = f
T Kf , 

for the natural cubic spline, where K =QR 1QT  and 

    
f = f v

1( )( ) ,…, f v
N( )( ) . Here Q  is an n n 2( )  band 

matrix and R  is an n 2( ) n 2( )  symmetric band 

matrix and each element of these two matrices is a 

function of 
 
v 1( ) ,…, v N( )( ) , which is the ordered values of 

 
v1,…, vN( ) . The matrices, Q  and R  are given in 

Appendix 5.1. Denote by W  a diagonal matrix with 

W
ii
= b

i
 and denote working response vector by 

    
z = z

1
,…, z

N( ) , then the matrix form of problem (8) is  

   
min S(f ) = z f( )

T

W z f( ) + f
T

Kf ,         (9) 

and the solution of (9) is  

   
f

new = W + K( )
1

Wz .         (10) 

In group testing, the sample size N  is usually very 
large, hence direct use of (10) is very time consuming. 
We apply the Reinsch algorithm for weighted 
smoothing (refer to Green and Silverman [19]) to 
calculate (10). The steps of the algorithm are given in 

Appendix 5.2 and each step can be performed in O N( )  

algebraic operations.  

Finally, we need to choose the smoothing 
parameter  for our computing. We apply the 

following generalized cross-validation (GCV) criterion: 
Choose the  that minimizes  

   

GCV ( ) =
W

1 2
z f( )

2

n 1 n
1
trace W + K( )

1

W
1 2

2

=
n W

1 2
z f( )

2

trace W
1 2

KW
1 2( ){ }

2

,      (11) 

where W ,  z  and  f  are all evaluated at the converged 

estimator, f̂ ( ) . Other criteria, like cross validation and 

likelihood based cross validation, can also be used. 

2.3. Estimation method and EM algorithm for 
semiparametric model 

Semiparametric model can be analyzed by using 
similar estimation method and algorithm developed in 
Section 2.2. Under the semiparametric model (3), the 

joint density function of 
 
y1,…, yN( )  is again very simple: 

 

p y1,…, yN | , f1,…, fN( ) =

exp yi xi
T + fi( ) log 1+ exi

T + fi( )
i=1

N
, 

although the joint density function of the observed 

testing results 
 
t1,…, tm( ) , say 

 
p t1,…, tm | , f1,…, fN( ) , 

can sometimes be very complicated. We want to 
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maximize the penalized observed log-likelihood 
function,  

    
l

p
, f( ) = log p t

1
,…, t

m
| , f

1
,…, f

N( ) 2 f " v( )
2

dv , (12) 

to obtain the estimators of  and f ( ) , say ˆ  and 

f̂ ( ) , where  is a smoothing parameter.  

For any set of given parameters 
~

 and 

( )1
, , Nf f=f � �� � , we define  

( ) ( )1 1, | , log | , , , | , , , ,def

N NQ E p f f f f=f f y t � �� � �� �

 

                       

( )
2

2 "f v dv

 

         

( )( ) ( )1

1

| , , , , log 1
T
i i

N
x fT

i N i i

i

E y f f x f e
+

=

= + +t � �� �

 

     

( )
2

2 " .f v dv

 

Again, as in Section 2.2, we can prove that  

( ) ( ) ( ) ( ), , , | , , | ,p pl l Q Qf f f f f f� � � � � � � � ,      (13) 

for any two sets of given parameters 

( ) ( )1
, , , , Nf f=f �  and ( ) ( )1

, , , , Nf f=f � �� � � � . Thus, 

each time when we update our parameter values from 

( ), f� �  to a new set of values 

( ) { } ( )any ,
, argmax , | ,Q=

f
f f f� � , the value of the 

panelized log-likelihood function (12) will be increased. 
Furthermore, based on (13), we can show that the 
panelized log-likelihood function (12) will increase, 

either when we update 
~

 to 

{ } ( )any
argmax , | ,Q= f f� � �  while holding f�  fixed or 

when we update f�  to 
{ } ( )any

argmax , | ,Q=
f

f f f� � �  while 

holding 
~

 fixed. Thus, we can also use a backfitting 

method to update the parametric and nonparametric 
components  and f  separately.  

 Note that, similar to the nonparametric model, the 

second integration (penalty) part in ( ), | ,Q f f� �  can be 

written by f
T

Kf  for natural cubic splines. By Theorem 
5.2 of Green and Silverman [19], the Fisher scoring 

algorithm for maximizing ( ), | ,Q f f� �  with respect to  

and ()f  for a fixed  is given by solving 

X
T
WX X

T
W

WX W + K f

=
X

T
Wz

Wz

,       (14) 

where the working response vector ( )1
, ,

N
z z=z �  has 

the form  

++= iiii

T

ii bbcfxz
~~ , 

( )| , ,i ic E y= t f� � , and , 

( )1~~~~

+=
++ i

T
ii

T
i fxfx

i eeb , ( )T
N

xxX ,,
1
�=  and W  is a 

diagonal matrix with =
iii

bW . Again in this natural cubic 

spline formulation, for notation simplicity and without 
loss of generality, we re-arrange the indexes i , so that 

N
vvv �

21
 (i.e., the ordered 

( ) ii
vv = , for Ni ,,1�= ). 

Equation (14) forms a system of p + n  estimating 

equations for both the parametric and non-parametric 
components. It can be written as a pair of simultaneous 
matrix equations for the parametric and non-parametric 
components separately (refer to Green and Silverman 
[19]), 

  
X

T
WX = X

T
W z f( ) , 

  
W + K( ) f =W z X( ) . 

Based on this separation, we propose a backfitting/EM 
algorithm which runs iteratively between fitting the 
parametric component and fitting the nonparametric 
component while holding the other fixed: For a selected 

set of starting points 
0[ ]  and fi

0[ ]  for i =1,…, N , we 

iterate the following two pairs of E and M steps until 

both 
k+1[ ] k[ ]  and 

   

f
k+1

f
k

 are very small. 

E-step for parametric part: For given 
k[ ]  and fi

k[ ] , 

i =1,…, N , for k = 0, 1, 2,…, calculate  

ci

k
= E yi | t1,…, tm ,

k
, f1

k
,…, fN

k
, i =1,…, N .  

M-step for parametric part: Given c1
k[ ] ,…, cN

k[ ]  for 

fixed 
 
k = 0, 1, 2,…, update the estimator at the 

  
k +1( )

th
 

iteration, k+1[ ] , by  

   

k+1

= X
T
WX

1

X
T
W z f

k
. 

E-step for nonparametric part: For given 
k+1[ ]  and 

fi
k[ ] , i =1,…, N  at the kth  iteration for k = 0, 1, 2,…, 

calculate 
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ci

k
= E yi | t1,…, tm ,

k+1
, f1

k

,…, fN

k

, i =1,…, N .  

M-step for nonparametric part: Given 

 
c1
k[ ] ,…, cN

k[ ]
 

for fixed k = 0, 1, 2,…, update the estimator at the 

  
k +1( )

th
 iteration, fi

k+1[ ]
, for 

 
i =1,…, N , by  

   

f
k+1

= W + K( )
1

W z X
k+1

. 

In our computing program, the Reinsch algorithm for 
weighted smoothing is applied in the M-step for the 
nonparametric component, and the GCV criterion (11), 

with z f( )  replaced by z X f( ) , is used to choose 

the smoothing parameter. 

3. SIMULATION STUDIES 

In this section we conduct simulation studies to 
evaluate the finite sample performance of the penalized 
maximum likelihood estimation methodology proposed 
in Section 2. We use a group testing scheme proposed 
by Gastwirth-Hammick [15] for illustration.  

The Gastwirth and Hammick (GH) group testing 
scheme is designed for estimating the prevalence of a 
rare disease, in which to protect the privacy of 
individuals tests are performed only at the group level 
but not at the individual level. Under the GH group 
testing scheme, individual samples are batched into 
pools first. Then a screening test is performed for each 
pool. After that, those pools classified as positive are 
given confirmatory tests. Generally speaking, the 
screening test is cheap but not quite accurate while the 
confirmatory test is almost perfect with a much higher 
cost. Gastwirth and Hammick [15] gave such an 
example in blood testing practice: for testing HIV 
positives, the commonly used screening test is the 
ELISA kit and the standard confirmatory test is the 
Western blot (WB) analysis.  

Without loss of generality and for simplicity, we 

assume that total nkN =  individual samples are 

grouped into n  pools of size k , although the proposed 

algorithm can be applied to different group sizes. 

Denote by the screening testing results 
 
t1
s( ) ,…, tn

s( ) , 

corresponding to pools g1,…, gn  respectively. The 

value of ti
s( )  is equal to 1 if the test is positive and 

equal to 0 otherwise. Suppose there are r  positive 

outcomes 
 
t j1
s( ) ,…, t jr

s( )  of n  screening tests, and they 

correspond to the pools gj1,…, gjr . Let 
 
t j1
c( ) ,…, t jr

c( )  

denote the r  confirmatory testing results. Therefore, we 

have testing results 

    

t = t
1

s( )
,…, tn

s( )
, t

j1

c( )
,…, t

jr

c( )
 

=def t1,…, tm( )  from pools G = g1,…, gn , g j1,…, g jr{ }  

and the total number of tests is m = n + r . Note that, the 

screening test t js
s( )

 and the confirmatory test t js
c( )

 are 

correlated.  

For the screening tests, the testing results can be 
written as  

  

t
j

s( )
=W

j

s( )
1

y
i
>0

i g j
( )

+ 1 V
j

s( )
1

y
i
=0

i g j
( )

,      (15) 

where Wj
s( )

 and Vj
s( )

 are independent Bernoulli 

random variables equal to 1 with probabilities 
s( )  and 

s( )  respectively. For the confirmatory tests, the testing 
results can be expressed as  

  

t
jl

c( )
=W

l

c( )
1

y
i
>0

i g jl
( )

+ 1 V
l

c( )
1

y
i
=0

i g jl
( )

,      (16) 

where Wl
c( )  and Vl

c( )  are independent Bernoulli random 

variables equal to 1 with probabilities 
c( )  and 

c( )  

respectively. Here, s( ) , s( )  are sensitivity and 

specificity of screening tests and c( ) , c( )  are 

sensitivity and specificity of confirmatory tests.  

Suppose that individual i  belongs to the group g j , 

it is easy to verify under the GH group testing scheme 

that the conditional expectation of yi  given 
 
t1,…, tm( )  

and 
 
f1,…, fN( )  under the nonparametric model (2) has 

an explicit formula, 

   

E y
i

| f
1
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N
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1
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,

 

           (17) 
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where pi = exp fi( ) 1+ exp fi( )( ) . Under the 

semiparametric model (3), the conditional expectation 

of yi  given 
 
t1,…, tm( ) ,  and 

 
f1,…, fN( ) , 

 
E yi | , f1,…, fN , t1,…, tm( )  has the same formula as 

(17), except that pi = exp xi
T + fi( ) 1+ exp xi

T + fi( )( ) . 

In the special case with the assumption that 
c( ) =

c( ) =1 , the form of (17) is simpler  

E y
i
| f

1
,…, f

N
, t

1
,…, t

m( )

=

1
s( )

p
i

1
s( )

1 1 p
i( )

i g
j

+
s( )

1 p
i( )

i g
j

1
t

j

s( )
=0

+
p

i

1 1 p
i( )

i g
j

1
t

j

s( )
=t

j

c( )
=1

.

   (18) 

The assumption 
c( ) =

c( ) =1  means that the 

confirmatory test is perfectly accurate. It was used in 
Gastwirth and Hammick [15] in their numerical 
examples. We also adopt it in our simulation studies.  

The next two subsections contain two examples of 
simulation studies, one for nonparametric model, and 
the other for semiparametric model. The simulation 
study for the semiparametric model is based on the 
chlamydia data of Chen et al. [17] collected by the 
State of Nebraska as a part of an Infertility Prevention 
Project. 

3.1. Nonparametric Model 

In the first simulation study, we assume that the true 
underlying model is 

logit P y
i
=1( ){ } = a + bsin v

i
2( ) ,        (19) 

where a = 2.65  and b = 0.6 . However, this sin curve 
function is not known to us. Rather, we use the 
nonparametric model (2), with the logit link, to study 
group testing data generated from model (19).  

The group testing data from model (19) are 
generated as follows. First, individual level data 

vi , yi( ) , 
 
i =1,…, N , are simulated where the covariate 

i
v  is from uniform distribution U 6.28, 6.28( )  and yi  is 

according to model (19). We use the ‘random’ pooling 
strategy, in which the N  individuals are randomly 

pooled into n = N 5  groups 
 
g1,…, gn( )  of size 5 

regardless of their covariate values. For simplicity, we 
use the same size for all the pools and take pool size 5 
for illustration. After grouping, the results of screening 

tests are generated according to (15) with 
s( ) = 0.923  

and 
s( ) = 0.996 , the same sensitivity and specificity 

used in the simulation study of Xie [16]. Furthermore, 
the results of confirmatory tests are generated by (16) 

assuming 
c( ) =

c( ) =1  for the pools with positive 

screening test results. The collection of v1,…, vN( )  and 

t = t1,…, tn , t j1,…, t jr( )  forms a data set under the 

‘random’ pooling, and we use them to estimate the 

nonparametric function f ( )  in model (2). 

Bilder and Tebbs [21] studied an ‘alike’ pooling 
strategy, in which individual samples with similar 
covariates are grouped together. They reported that the 
‘alike’ pooling strategy can improve the estimation of 
the ‘random’ strategy. We also consider an ‘alike’ 
pooling strategy in our simulation. In the ‘alike’ pooling 

strategy, the covariate vi  is first ordered and then 

grouped in size of 5 according to the order. We 
proceed the same testing approach as in the ‘random’ 
pooling strategy, and obtain a data set under the ‘alike’ 
pooling strategy. This set of group testing data is also 
analyzed to estimate the same nonparametric function 

f ( )  in model (2). 

The above simulation is repeated 2 200  times, 
200 times each for sample size N = 5000  and 10000 
respectively. Since in the simulation study we know the 

true f ( ) , we can choose the smoothing parameter 

= MISE  by minimizing the mean integrated squared 

error (MISE) of the estimators f̂ ( ) . We also use 

generalized cross validation criterion (11) to choose 

= GCV  and compare the estimators using GCV  to 

those using MISE  and true f ( )  values. The optimum 

smoothing parameter  is searched on the grid 

0.1(0.05)1.  

The simulation results are summarized in Table 1. 
Table 1 shows the numerical estimates of integrated 

relative bias (i.e., f̂ v( ) f v( ) f v( ) dF v( ) ), the 

integrated standard error (i.e., 

  

SE f v( ) dF v( ) ), the 

integrated mean integrated square error (MISE) (i.e., 

  

f v( ) f v( )
2

dF v( ) ) and the estimator of 

prevalence rate (i.e., 

  

exp f v( ) 1+ exp f v( ) dF v( ) ), respectively. In 

the table, = GCV  (‘random’) means the ‘random’ 
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pooling strategy is used and the smoothing parameter 
 is selected by minimizing GCV score. Similarly, 

= MISE  (‘alike’) means the ‘alike’ pooling strategy is 

used and the smoothing parameter  is selected by 
minimizing MISE value and so on. 

From Table 1, we can see that ‘alike’ method 
provides better estimators than ‘random’ method for 

both = MISE  and = GCV , which is intuitive. In 

addition, using = MISE  gives a little better estimator 

than using = GCV  for both pooling strategies, which 

is also expected. When sample size N  is equal to 
10000, the relative bias and empirical MISE are 
reduced about half compared to those when N  is 

equal to 5000 for both = MISE  and = GCV . From 

model (19), when vi ~U 6.28, 6.28( ) , the population 

prevalence (equivalently, the mean probability that y  

equal to 1) is 7.08%. Compared to this true prevalence 
7.08%, the estimators of the prevalence are very close 
to true value for all cases.  

The point-wise average of the estimated 

nonparametric curves f̂ ( )  over 200 replications are 

displayed in Figure 1. The left panel of Figure 1 shows 
the estimators using N = 5000  and the right panel is for 
the estimators using N =10000 .  

In Figure 1, the blue dotted curve represents the 
true values; the red solid curve is for the estimator 

using GCV  and ‘random’ pooling, while the red dashed 

curve represents the estimator using smoothing 

parameter MISE  and ‘random’ pooling; the green solid 

curve is for the estimator using GCV  and ‘alike’ 

pooling, while the green dashed curve represents the 

estimator using smoothing parameter MISE  and ‘alike’ 

pooling. First of all, the point-wise average curves of 
the estimators from 4 methods are all close to the true 

curve. Second, the estimator using MISE  is closer to 

the true curve than the one using GCV  given the same 

pooling strategy, which is expected, however, the 
difference becomes smaller as the sample size N  
increases. In addition, the ‘alike’ pooling method has 
notable improvement compared to the ‘random’ pooling 
method. When sample size increases, the difference 
from pooling strategies and smoothing parameter 
selection criteria becomes smaller and all the 
estimators are very close to the true curve in the whole 
support of the covariate.  

Figure 2 illustrates the point-wise variances of the 

estimators f̂ ( )  over 200 replications, with the left 

panel for N = 5000  and right panel for N =10000 . In 
Figure 2, the red solid curve is for the estimator using 

GCV  and ‘random’ pooling, while the red dashed curve 

represents the estimator using smoothing parameter 

MISE  and ‘random’ pooling; the green solid curve is for 

the estimator using GCV  and ‘alike’ pooling, while the 

green dashed curve represents the estimator using 

smoothing parameter MISE  and ‘alike’ pooling. All the 

variance curves have a similar trend. They have larger 
variances in the margin of the support of v  and when 

the corresponding probability of positive, pi  is low. 

Furthermore, the variances decrease dramatically 
when the sample size increases, and ‘alike’ method 
has smaller point-wise variances than ‘random’ 
method. 

Table 1: Simulation Results for Nonparametric Model Based on 200 Replications 

 Relative bias Empirical S.E. Empirical MISE prev. (7.08%) 

 GCV
(‘random’) 

  N = 5000  0.026 0.422 0.0076 6.68 

  N = 10000  0.014 0.301 0.0022 6.86 

 MISE
(‘random’) 

  N = 5000  0.020 0.341 0.0041 6.79 

  N = 10000  0.011 0.247 0.0014 6.93 

 GCV
(‘alike’) 

  N = 5000  0.008 0.237 0.0006 6.99 

N = 10000  0.005 0.180 0.0002 7.03 

 MISE
(‘alike’) 

N = 5000  0.005 0.188 0.0002 7.02 

  N = 10000  0.003 0.143 0.0001 7.05 
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In conclusion, the simulation studies demonstrate 
that our proposed estimation algorithm for 
nonparametric model performs well and the proposed 
generalized cross validation criterion can choose 
proper smoothing parameters in these settings. 

3.2. Semiparametric Model 

In this section we conduct a simulation study based 
on the chlamydia data example studied in Chen et al. 
[17]. Chen et al. [17] developed regression method to 

 

Figure 1: Point-wise average of the estimated nonparametric curve 
  
f ( )  for nonparametric model based on 200 replications. 

Left panel is for   N = 5000  and right panel is for   N =10000 : the blue dotted curve is the true values; the red solid curve is for 

GCV  and ‘random’ pooling, while the red dashed curve is for MISE  and ‘random’ pooling; the green solid curve is for GCV  

and ‘alike’ pooling, while the green dashed curve is for MISE  and ‘alike’ pooling. 

 

 

Figure 2: Empirical point-wise variances of the estimated nonparametric curve 
  
f ( )  for nonparametric model based on 200 

replications. Left panel is for   N = 5000  and right panel is for   N =10000 : the red solid curve is for GCV  and ‘random’ pooling, 

while the red dashed curve is for MISE  and ‘random’ pooling; the green solid curve is for GCV  and ‘alike’ pooling, while the 

green dashed curve is for MISE  and ‘alike’ pooling. 
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fit mixed effect models for group testing samples, and 
applied their method to the chlamydia data collected by 
the state of Nebraska. The data set consists of 
chlamydia infection statuses for 6138 subjects, and the 
risk covariates like age, gender, urethritis status and 
infection symptoms status. The sample prevalence is 
7.8 percent.  

In our example, we consider two covariates, Age 
and some continuous covariate V , and assume that 
Age is linearly related to the link function, while V  has 
nonparametric relationship with the link function. We fit 
the semiparametric GLM: 

  
logit P y

i
=1( ){ } = age

i
+ f v

i( ) ,       (20) 

and estimate  and f ( ) .  

For simplicity, we take the total number of subjects 
N  equal to 6140 and group the samples into 1228 
pools with group size 5. Again, the smoothing 
parameter  is selected by minimizing GCV, and is 
searched on the grid 0.1(0.05)1. We use both ‘alike’ 
and ‘random’ pooling strategies. For the ‘alike’ 
grouping, there are two approaches: ‘alike’ by par-non 
and ‘alike’ by non, depending on sorting by which 
covariate first. The ‘alike’ by par-non means that we 
sort by Age, and then sort by V  in the same value of 
Age; while ‘alike’ by non means that we sort the 
samples by V  (assume that there are no ties in V ). 
For model (20), the covariate Age is generated 
randomly from {15:45}, V  is a continuous random 

variable from uniform distribution U 1.57, 7.85( )  and 

f v( ) = 1.25 + sin v( ) . Assume that true  is equal to -

0.05 and 
s( ) = 0.95  and 

s( ) = 0.98 . Under these 

settings, the overall positive percentage is about 7.8 
percent and only 21.6% tests are needed compared to 
the individual testing. For the model (20), we estimate 

 and f ( )  by the EM algorithm proposed in Section 

2.3.  

In this study, we again use 200 replications. Table 2 
shows the average and standard error of 200 

estimators ˆ , and the integrated relative bias, the 

integrated S.E. and the integrated MISE of f̂ ( ) . The 

estimator of prevalence rate is also calculated.  

Table 2 shows that for the parametric part , all of 

the three pooling strategies – ‘random’, ‘alike’ by par-
non and ‘alike’ by non, provide good estimators, which 
are very close to the true value -0.05 with small 
standard errors. Among them, ‘random’ and ‘alike’ by 
non have similar S.E.s and ‘alike’ by par-non has 
smallest S.E. For the nonparametric part, ‘alike’ by non 
has smallest relative bias and empirical MISE and 
‘alike’ by par-non has the smallest empirical S.E. In 
addition, all the three pooling methods provide the 
estimators of prevalence rate very close to the true 
value, 7.8%.  

The box-plot of the estimators of  is displayed in 

Figure 3 for ‘random’, ‘alike’ by par-non and ‘alike’ by 
non. This plot shows clearly that averages of the 
estimators of  are all very close to the true value -

0.05 (the dotted line) for 3 pooling strategies. The 
standard error of ‘alike’ by par-non is the smallest and 
‘random’ method has similar standard error with the 
‘alike’ by non approach. 

The point-wise average (left panel) and point-wise 

variance (right panel) of the estimators f̂ ( )  over 200 

replications are displayed in Figure 4. In Figure 4, the 
blue dotted curve represents the true values; the red 
solid curve is for ‘random’; and the green solid curve is 
for ‘alike’ by par-non, while the green dashed curve is 
for ‘alike’ by non pooling strategy. From left panel of 
Figure 4, we can notice that the point-wise average 
curves from two ‘alike’ methods are a little closer to the 
true curve than ‘random’ method. In the right panel of 
Figure 4, the ‘alike’ by par-non method gives smallest 
variances in the whole support of v , and the ‘random’ 
and ‘alike’ by non methods have similar variance 
curves.  

In conclusion, our estimation methodology gives 
good estimators for both the parametric component 

Table 2: Simulation Results for Semiparametric Model Based on 200 Replications 

 
 

 f ( )   

pooling Mean S.E. Relative Empirical Empirical prev. 

strategy (-0.05)  bias S.E. MISE (7.8%) 

‘random’ -0.050 0.011 0.052 0.410 0.0018 7.58 

‘alike’ by par-non -0.050 0.006 0.036 0.226 0.0006 7.73 

‘alike’ by non -0.049 0.013 0.031 0.400 0.0006 7.87 



70     International Journal of Statistics in Medical Research, 2012 Vol. 1, No. 1 Li and Xie 

 

Figure 3: Box-plot of the estimated  for semiparametric model for ‘random’, ‘alike’ by par-non and ‘alike’ by non pooling 

strategies based on 200 replications. The horizontal dotted line corresponds to the true value of , -0.05. 

 

 

Figure 4: Simulation results of the estimated nonparametric curve 
  
f ( )  for semiparametric model based on 200 replications. 

Left panel is for point-wise average and right panel is for point-wise variance: the blue dotted curve is for the true values; the red 
solid curve is for ‘random’; and the green solid curve is for ‘alike’ by par-non, while the green dashed curve is for ‘alike’ by non. 

and nonparametric component and the prevalence rate 
in semiparametric model. 

4. DISCUSSION 

In this paper, we generalized the parametric model 
in Xie [16] and fitted nonparametric and semiparametric 
models for group testing responses using the covariate 
information. We maximize the penalized likelihood 
function of group testing results and apply the EM 
algorithm, considering the group testing as the missing 
data case. By the information inequality, the EM 
algorithm can be used in both nonparametric and 

semiparametric models. For the group testing 
experiment, since the number of subjects is usually 
very large, direct use of available software may not be 
practical. Therefore, the computational aspect has 
been discussed, and the method of choosing the 
smoothing parameter has also been considered.  

The simulation studies confirm that our proposed 
estimation methodologies perform very well for both 
nonparametric and semiparametric models for group 
testing samples. In simulation studies, we use ‘random’ 
and ‘alike’ pooling strategies, and the results show that 
‘alike’ method improves the estimators significantly, 
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which agrees with the results reported by Bilder and 
Tebbs [21] and others. 
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5. APPENDIX 

5.1. Q  and R  Matrices  

Let 
 
v 1( ) ,…, v N( )( )  are ordered values of 

 
v1,…, vN( )  

and assume that there is no tie. Let hi = v i+1( ) v i( )  for 

 
i =1,…, N 1 . Then Q  is an N N 2( )  band matrix 

with entries qij , for i =1,…, N  and j = 2,…, N 1 , given 

by  

qj 1, j = hj 1
1 , qjj = hj 1

1 hj
1 , and qj+1, j = hj

1 , for 

 
j = 2,…, N 1 , 

and qij = 0  for i j 2 . The columns of Q  are 

numbered starting at j = 2 , so that the top left element 

of Q  is q12 .  

12 13 1, 1

22 23 2, 1

1,2 1,3 1, 1

,2 ,3 , 1

1
1

1 1 1
1 2 2

1 1 1
2 2 3

1 1 1
3 2 2

1 1 1
2 2 1

1
1

0

.

0

N

N

N N N N

N N N N

N N N

N N N

N

q q q

q q q

Q

q q q

q q q

h

h h h

h h h

h h h

h h h

h

=

=

�

�

� � � �
�

�

�
� � �

�

 

The symmetric band matrix R  is N 2( ) N 2( )  

with elements rij , for i  and j  both from 2 to N 1( ) , 

given by 

rii =
1

3
hi 1 + hi( )  for 

 
i = 2,…, N 1 , 

ri, i+1 = ri+1, i =
1

6
hi  for 

 
i = 2,…, N 2 , 

and rij = 0  for i j 2 .  

22 23 2, 1

32 33 3, 1

1,2 1,3 1, 1

1 2 2

2 3 32

3 3 4

2

2 2 1

0
3 6

6 3 6

.
6 3

6

0
6 3

N

N

N N N N

N

N N N

r r r

r r r
R

r r r

h h h

h h hh

h h h

h

h h h
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+

+

+
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+
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� � � �
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� �

 

5.2. Reinsch Algorithm for Weighted Smoothing 

Define the N 2( ) -vector  as i =
2 f v i( )( ) 2v i( )

2
 

for 
 
i = 2,…, N 1 , then we have Q

T
f = R  for natural 

cubic spline (refer to Green and Silverman [19]).  

The solution of (8) satisfies 
   
f = W + QR

1
Q

T( )
1

Wz , 

which implies  

   
Wf =Wz QR

1
Q

T
f =Wz Q . 

Therefore, 
   
f = z W

1
Q . Again, by 

  
Q

T
f = R ,  

   
Q

T
f =Q

T
z Q

T
W

1
Q  

   
R =Q

T
z Q

T
W

1
Q  

   
R+ Q

T
W

1
Q( ) =Q

T
z . 

The algorithm for weighted spline smoothing is 

Step 1 Evaluate the vector 
  
Q

T
z . 

Step 2 Find the non-zero diagonals of 

R+ QTW 1Q , and its Cholesky decomposition factors 

L  and D . 

Step 3 Solve 
  
LDL

T
=Q

T
z  for  by forward and 

back substitution.  

Step 4 Use 
   
f = z W

1
Q

T  to find f .  
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