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Abstract: Computing a confidence interval for a population correlation coefficient is very important for researchers as it 
gives an estimated range of values which is likely to include an unknown population correlation coefficient. This paper 

studied some confidence intervals for estimating the population correlation coefficient  by means of a Monte Carlo 
simulation study. Data are randomly generated from several bivariate distributions with a various values of sample sizes. 
Assessment measures such as coverage probability, mean width and standard deviation of the width are selected for 

performances evaluation. Two real life data are analyzed to demonstrate the application of the proposed confidence 
intervals. Based on our findings, some good confidence intervals for a population correlation coefficient are suggested 
for practitioners and applied researchers. 
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1. INTRODUCTION 

One of the most often used statistical measures is 

the correlation coefficient which determines the degree 

of linear relationship between two quantitative 

variables. To understand the concept of correlation, let 

us consider a real life situation. Suppose a health care 

specialist is interested to find the familial aggregation of 

blood pressure. It is well known that children whose 

parents have high blood pressure be likely to have 

higher blood pressure than their peers. A first step for a 

health care specialist should be to assess whether 

there is a positive relationship exists between children 

and parents blood pressure. One way of expressing 

this relationship is to calculate a correlation coefficient 

between blood pressure of parents and children over a 

group of families. There are two kinds of estimators 

(point and confidence interval) are available in literature 

to estimate the population correlation coefficient ( ). In 

statistics, the Pearson product-moment correlation 

coefficient, referred as Pearson’s r (proposed by Fisher 

(1921) [1] is commonly used to quantity the linear 

relationship between two quantitative variables (say) X 

and Y. In our example, r is the sample correlation 

coefficient between the blood pressure of parents and 

children of some randomly selected families. It gives a 

value between -1 and +1 inclusive, where +1 

represents a perfect positive correlation, 0 is no 

correlation and 1 represents a perfect negative 

correlation. The correlation coefficient has been widely 

used in science as a measure of the degree of  

linear dependence between two variables 
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(For examples, see [2-4]). We know that point estimate 

vary from sample to sample. On the other hand, a CI 

gives a range of r-values estimated from a given set of 

random sample that is likely to include . CIs are 

calculated at a confidence level usually 95%, but other 

CIs for example 90%, 99% can also be constructed for 

. It is believed that CIs are more informative than the 

results of hypothesis tests since they provide a range 

of plausible values of . Note that a CI also includes a 

hypothesis testing by looking whether or not the 

interval contains zero. Thus, computing a CI for  is 

necessary and would be very useful in real life 

analysis. 

The main purpose of this paper is to propose some 

new methods and compare with several existing 

methods in literature by means of a simulation study 

and recommend some useful CIs for the researchers 

as well practitioners. Hall et al. (1989) [5] compared the 

parametric bootstrap CI, the Fisher z CI and the Fisher 

bootstrap CI to see which CI performs the best based 

on their simulation studies. They used bivariate normal 

and bivariate lognormal distributions as data generating 

process. Their simulation results show that the Fisher z 

CI is performed better than the parametric bootstrap CI 

and the Fisher bootstrap CI. Best of our knowledge, 

this is only simulation study available in literature. 

Thus, we believe that the findings of this paper will be a 

guideline for researchers and practitioners to select 

some good CIs for . The coverage probability, mean 

width and standard deviation of the widths are 

considered as a performance criterion. The coverage 

probability may vary from distribution to distribution, but 

a good method should maintain small standard 

deviation.  
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The paper is planned as follows. Existing and 

proposed methods for constructing CI for  are 

described in section 2. Simulation study design and 

simulation outcomes are discussed in section 3. Two 

real life examples are analyzed in section 4 to 

exemplify the findings of the paper. Finally, some 

concluding remarks are given in section 5. 

2. CONFIDENCE INTERVAL (CI) FOR THE 
POPULATION CORRELATION COEFFICIENT  

Suppose we are interested to find the linear 

relationship between two variables X and Y. The 

population correlation coefficient between two variables 

X and Y is denoted by  and defined as follows 

=
Cov(X,Y)

Var(X)Var(Y)
=

XY

X
2

Y
2
.  

The corresponding sample correlation coefficient r 
is defined as follows 

r =
ˆ
XY

ˆ
X
2 ˆ

Y
2
.  

It can be shown that 1 1 . A value of 1 implies 

that a linear equation describes the relationship 
between X and Y perfectly, with all data points lying on 
a straight line for which Y increases as X increases. A 
value of 1 implies that all data points lie on a straight 
line for which Y decreases as X increases. A value of 0 
implies that there is no linear association between X 
and Y. Note that CIs computed for the parameter may 
vary depending on the size of the sample, confidence 
level and assumptions on the distribution of r. It can 
also be true that for the same sample size and for the 
same confidence level, the results would differ 
depending on the method will be used to calculate CI. 

Several CIs for estimating  are described below. 

2.1. The Classical CI (CCI) 

Suppose the sample correlation coefficient, r is 

computed from a random sample of size n and 

considers as a point estimate for . For the first time, 

Student (1908) [6] studied the distribution of r when  is 

zero. Thus, a common test is that of whether or not a 

relationship exists between two variables X and Y. 

Under the null hypothesis, 

t = r
n 2

1 r2
           (1) 

has student’s t distribution with n-2 degrees of freedom 

(df). Thus, the (1- )100% CI for  is obtained as  

r ± t(n 2),
2

SE(r)             (2) 

where SE(r) =
1 r2

df
 and t(n 2),

2

 is the upper ( /2) 

percentile point of a Student’s t distribution with (n-2) 
df. 

2.2. Fisher’s Large Sample z CI (FCI) 

Calculation CI based on r is complicated by the fact 

that the sampling distribution of r is not normally 

distributed. The exact distribution of r was given by 

Fisher (1915) [7] based on geometrical methods. Since 

the sampling distribution of Pearson's r is not normally 

distributed, Pearson's r is converted to Fisher's z and 

CI is computed using Fisher's z transformation.  

The steps in computing a CI for  are: 

(i) The Fisher z transformation transforms r into the 

variable z which is approximately normal for any 

value of r as long as n is large enough.  

(ii) The values of Fisher's z in CI are then converted 

back to Pearson's r. 

Thus, for large n, ˆ = 1
2 log

1+ r

1 r
N( ,

1

n 3
),  

where =
1
2 log

1+

1
. Then the approximate  

(1- )100% CI for  is obtained (after some steps) as 

e2l 1

e2l +1

e2u 1

e2u +1
           (3) 

where 1= ˆ z /2

1

n 3
 and u = ˆ + z1 /2

1

n 3
 and 

ˆ  is defined above. 

2.3. Gorsuch and Lehmann CIs 

Recently, to improve coverage probability for all n, 

Gorsuch and Lehmann (2010) [8] modified the classical 

CI and the Fisher-z CI and proposed the following four 

CIs for  namely CIr, CIr(t), CIz and CIz(t) based on 

different standard errors (SE) of r:  

Modified classical CIs for : 

The (1- )100% CI for , CIr 

r±2SE(r)           (4) 
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The (1- )100% CI for , CIr(t) 

r ± t(n 1),
2

SE(r) ,            (5) 

where r =
e2

ˆ
1

e2
ˆ
+1
, ˆ =

1

2
log

1+ r

1 r
 and SE(r) =

1 r2

n 1
 

and t(n 1),
2

  is the upper ( /2)th percentile point from 

the t-distribution with (n-1) degrees of freedom. 

Modified Fisher CIs for : 

The (1- )100% CI for , CIz 

e2l 1

e2l +1

e2u 1

e2u +1
,           (6) 

where l = ˆ 2

n 3
 and u = ˆ +

2

n 3
. 

The (1- )100% CI for , CIz(t) 

e2l 1

e2l +1

e2u 1

e2u +1
,          (7) 

where l = ˆ t(n 1), /2
1

n 3
 and u = ˆ + t(n 1), /2

1

n 3
. 

2.4. Proposed CI (SKCI) 

It is known that r = b1
Sx
Sy
,  where b1 is the ordinary 

least squares (OLS) estimator of 1 for the linear 
regression model yt= 0+ 1xt+et, 0 is the constant, 1 is 

the regression coefficient of y on x and et~N(0,
2
). 

The (1- ) 100% CI for  is given as  

r ± t(n 2),
2

SE(r)  

where SE(r) =
Sx
Sy

SE(b1) =
Sx
Sy

MSE

(xi x )2
i=1

n  and 

t(n 2),
2

 is the upper ( /2)th percentile point of the 

Student’s t distribution with (n-2) df.  

We know that Sx
2
=

(xi x)2
i=1

n

n 1
= (n 1)Sx = (xi x )2

i=1

n . 

Then SE(r)  becomes SE(r) =
MSE

(yi y )2
i=1

n . Thus, the 

(1- )100% CI for  would be 

r ± t(n 2),
2

MSE

(yi y )2
i=1

n .          (8) 

2.5. Non Parametric Bootstrap CI (NBoot) 

Bootstrap is a computer-based non-parametric 
approach (established first by Efron (1979)) [9]. No 
assumptions require about the primary population and 
can be used to a variety of circumstances. The 
precision of the bootstrap CI depends on the number of 
bootstrap samples. The bootstrap procedure is 

described as follows: Let x
(*)

 = x1
(*) , x2

(*) , …, xn
(*)  and y

(*)
 

= y1
(*) , y2

(*) , …, yn
(*)

, 
where i

th 
random samples are 

denoted by x
(i)

 and y
(i) 

for i =1,2, …, B and B is the 
number of bootstrap samples. Calculate r

*
 for all B 

samples and order r
* 
of each B. It is defined as follows: 

 
r1
* r2

* rB
* . The lower and upper (1- )100% 

confidence limits for  are respectively,  

LCL = r
(
2
)B

* and UCL = r
(1

2
)B

* .          (9) 

2.6. Parametric Bootstrap of Classical CI (PBoot) 

The (1- )100% CI for  is obtained as  

r ± t
(n 2),

2

* SE(r) ,         (10) 

where SE(r) =
1 r2

df
 and t

(n 2),
2

*  is the ( /2)
th 

sample 

quintiles of t* = r *
n 2

1 r*2
. 

2.7. Parametric Bootstrap of Fisher z CI (FBoot) 

The (1- )100% CI for  is obtained as 

e2l* 1

e2l* +1

e2u* 1

e2u* +1
         (11) 

where l* = ˆ Z /2
* 1

n 3
 and u* = ˆ + Z /2

* 1

n 3
, Z /2

*  

is the ( /2)
th 

sample quintiles of ˆ * /
1

n 3
,  where ˆ *  

is defined by 
1

2
log

1+ r *

1 r *
 and r* is the correlation of 

all B samples. 

2.8. Parametric Bootstrap of Proposed Method CI 
(SKBoot) 

The (1- )100% CI for  
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r ± t
(n 2),

2

* MSE

(yi y )2
i=1

n ,         (12) 

where

 

y =
1

B
yi
*

i=1

B

 and t
(n 2),

2

*  is the ( /2)
th 

sample 

quintiles of t* = r*
n 2

1 r*2
. 

2.9. Bootstrap Bias Corrected Acceleration (BCA) 
CI 

This method is introduced by Efron and Tibshirani 

(1993) [10]. BCA CI for  is defined as 

LCL = r ( 1 ) and UCL = r ( 2 )         (13) 

where r ( 1 )  and r ( 2 )  are the ( 1100)% and ( 2100)% 

percentiles of the distribution of ri
*,  

1 = ẑ0 +
ẑ0 + z

( )

1 â{ẑ0 + z
( )}

 and 
2 = ẑ0 +

ẑ0 + z
(1 )

1 â{ẑ0 + z
(1 )}

, (.)  

is the standard normal cumulative distribution function, 

z
(1- )

 is the 100*(1- )
th

 percentile of the Z distribution, 

bias correction ẑ0 =
1 #(ri

*
< r)

B
, 1(.)  is the inverse 

function of cumulative distribution function of the Z 
distribution, acceleration factor 

a = (r r i )
3

i=1

n
/ 6 (r r i )

2

i=1

n 1.5

,  r is the correlation 

between x and y and ri is the correlation between x and 
y of (n-1) observations without the i

th
 observation. 

3. SIMULATION STUDY 

The goal of this paper is to evaluate the 

performance of CI estimators for , which have been 

discussed in section 2. Since a theoretical comparison 

among the estimators is not possible, a simulation 

study has been conducted in this section.  

3.1. Simulation Design 

The most common 95% CI is computed and 

assumed random sample sizes n = 10, 20, 30, 50 and 

100 and 1 (correlation between two variables is used 

to compute covariance matrix of the considered 

distributions)=0.7, 0.8 and 0.9. Random samples were 

generated from the following distributions:  

(a) Bivariate normal with μ1=15, μ2=20 and 1=10, 

2=4  

(b) Bivariate log normal with μ1=15, μ2=20 and 

1=10, 2=4  

(c) Bivariate chi-square with df 1 and 3 respectively 

We have considered 2500 replications for our 

simulation experiments and 1500 bootstrap samples for 

each selected random sample. To evaluate the 

performance of selected CIs, following criterions are 

chosen: (i) coverage probability (lower, cover and 

upper) (ii) mean width (iii) standard deviation (SD) of 

the width. It is well-known that the coverage probability 

will be precise or near to (1- ), (  is the level of 

significance) if random samples come from the 

symmetric distribution. Thus, it is believable that 

coverage probability is a constructive measure for 

assessing CI. Another important measure is the width 

of CI. A shorter width provides a better CI. It is also true 

that when coverage probability is equal for two or more 

CIs, in that case a smaller width indicates that the 

technique is suitable for the particular sample.  

3.2. Results discussion 

We have reported evaluation measures of the 

selected CIs in Tables 1 to 5 for selected n and 1 

when random samples are generated from bivariate 

normal, bivariate lognormal and bivariate chi-square 

distributions. For a visual expression, simulation results 

are presented graphically in Figures 1 to 5. 

For various values of n and 1, we have presented 

simulation results when data are generated from the 

bivariate normal distribution in Tables 1 to 3. Figure 1 

shows coverage probablity for various values of n and 

1=0.7. It is clear that as n increases, coverage 

probabilities also increases. It is observed that the 

coverage probability of BCA, SKBoot, FCI and Clz are 

close to nominal level 0.95 as compare to others. 

Overall BCA interval is performing the best in the sense 

of correct coverage probability and smaller width. On 

the contrary, estimators Clr and Clr(t) show poor 

performances in terms of coverage probability compare 

to others. 

To understand the effect of 1 on CIs, coverage 

probabilities are presented in Figure 2 for 1 = 0.7, 0.8 

and 0.9 for n=30. It is found that as 1 increases cover 

rates changes. For various selected values of 1, BCA, 

SKBoot, PBoot, Clz and FCI have coverage 

probabilities around 0.95. Among them BCA is the best 

in the sense of high coverage probability as compare to 

others.  

To see the performance in the sense of smaller 

width, we have presented mean widths w.r.t sample 
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Table 1: 95% Confidence Interval when Data Generated from Bivariate Normal for 1=0.7 

Critria CCI FCI CIr CIr(t) CIz CIz(t) SKCI NBoot PBoot FBoot SKBoot BCA 

n=10 

B Rate 0.0460  0.0350  0.0010  0.0010  0.0200 0.0100 0.0010  0.0000 0.0010  0.0040  0.0310  0.0260  

C Rate 0.8310  0.9250  0.8010  0.7990  0.9340  0.8110  0.8220  0.8220  0.8010  0.8680  0.9310  0.9530  

O Rate 0.1230  0.0400  0.1980  0.2000  0.0460  0.1790  0.1770  0.1780  0.1980  0.1280  0.0380  0.0210  

MW 1.5254  1.1573  1.1759  1.3300  1.2111 1.7100  1.5230  1.2609  1.1228  1.1328  1.1348  0.7828  

SDW  0.1347 0.1331 0.1876 0.2122 0.0000 0.0000 0.1250 0.0254 0.1345 0.1324 0.1302 0.3149 

n=20 

B Rate 0.0060  0.0380 0.0040  0.0040  0.0240  0.0030  0.0020  0.0040  0.0280  0.0060  0.0260  0.0260  

C Rate 0.9410  0.9310  0.8400  0.8420  0.9410  0.8830  0.8580  0.8520  0.9200  0.8820  0.9320  0.9540  

O Rate 0.0530  0.0310  0.1560  0.1540  0.0350  0.1140  0.1400  0.1440  0.0520  0.1120  0.0420  0.0200 

MW 0.9561  0.9264  0.8571  0.8970  0.9701  1.0153  0.9517 0.8861  0.9846  0.8649  0.9028  0.5366  

SDW  0.0456 0.0637 0.0771 0.0807 0.0000 0.0000 0.0411 0.0199 0.0469 0.0643 0.0409 0.2369 

n=30 

B Rate 0.0010  0.0140  0.0390  0.0090  0.0340  0.0140  0.0030  0.0070  0.0060  0.0060  0.0130  0.0240  

C Rate 0.9720  0.9380  0.8450  0.8670  0.9440  0.9010  0.9030  0.8830  0.9320  0.9290  0.9370  0.9560  

O Rate 0.0270  0.0480  0.1160  0.1240  0.0220  0.0850  0.0940  0.1100  0.0620  0.0650  0.0500  0.0200  

MW 0.7552  0.6903  0.7075  0.7235  0.7998  0.7872  0.7457  0.7213  0.7986  0.7732  0.7475  0.4465  

SDW  0.0254 0.0398 0.0457 0.0468 0.0000 0.0000 0.0242 0.0168 0.0251 0.0384 0.0240 0.1938 

n=50 

B Rate 0.0000 0.0210  0.0120  0.0180  0.0270  0.0060  0.0110  0.0090  0.0330  0.0400 0.0140  0.0220  

C Rate 0.9950  0.9390  0.8570  0.8700  0.9480  0.9500  0.9270  0.9220  0.9330  0.9305 0.9380  0.9580  

O Rate 0.0050  0.0300  0.1310  0.1120  0.0250  0.0440  0.0620  0.0690  0.0340  0.0295 0.0480  0.0200  

MW 0.5702  0.5489  0.5517  0.5544  0.5335  0.5863  0.5671 0.5573  0.5943  0.5826  0.5594  0.3318  

SDW  0.0129 0.0222 0.0246 0.0245 0.0000 0.0000 0.0128 0.0128 0.0133 0.0229 0.0132 0.1593 

n=100 

B Rate 0.0000 0.0220  0.0200  0.0340  0.0130  0.0180  0.0120  0.0140  0.0150  0.0150  0.0220  0.0280  

C Rate 1.0000  0.9480  0.8580  0.8700  0.9690  0.9620  0.9410  0.9240  0.9470  0.9340  0.9450  0.9620  

O Rate 0.0000 0.0200  0.1220  0.0960  0.0180  0.0200  0.0470  0.0620  0.0380  0.0510  0.0330  0.0100 

MW 0.4966  0.4148  0.3835  0.3904  0.4061  0.4029  0.3765  0.3930  0.4157  0.4101  0.3846  0.2108  

SDW  0.0050 0.0093 0.0098 0.0098 0.0000 0.0000 0.0051 0.0093 0.0049 0.0090 0.0052 0.1226 

 

Table 2: 95% Confidence Interval when Data Generated from Bivariate Normal for 1=0.8 

Critria CCI FCI CIr CIr(t) CIz CIz(t) SKCI NBoot PBoot FBoot SKBoot BCA 

n=10 

B Rate 0.0400  0.0350  0.0010  0.0010  0.0240 0.0210  0.0000 0.0010  0.0210  0.0010  0.0320  0.0270  

C Rate 0.8240  0.9220  0.7530  0.7510  0.9310  0.7430  0.7600  0.7920  0.8005 0.7600  0.9300  0.9520  

O Rate 0.1360  0.0430  0.2460  0.2480  0.0450  0.2360  0.2400  0.2070  0.1785 0.2390  0.0380  0.0210 

MW 1.5222  1.5141  1.1721  1.3257  1.5119  1.7100  1.5212  1.2607  1.4381  1.1786 1.1163  0.7693  

SDW  0.1427 0.1411 0.1964 0.2221 0.0000 0.0000 0.1376 0.0423 0.1348 0.1380 0.1252 0.3440 
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(Table 2). Continued. 

Critria CCI FCI CIr CIr(t) CIz CIz(t) SKCI NBoot PBoot FBoot SKBoot BCA 

n=20 

B Rate 0.0040  0.0370 0.0040  0.0040  0.0295 0.0120  0.0060  0.0030  0.0280  0.0020  0.0370  0.0210  

C Rate 0.9360  0.9300  0.8330  0.8350  0.9405 0.8630  0.8460  0.8670  0.9190 0.8270  0.9310  0.9520  

O Rate 0.0600  0.0310  0.1630  0.1610  0.0300  0.1250  0.1480  0.1300  0.0530  0.1710  0.0320  0.0290  

MW 1.0565  1.0169  0.8577  0.8976  0.9701  1.0153  0.9473  0.8876  1.0196  0.8917  0.8864  0.5563  

SDW  0.0435 0.0610 0.0742 0.0777 0.0000 0.0000 0.0421 0.0339 0.0463 0.0663 0.0394 0.2370 

n=30 

B Rate 0.0010  0.0120  0.0380  0.0320  0.0350  0.0040  0.0030  0.0050  0.0060  0.0040  0.0120  0.0240  

C Rate 0.9820  0.9350  0.8360  0.8580  0.9410  0.9140  0.9010  0.9160  0.9310  0.9000  0.9330  0.9520  

O Rate 0.0170  0.0430  0.1260  0.1100  0.0240  0.0820  0.0960  0.0790  0.0630  0.0960  0.0450  0.0240  

MW 0.7544  0.7890  0.7060  0.7219  0.7698  0.7872  0.7244  0.7205  0.7132  0.7337  0.7055  0.4505  

SDW  0.0235 0.0369 0.0426 0.0436 0.0000 0.0000 0.0255 0.0284 0.0222 0.0364 0.0265 0.1971 

n=50 

B Rate 0.0000 0.0220  0.0080  0.0080  0.0230  0.0040  0.0090  0.0060  0.0340  0.0120  0.0140  0.0220  

C Rate 0.9980  0.9370  0.8630  0.8700  0.9440  0.9350  0.9220  0.9240  0.9320  0.9330  0.9350  0.9530  

O Rate 0.0020  0.0310  0.1290  0.1220  0.0330  0.0610  0.0690  0.0700  0.0340  0.0550  0.0510  0.0250  

MW 0.6702  0.5989  0.5018  0.5544  0.5835  0.5863  0.5696  0.5571  0.6204  0.5383  0.5297  0.3141  

SDW  0.0127 0.0218 0.0240 0.0241 0.0000 0.0000 0.0127 0.0226 0.0138 0.0200 0.0125 0.1679 

n=100 

B Rate 0.0000 0.0230  0.0110  0.0090  0.0160  0.0070  0.0100  0.0120  0.0150  0.0050  0.0210  0.0280  

C Rate 1.0000  0.9470  0.8670  0.8790  0.9660  0.9530  0.9330  0.9400  0.9450  0.9420  0.9430  0.9610  

O Rate 0.0000 0.0210  0.1220  0.1120  0.0180  0.0400  0.0570  0.0480  0.0300  0.0530  0.0360  0.0110 

MW 0.4956  0.4330  0.3716  0.3885  0.4061  0.4029  0.3956  0.3936  0.4006  0.3934  0.3814  0.1825  

SDW  0.0056 0.0103 0.0109 0.0109 0.0000 0.0000 0.0059 0.0166 0.0068 0.0103 0.0057 0.1284 

 

Table 3: 95% Confidence Interval when Data Generated from Bivariate Normal for 1=0.9 

Critria CCI FCI CIr CIr(t) CIz CIz(t) SKCI NBoot PBoot FBoot SKBoot BCA 

n=10 

B Rate 0.0410  0.0360  0.0000 0.0000 0.0240 0.0200 0.0020  0.0000 0.0210  0.0000 0.0320  0.0245 

C Rate 0.8100  0.9210  0.6940  0.6890  0.9310  0.7100  0.7300  0.7430  0.8005 0.6790  0.9300  0.9500  

O Rate 0.1490  0.0430  0.3060  0.3110  0.0450  0.2700  0.2680  0.2570  0.1785 0.3210  0.0380  0.0255 

MW 1.5169  1.4989  1.1641  1.3167  1.5119  1.7100  1.5141  1.5667 1.5166  1.1743  1.1691  0.7626  

SDW  0.1433 0.1418 0.1984 0.2245 0.0000 0.0000 0.1416 0.1480 0.1404 0.1354 0.1414 0.3425 

n=20 

B Rate 0.0020  0.0310 0.0020  0.0020  0.0295 0.0300 0.0040  0.0020  0.0280  0.0020  0.0370  0.0270  

C Rate 0.9430  0.9280  0.8110  0.8120  0.9405 0.8530  0.8360  0.8590  0.9190 0.8390  0.9310  0.9510  

O Rate 0.0550  0.0310  0.1870  0.1860  0.0300  0.1170  0.1600  0.1390  0.0530  0.1590  0.0320  0.0220 

MW 1.0855  1.0356  0.8561  0.8959  0.9701  1.0153  0.9529  0.8864  0.9906  0.8789  0.8417  0.5534  

SDW  0.0454 0.0633 0.0765 0.0801 0.0000 0.0000 0.0477 0.0340 0.0471 0.0652 0.0477 0.2320 
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(Table 3). Continued. 

Critria CCI FCI CIr CIr(t) CIz CIz(t) SKCI NBoot PBoot FBoot SKBoot BCA 

n=30 

B Rate 0.0010  0.0140  0.0340  0.0050  0.0350  0.0050  0.0060  0.0050  0.0060  0.0050  0.0120  0.0200  

C Rate 0.9640  0.9330  0.8280  0.8440  0.9410  0.8940  0.8660  0.9100  0.9310  0.8630  0.9330  0.9510  

O Rate 0.0350  0.0430  0.1380  0.1510  0.0240  0.1010  0.1280  0.0850  0.0630  0.1320  0.0450  0.0290  

MW 0.8522  0.8856  0.7021  0.7180  0.7698  0.7872  0.7519  0.7199  0.7690  0.7132  0.7048  0.4134  

SDW  0.0277 0.0432 0.0496 0.0507 0.0000 0.0000 0.0280 0.0282 0.0272 0.0415 0.0296 0.2080 

n=50 

B Rate 0.0000 0.0220  0.0050  0.0290  0.0230  0.0020  0.0040  0.0130  0.0340  0.0130  0.0140  0.0230  

C Rate 0.9930  0.9360  0.8380  0.8650  0.9440  0.9430  0.9040  0.9170  0.9320  0.9030  0.9350  0.9520  

O Rate 0.0070  0.0320  0.1570  0.1060  0.0330  0.0550  0.0920  0.0700  0.0340  0.0840  0.0510  0.0250  

MW 0.6688  0.6364  0.5091 0.5517  0.5835  0.5863  0.5603 0.5566  0.5921  0.5311  0.5153  0.3099  

SDW  0.0143 0.0244 0.0267  0.0269 0.0000 0.0000 0.0139 0.0232 0.0146 0.0248 0.0126 0.1690 

n=100 

B Rate 0.0000 0.0230  0.0090  0.0060  0.0160  0.0170  0.0090  0.0040  0.0150  0.0040  0.0210  0.0200  

C Rate 1.0000  0.9440  0.8560  0.8760  0.9660  0.9500  0.9290  0.9310  0.9450  0.9260  0.9430  0.9590  

O Rate 0.0000 0.0230  0.1350  0.1180  0.0180  0.0330  0.0620  0.0650  0.0300  0.0700  0.0360  0.0310 

MW 0.4948  0.4514  0.3819  0.3868  0.4061  0.4029  0.3901  0.3929  0.4225  0.3988  0.3823 0.1693  

SDW  0.0062 0.0114 0.0121 0.0120 0.0000 0.0000 0.0060 0.0162 0.0061 0.0109 0.0062 0.1241 

 

Table 4: 95% Confidence Interval when Data Generated from Bivariate Lognormal for 1=0.7 

Critria CCI FCI CIr CIr(t) CIz CIz(t) SKCI NBoot PBoot FBoot SKBoot BCA 

n=10 

B Rate 0.0050  0.0200 0.0050  0.0020  0.0240  0.0000 0.0000 0.0140  0.0250  0.0000 0.0200 0.0140 

C Rate 0.8570  0.9420  0.8600  0.8680  0.9410 0.8870  0.8960  0.8990  0.9420  0.9010  0.9450  0.9520  

O Rate 0.1380  0.0380  0.1350  0.1280  0.0350  0.1130  0.1040  0.0870  0.0330  0.0990  0.0350  0.0340  

MW 1.5043  1.7386  1.1689  1.3221  1.5119  1.7100  1.4959  1.2348  1.7269  1.1920  1.4878  0.8093  

SDW  0.2607 0.2450 0.2910 0.3291 0.0000 0.0000 0.3761 0.0666 0.2993 0.3204 0.4106 0.3601 

n=20 

B Rate 0,0000 0.0210  0.0000 0.0000 0.0200 0.0010  0.0000 0.0020  0.0120  0.0050  0.0240 0.0230 

C Rate 0.8880  0.9440 0.8640  0.8690  0.9430  0.9250  0.9160  0.9350  0.9470  0.9370  0.9460  0.9530  

O Rate 0.1120  0.0350  0.1360  0.1310  0.0370  0.0740  0.0840  0.0630  0.0410  0.0580  0.0400  0.0240  

MW 0.9428  1.1223 0.8454  0.8847  0.9701  1.0153  0.9370  0.8776  1.1297  0.8241  0.9239  0.6313  

SDW  0.1215 0.1471 0.1626 0.1702 0.0000 0.0000 0.1587 0.0476 0.1456 0.1657 0.2240 0.2930 

n=30 

B Rate 0.0000 0.0230 0.0000 0.0000 0.0200 0.0000 0.0000 0.0050  0.0210  0,0210 0.0200 0.0020  

C Rate 0.9420  0.9450  0.9040  0.9040  0.9520  0.9300  0.9190  0.9360  0.9490  0.9410  0.9480  0.9560  

O Rate 0.0580  0.0320  0.0960  0.0960  0.0380  0.0700  0.0810  0.0590  0.0300  0.0380  0.0320  0.0420  

MW 0.7544  0.8914  0.7100  0.7261  0.7698  0.7872  0.7147  0.7269  0.7603  0.6407  0.7129  0.3786  

SDW  0.0626 0.0850 0.0922 0.0943 0.0000 0.0000 0.0997 0.0489 0.0630 0.0956 0.0958 0.2310 
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(Table 4). Continued. 

Critria CCI FCI CIr CIr(t) CIz CIz(t) SKCI NBoot PBoot FBoot SKBoot BCA 

n=50 

B.Rate 0.0000 0.0210 0.0000 0.0000 0.0200 0.0000 0.0000 0.0010  0.0030  0.0310  0.0200 0.0190 

C Rate 0.9500  0.9480  0.9090  0.9150  0.9520  0.9320  0.9260  0.9370  0.9470  0.9460  0.9490  0.9570  

O Rate 0.0500  0.0410  0.0910  0.0850  0.0280  0.0680  0.0740  0.0620  0.0500  0.0230  0.0310  0.0240  

MW 0.5680  0.6374  0.5507  0.5533  0.5835  0.5863  0.5485  0.5683  0.6237  0.6406  0.5525  0.2730  

SDW  0.0458 0.0640 0.0675 0.0678 0.0000 0.0000 0.0545 0.0459 0.0503 0.0974 0.0531 0.2409 

n=100 

B Rate 0.0000 0.0210 0.0000 0.0000 0.0250 0.0000 0.0000 0.0150  0.0240  0.0310  0.0210  0.0200 

C Rate 0.9840  0.9490  0.9310  0.9310  0.9530  0.9500  0.9360  0.9510  0.9510  0.9460  0.9500  0.9580  

O Rate 0.0160  0.0300  0.0690  0.0690  0.0220  0.0500  0.0340  0.0340  0.0250  0.0230  0.0290  0.0220  

MW 0.3971  0.4667  0.3956  0.3925  0.4061  0.4029  0.3188  0.3938  0.4595  0.4142  0.3106  0.2489  

SDW  0.0212 0.0294 0.0304 0.0302 0.0000 0.0000 0.0271 0.0435 0.0245 0.0374 0.0330 0.2614 

 

Table 5: 95% Confidence Interval when Data Generated from Bivariate Chi-Square for 1=0.7 

Critria CCI FCI CIr CIr(t) CIz CIz(t) SKCI NBoot PBoot FBoot SKBoot BCA 

n=10 

B Rate 0.0680  0.0240  0.0620  0.0500  0.0220  0.0100  0.0240  0.0500  0.0220  0.0500  0.0420  0.0160  

C Rate 0.8200  0.9420  0.8300  0.8760  0.9460  0.9480  0.9420  0.9280  0.9440  0.9260  0.9340  0.9480  

O Rate 0.1120  0.0340  0.1080  0.0740  0.0320  0.0420  0.0340  0.0220  0.0340  0.0240  0.0240  0.0360  

MW 1.5252  1.6573  1.1749  1.3289  1.5119  1.7100  1.3845 1.2485  1.5990  1.1904  1.3988  0.7659 

SDW  0.1292 0.1275 0.1819 0.2058 0.0000 0.0000 0.1104 0.0459 0.1355 0.1306 0.1254 0.3013 

n=20 

B Rate 0.0100  0.0200  0.0380  0.0360  0.0180  0.0200  0.0200  0.0120  0.0210  0.0180  0.0260  0.0280  

C Rate 0.9620  0.9440  0.9160  0.9220  0.9480  0.9540  0.9440  0.9380  0.9480  0.9320  0.9400  0.9500  

O Rate 0.0280  0.0360  0.0460  0.0420  0.0340  0.0260  0.0360  0.0500  0.0310  0.0500  0.0340  0.0220 

MW 0.9636  1.0470  0.8700  0.9105  0.9701  1.0153  0.9432 0.8829  0.9892  0.7969  0.9392  0.5223 

SDW  0.0367 0.0517 0.0634 0.0663 0.0000 0.0000 0.0211 0.0388 0.0358 0.0491 0.0358 0.2334 

n=30 

B Rate 0.0040  0.0120  0.0300  0.0220  0.0270  0.0180  0.0120  0.0160  0.0303 0.0240  0.0220  0.0160  

C Rate 0.9900  0.9460  0.9200  0.9280  0.9490  0.9580  0.9460  0.9420  0.9495 0.9440  0.9440  0.9540  

O Rate 0.0060  0.0420  0.0500  0.0500  0.0240  0.0240  0.0420  0.0420  0.0202 0.0320  0.0340  0.0300 

MW 0.7600  0.8978  0.7162  0.7324  0.7698  0.7872  0.7429 0.7159  0.7936  0.6995  0.7534 0.4305  

SDW  0.0200 0.0314 0.0362 0.0371 0.0000 0.0000 0.0199 0.0310 0.0208 0.0315 0.0208 0.1821 

n=50 

B.Rate 0.0000 0.0210  0.0160  0.0160  0.0220  0.0100  0.0280  0.0280  0.0240  0.0140  0.0240  0.0210  

C Rate 0.9980  0.9470  0.9300  0.9300  0.9500  0.9620  0.9480  0.9480  0.9500  0.9460  0.9500  0.9550  

O Rate 0.0020  0.0320  0.0540  0.0540  0.0280  0.0280  0.0240  0.0240  0.0260  0.0400  0.0260  0.0240  

MW 0.5740  0.6454  0.5589  0.5616  0.5835  0.5863  0.5300  0.5552  0.5931  0.5496  0.5431  0.3128 

SDW  0.0092 0.0158 0.0174 0.0175 0.0000 0.0000 0.0892 0.0259 0.0087 0.0056 0.0087 0.1598 
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(Table 5). Continued. 

Critria CCI FCI CIr CIr(t) CIz CIz(t) SKCI NBoot PBoot FBoot SKBoot BCA 

n=100 

B Rate 0.0000 0.0110  0.0320  0.0360  0.0140  0.0100  0.0140  0.0140  0.0200  0.0200  0.0210  0.0140  

C Rate 1.0000  0.9490  0.9440  0.9380  0.9520  0.9720  0.9490  0.9560  0.9560  0.9540  0.9560  0.9560  

O Rate 0.0000 0.0300  0.0240  0.0260  0.0340  0.0180  0.0370  0.0300  0.0240  0.0260  0.0230  0.0300  

MW 0.3989  0.4690  0.3979  0.3948  0.4061  0.4029  0.3812 0.3914  0.4251  0.3716  0.3851  0.2045 

SDW  0.0028 0.0053 0.0056 0.0055 0.0000 0.0000 0.0198 0.0178 0.0027 0.0050 0.0027 0.1999 

Notes: CCI - Classical confidence interval given in (2), FCI - Fisher confidence interval given in (3), Clr - Gorsuch and Lehman confidence interval 1 given in (4), 
Clr(t) - Gorsuch and Lehman confidence interval 2 given in (5), Clz - Gorsuch and Lehman confidence interval 3 given in (6), Clz(t) - Gorsuch and Lehman confidence 
interval 4 given in (7), SKCI -Shipra and Kibria proposed confidence interval given in (8), NBoot- Non-parametric confidence interval given in (9), PBoot- Parametric 
confidence interval given in (10), FBoot-Fisher bootstrap confidence interval given in (11), SKBoot - Shipra and Kibria bootstrap confidence interval given in (12) and 
BCA - Bootstrap bias corrected acceleration confidence interval given in (13).  

 

 

Figure 1: Coverage probability for various values of n in case of bivariate normal distribution. 

 

 

Figure 2: Coverage probability for various values of 1 and n=30 in case of bivariate normal distribution. 
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Figure 3: Mean widths for various values of n and =0.9 in case of bivariate normal distribution. 

sizes in Figure 3 for 1=0.90. We see that as the 

sample size n increases, mean widths are decreases. 

We found that BCA, Clr, SKBoot and FBoot have 

shorter mean widths compared to others. 

Next we evaluated our considered CIs when data 

are generated from the bivariate lognormal distribution 

for various values of n and 1. To save space of the 

paper, only results for 1=0.7, are reported in Table 4 

(others simulation results are available upon request). 

Figure 4 shows that as the sample size increases, 

coverage probabilities are approaching to nominal level 

0.95 except CCI, Clr, Clr(t) and SKCI intervals. In 

general FCI, Clz, SKBoot and BCA have higher cover 

rates as compare to others. 

We have only tabulated simulation results when 

data are generated from the bivariate chi-square 

distribution in Table 5 to save space of the paper 

(others results are available upon request). In Figure 5, 

we have presented coverage probabilities for various 

values of n and 1 = 0.7. We observed that all methods 

but CCI, Clr and Clz(t) have coverage probability very 

close to the nominal level 0.95.  

In general, from our simulation studies, we found 

that the coverage probabilities of intervals, BCA, 

SKBoot, Clz and FCI are close to nominal level 0.95, 

while BCA, Clr, FBoot and SKBoot have shorter mean 

widths as compare to others. 

4. APPLICATIONS 

This section considers two real life applications to 

illustrate the findings of the paper. 

 

Figure 4: Coverage probability for various values of n in case of bivariate lognormal distribution. 
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4.1. Example 1 

The subjects of a study by Malec et al. (1991) [11] 

were 16 graduates of a comprehensive, post acute 

brain injury rehabilitation program. The researcher 

examined the relationship among a number of 

variables, including work outcome (scaled from 1 for 

unemployed to 5, which represents competitive non-

sheltered employment), score at time of period 

evaluation on the Portland Adaptability Inventory (PAI) 

and length of stay (LOS) in days. The following 

measurements on these three variables were collected: 

We are interested to find confidence interval of the 

correlation coefficient between y and x1 and y and x2 

using selected methods of this paper. To get an idea 

about the relation between y and x1 and y and x2, we 

draw scatter plots and presented them in Figures 6 and 

7 respectively. We find that there is a negative relation 

between y and (x1, x2). The correlation between y and 

x1 is -0.5780 and y and x2 is -0.5969, indicate negative 

relation between considered variables. The 95% 

confidence intervals for r between y and (x1,x2) are 

provided in Table 6. 

We see from the Table 6 that the interval estimator 

BCA has the shortest width followed by CIr, SKBoot 

and FBoot when y is correlated with x1, while BCA has 

the shortest width followed by CIr, FBoot and SKBoot 

when y correlated with x2. 

4.2. Example 2 

The objective of a study by Steinhorn and Green 

(1991) [12] was to determine whether the metabolic 

response to illness in children as measured by direct 

means is correlated with the estimated severity of 

illness. Subjects were 12 patients between the ages of 

2 and 120 months with a variety illness including 

sepsis, bacterial meningitis and respiratory failure. 

 

Figure 5: Coverage probability for various values of n in case of bivariate chi-square distribution. 

y- work 
experience 

5 4 2 4 1 4 1 4 4 5 3 1 4 1 4 4 

x1-LOS(days) 67 157 242 255 227 140 179 258 85 52 296 256 198 224 126 156 

x2-PAI PRE 19 17 23 14 27 22 23 18 16 22 15 30 21 22 19 8 

 

Figure 6: Scatter diagram y with x1. 
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Severity of illness was assessed by means of the 

Physiologic Stability Index (PSI) and the Rediatric Risk 

of Mortality scoring system (PRISM). The resulting 

measurements on these variables were as follows: 

PRISM: 15, 27, 5, 23, 4, 6, 18, 15, 12, 1, 50, 9 

PSI:14, 18, 4, 18, 12, 4, 17, 14, 11, 4, 63, 10 

We want to find confidence intervals of correlation 

between PRISM and PSI. The scatter plot between 

PRISM and PSI in Figure 8 indicates a positive relation 

between PRISM and PSI. The 95% confidence 

intervals of the correlation coefficient between PRISM 

and PSI of our selected methods are given in Table 7. 

It appears from this table, overall BCA, SKBoot, Clr, 

FBoot, have the shorter widths compared to the rest. 

From our studies, in general it can be concluded 

that the BCA is the best method, followed by SKBoot, 

FBoot, FCI, PBoot, Clz, SKCI, Clr, CCI, Clr(t), NBoot 

and Clz(t). The above order is made based on the good 

coverage probability, small average width and size of 

samples. We believe that the simulation results along 

with applications will be helpful for practitioners to 

choose good methods to find confidence intervals for . 

5. CONCLUSION 

This paper considers several methods for 

constructing a confidence interval estimator for the 

population correlation coefficient . A simulation study 

has been conducted to compare the performance of 

the estimators. Data were randomly generated from 

several bivariate distributions, such as, bivariate 

normal, bivariate lognormal and bivariate chi-square 

with a range of sample sizes. Various evaluation 

criterions such as below rate, cover rate, over rate, 

mean widths and SD of the widths are considered to 

compare the performance of the estimators. Two real 

life applications are considered to illustrate the findings 

of the paper.  

Overall, it appears that BCA performed the best 

followed by SKBoot, Clz and FCI when we consider the 

coverage probability close to the nominal level. BCA 

has the smallest average width followed by Clr, SKBoot 

and FBoot. It is evident from both simulation study and 

application that the BCA and SKBoot confidence 

intervals can be recommended for practitioners 

because these two intervals performed better than the 

rest of the estimators. It is also evident from our study 

that these two methods work well for small sample 

sizes although as compare to CCI, these two methods 

are not so handy to compute. Our proposed method 

also performing reasonably well in the sense of good 

 

Figure 7: Scatter diagram y with x2. 

Table 6: 95% confidence intervals for  

r between y and x1 r between y and x2 

Methods CIs Width Methods CIs Width 

CCI (-0.8457, -0.1102) 0.7355 CCI (-0.8568,-0.1369) 0.7199 

FCI (-0.8346,-0.1153) 0.7193 FCI (-0.8431,-0.1437) 0.6994 

CIr (-0.9219,-0.2341) 0.6878 CIr (-0.9293,-0.2644) 0.6649 

CIr(t) (-0.9445,-0.2115) 0.7330 CIr(t) (-0.9611,-0.2426) 0.7185 

CIz (-0.8379,-0.1043) 0.7336 CIz (-0.8563,-0.1328) 0.7235 

CIz(t) (-0.8484,-0.0681) 0.7803 CIz(t) (-0.8563,-0.0968) 0.7595 

SKCI (-0.8450,-0.1100) 0.7350 SKCI (-0.8515,-0.1380) 0.7135 

NBoot (-0.8975,-0.1140) 0.7835 NBoot (-0.8954,0.1211) 0.7743 

PBoot (-0.8527,-0.0965) 0.7562 PBoot (-0.8669,-0.1601) 0.7068 

FBoot (-0.8229,-0.1105) 0.7124 FBoot (-0.8475,-0.1677) 0.6798 

SKBoot (-0.8233,-0.1126) 0.7107 SKBoot (-0.8359,-0.1378) 0.6981 

BCA (-0.7945,-0.1167) 0.6778 BCA (-0.7410,-0.1390) 0.6020 
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coverage and shorter width. We expect that the results 

of this paper will be helpful for practitioners and 

researchers when they will choose to calculate 

confidence interval for the population correlation 

coefficient and formulate policies.  

Table 7: 95% Confidence Intervals for  

Methods CIs Width 

CCI (0.6890,0.9737) 0.2847 

FCI (0.7734,0.9821) 0.2097 

CIr (0.8020,0.9910) 0.1890 

CIr(t) (0.7845,0.9881) 0.2036 

CIz (0.7782,0.9828) 0.2046 

CIz(t) (0.7504,0.9850) 0.2346 

SKCI (0.6980,0.9610) 0.2630 

NBoot (0.5140,0.8556) 0.3416 

PBoot (0.7039,0.9129) 0.2090 

FBoot (0.7838,0.9866) 0.2028 

SKBoot (0.8036,0.9891) 0.1855 

BCA (0.8945, 0.9783) 0.0838 
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Figure 8: Scatter diagram PSI with PRISM. 


