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Abstract: In medical research, frequently other important determinants, correlated with the key treatment variable, are 
omitted from the analysis. This omission yields biased and inconsistent estimates. For example, leaving out correlated 
(with, say, X1 ) determinants of Y from regressions yield biased estimates of key parameters (say !̂1 ). Instrumental 
variable estimation solves this problem by constructing similar triangles to retrieve consistent estimates. This article 
illustrates the geometry of correlated regressor bias, and the simple IV geometric solution. 
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SAMPLE REGRESSION ONTO THE X1, X2 PLANE 

Consider the costs of treating low-back back pain 
(Y) upon admission into a disability claim, as it varies 
with (the time-of-admission) self-reported level of back 
pain (X1 )  and another factor (X2 ) , so that the sample 
regression function expressed in terms of vectors 
(Y , 1, X1, X2 , µ̂)  and the estimated sample parameters 

(!̂0 , !̂1, !̂2 )  is as follows (note that 1  is the vector of 

ones associated with the intercept term, !̂0 ): 

Y = !̂0 1 + !̂1X1 + !̂2X2 + µ̂  

Averaging both sides of this equation, and 
subtracting that resulting averaged equation from 
above (to eliminate the constant term), we arrive at the 
demeaned specification as follows: 

Y * = !̂1X1
* + !̂2X2

* + µ̂  

so that Y * = Y !Y 1, X1
* = X1 ! X1 1,  and X2

* = X2 ! X2 1 , 
where (again) 1  is a vector of ones, and a bar above 
the other variables indicates its sample mean value.  

When variables are deviated from their means, then 
their (dot) product is a covariance, and uncorrelated 
variables have zero covariance. Statistical 
“independence” for these vectors means that their 
covariance is zero, that their dot product is zero, and 
equivalently in vector spaces, that the are orthogonal or 
at right angles to each other. Hence, any of the three 
right hand side vectors (X1

*, X2
*, µ̂)  orthogonal to the 

other two (say, µ̂ ), does not affect the projection of—
that is, the regression of—Y *  onto the space spanned 
by the remaining two vectors (say, X1

*, X2
* ). When one 

variable is at right angles (uncorrelated) to the other  
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variables, we can safely ignore it when doing our 
analysis. 

With no simultaneous causality in the population 
regression, E( µ |X)=0, sample regression is fitted by 
taking the residuals to be orthogonal to X1

*, X2
*  this 

yields sample orthogonality (right angle, or 
uncorrelated) conditions that minimizes the sum of 
squared residuals: 

orthogonality X1
* : (X1

* ) ' µ̂ = 0   or 

!i X1i
* Y1

* " #̂1X1i
* + #̂2X2i

*( )( ) = 0  

orthogonality X2
* : (X2

* ) ' µ̂ = 0  or 

!i X2i
* Yi

* " #̂1X1i
* + #̂2X2i

*( )( ) = 0  

Solving these two equations yields the predicted 
value of the demeaned dependent variable, namely Ŷ *  
in the (X1

*, X1
* )  plane, and simultaneously yields the 

estimated coefficient values !̂1, !̂2 . Omitted Variable 
Bias (OVB) and Classical Measurement Error (CME) in 
the estimation of the effect of X1

*  on output Ŷ *  are 
biases arising from the omission of a correlated 
regressor (say the omission of X2

*  from the regression 
in the OVB case). These biases are graphically 
illustrated in sections 2 and 3.  

With OVB or CME, the sample error is assumed to 
be generated by a process that makes it orthogonal to 
the regression plane (i.e., generated under the 
assumption that E( µ |X)=0), and so µ̂  plays no role in 
generating either OVB or CME biases. In section 4, this 
assumption is dropped and E( µ |X)≠0 because a 
simultaneous equation model (SEM) process is 
assumed to be generating Y * . 

However, in terms of the geometric decomposition 
of Y * , SEM bias is graphically similar to OVB bias and 
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CME bias, with Y *  projected onto the space generated 
by the endogenous X1

*  variable and the correlated 
(with X1

* ) error µ̂ . In all three cases (OVB, CME, 
SEM), the instrumental variable (IV) solution is to find 
the appropriate instrumental variable estimator that 
yields a consistent estimator for !̂1  by means of similar 
triangles. This is illustrated in the fifth section. The final 
section offers an empirical example of CME and its IV 
solution.  

OMITTED VARIABLE BIAS, E( µ̂ |X)=0 

If the covariance between X1i
* , X2i

*  is not zero, then 
omitting X2i

*  from the specification will bias the 

estimate of !̂1 . This is the essence of both omitted 
variable bias and classical measurement error bias, 
which share a common geometric structure. 

Figure 1 indicates the bias in the OLS estimate of 
!̂1  when we leave out X2

*  from the regression 
specification (ignore the influence of X2

* ). The intuition 
is simple: when we properly include both X1

*  and X2
* , 

the predicted value of Y *  is the parallelogram formed 
by !̂1X1

*  and !̂2X2
* . Leaving out X2

*  means the Y *  is 
projected directly onto the X1

*  vector, rather than the 
X1
*, X2

*  plane. 

The bias is readily seen looking directly down onto 
the regression plane (Y *  and Ŷ *  are perfectly aligned 
from this angle), as indicated in Figure 1. Let PX1*  be 

the projection operator that casts variable vectors into 
the X1

* -space (here, a line) and so P
X1
*X2

*  is the 

regression of X2
*  (the dependent variable) onto X1

*  (the 
independent variable). 

 
Figure 1: The Regression Plane View of OVB. 

When X2
*  is omitted from the specification, Y *  is 

projected directly onto the X1
*  line instead of the 

(X1
*, X2

* )  plane. In the plane, the parallelogram provides 

the best estimated parameter variables, !̂1, !̂2  give the 
sample. Omitting X2

*  from the specification biases 

upward the estimated !̂1  parameter in this example. 

The added OVB bias equals !̂2  times the coefficient 
resulting from the regression of X2

*  on X1
* , which is 

given as PX1*X2
*  in Figure 1. 

There will be no bias from omitting X2
*  either when 

!̂2 =0, or when the X1
*, X2

*  vectors are orthogonal, and 
hence, uncorrelated (with covariance of zero). A formal 
proof of OVB in terms of projection operators is 
straightforward. Multiply through the model  
Y * = !̂1X1

* + !̂2X2
* + µ̂  

by PX1*  to get 

P
X1
*Y * = !̂1PX1*X1

* + !̂2PX1*X2
* + P

X1
* µ̂  

where the far right hand term is zero (from the 
orthogonality conditions), and the far left hand term is 
the estimated effect when omitting X2

*  from the model. 
The first term on right hand side of the equality sign, 
!̂1PX1*X1

* = !̂1X1
*,  is the true effect; while the second 

hand term is the bias effect from omitting X2
* . 

Recapping OVB without the Demeaning 

To summarize the findings in terms of regressions 
with the constants reinserted into the sample estimates 
(before the demeaning removed the constants): 

“true” for the sample: Y = !̂0 1 + !̂1X1 + !̂2X2 + µ̂  

actual sample estimates: Y = !̂0 1 + !̂1X1+ "̂ 

auxiliary (partial correlation) regression: 
X1 = !̂ 0 1 + !̂ 1X2 + "  

The omitted variable bias formula derived via Figure 
1 above is 

!̂1X1
* = "̂1X1

* + "̂2#̂ 1X1
*  

or as usually written,  

!̂1 = "̂1 + "̂2#̂ 1  (the far right hand term being the bias 
from omitting X2

* ). 
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CLASSICAL MEASUREMENT ERROR (CME), 
E( µ̂ |X)=0 

This is a special case of omitted variable bias. 
Consider a simple regression model in vector format, 
where the reported independent variable is subject to 
measurement error ( !̂). 

X1 = X1
t + !̂ 

where !̂ is uncorrelated with the true value of the 
independent variable, X1

t , but is positively correlated 
with the reported or observed value of the independent 
variable, X1 . In the empirical example below, X1

t  is the 
"true" value from the Roland-Morris back pain index, a 
self-reported measure of back-pain generally reflecting 
true back-pain with some error ( !̂). Substituting into 
the simple regression for the true value of the 
independent variable, X1

t = X1! "̂,  into the simple 

regression model Y = !̂0 1 + !̂1X1
t + µ̂  and demeaning 

the model to get rid of the constant term, we get the 
following sample regression function: 

Y * = !̂1X1
* " !̂2 #̂+µ̂  

where the sample errors have zero means, so µ̂* = µ̂  
and !̂*= !̂ . Classical Measurement Error (CME) is a 
special case of OVB where we know that X1

*  and !̂ 
are positively correlated (so that X1

*  and ! "̂ are 
negatively correlated and there is no need for an 
auxiliary regression to sign the bias), and the !̂1  is the 
coefficient both for the observed X1

*  and the omitted 

variable !̂. Regardless of the sign of !̂1 , it is 
reorienting both X1

*  and ! "̂ the same way in the 

regression plane. Suppose that !̂1 >0. Then analogous 
to the OVB diagram, we have CME in Figure 2. 

While !̂1 >0 in Figure 2, if  !̂1 <0, then the diagram is 
symmetrically reflected on each axis, so the conclusion 

still holds: for CME, the estimated !̂1  is biased towards 
zero. CME results in “attenuation” bias. 

The proof is also a simple extension of the omitted 
variable bias proof above. Multiply through the model 
Y * = !̂1X1

* " !̂1 #̂+µ̂  by PX1*  to get 

P
X1
*Y * = !̂1PX1*X1

* " !̂1PX1* #̂+PX1* µ̂  

where the far right hand term is zero again from the 
orthogonality of X1

*  and the residual µ̂ , and the far left 
hand term is the estimated effect when omitting !̂ from 
the model (that is, from having Classical Measurement 
Error that is not accounted for in the regression). The 
first term on right hand side of the equality sign, 
!̂1PX1*X1

* = !̂1X1
*,  is the true effect; while the second 

hand term is the bias effect from omitting !̂, which 
always causes !̂1  to be biased towards zero. (Again, 

the mutual scaling of X1
*  and !̂ by the same scalar !̂1  

guarantees that the bias is towards zero regardless of 
the sign of !̂1 ). 

SIMULTANEOUS EQUATION MODEL (SEM), 
E( µ̂ |X)≠0 

While OVB and CME obviously generate bias 
yielding the same geometric diagram (through the 
omission of an important correlated variable), it may 
not be obvious that the SEM shares this same 
geometric structure. Suppose we want to estimate the 
demand response for insurance purchases ( !̂1 ) in the 
following simplified supply and demand setting: 

Demand: P = !̂0 + !̂1Q + µ̂  

where P, price and Q, quantity are the key endogenous 
variables. 

Supply: Q = !̂0 + !̂1P + !̂2 roi+ "̂ 

 
Figure 2: The Regression Plane View of CME. 



The Simple Geometry of Correlated Regressors and IV Corrections International Journal of Statistics in Medical Research, 2016, Vol. 5, No. 3      185 

We are only interested in estimating the demand 
equation (in particular, just !̂1 ). roi, return on 
investment, serves as the Instrumental Variable or Z 
(IV-type variable) for getting a consistent estimate of 
the demand equation, as it only enters into this market 
as an exogenous supply factor. OLS estimation of !̂1  
will be inherently inconsistent because E µ X( ) ! 0,  
and so the (estimated) error will be correlated with Q 
the right hand side endogenous variable in the demand 
equation by construction: µ̂  determines P (positive 
covariance) from the demand equation, and P has a 
positive impact on Q from the supply equation (another 
positive covariance), so the system suggests an 
inherently positive correlation between µ̂  and Q in the 
demand equation. 

The geometrical problem (bias) here is the same as 
that pictured in Figure 1, with µ̂  replacing X2

*  and with 

!̂2 = 1 . 

SIMILAR TRIANGLES: IV GEOMETRY FIXES OBV, 
CME, AND SEM 

To get consistent estimates of our regression 
coefficients when we have OVB, CME, or endogenity 
due to SEM, we need instrumental variables. These 
are one or more variables Z (our generic indicator of an 
identifying instrumental variable) which are 
uncorrelated with the sample model error, µ̂ , 
correlated with the appropriate right hand side variable, 
X, and in the case of OVB and CME, Z is also 
uncorrelated with the omitted "regressor" ( X2

* and !̂, 
respectively). 

These Zs allow us to obtain consistent parameter 
estimates because they form similar triangles, with 
proportionate sides, where the factors of 

proportionately will be our consistently estimated 
coefficients. Consider classical measurement error in 
Figure 1, and the right triangles formed with the 
instrumental Z: 

As in the previous CME geometric view (Figure 2 
above), we employ sample values, deviate all variable 
values from their means to get rid of the constant term, 
letting !̂1  represent the ``appropriate'' value for our 
sample. An orthogonal projection of Y *  (recall in this 
"overhead" view that Y *  and Ŷ *  are perfectly aligned) 
onto X1

*  yields an estimated effect that is biased 
towards zero (attenuation bias), because we have 
failed to account for the negative covariance between 
X1
*  and - !̂. 

To fix the attenuation bias, and get consistent 
parameter values using IV (instrumental variable) 
estimators, we first regress the correlated regressor X1

*  

on the IV Z to get a predicted value of X1
* , namely X̂1

* . 
This predicted value of X1

*  is orthogonal to the 
measurement error, because Z is orthogonal to the 
measurement error. Then we regress Y *  on this 
predicted value to get !̂1X̂1

*.  

This process yields similar right triangles, which 
recovers the appropriate !̂1 . That is, the ratio of !̂ Z *  to 

!̂1X̂1
*.  is the same as the ratio of to X1

*  to !̂1X1
*.  From 

the first stage of our IV estimation, we have 

Z * = X̂* / cov(X
*,Z * )

var(Z * )
!

"
#

$

%
& Z

* , and in the second stage we 

have Ŷ * =
cov(Y *,Z * )
var(Z * )

!

"
#

$

%
& Z

*.  Hence, the effect of 

X* on Y *  on as mediated by Z *  is the IV estimator: 

 
Figure 3: Instrumental Variables to Correct Classical Measurement Error (CME) Bias. 
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!̂1
IV = cov(Y *,Z * ) / cov(X*,Z * )  

Since Z is orthogonal to the sample residual vector 
µ̂  and in the case of OVB and CME, Z is also 
orthogonal to the omitted factors (respectively, X1

*  and 
!̂), it essentially only affects Y *  through its correlation 
with X1

* . The geometry of IV estimation makes this 
clearer. In the same manner, IV estimation for the SEM 
model, yields consistent estimates for the demand 
response by use of similar triangles. 

 
Figure 4: Instrumental Variables to Correct for SEM Bias. 

The SEM system of the previous section suggests 
roi (the return on investment) as a natural IV or Z 
variable. In the first stage of IV estimation, we regress 
Q on roi (our Z in this example). In the second stage, 
we regress P on the predicted value of Q (predicted 
with roi). This results again in similar triangles, yielding 
a consistent estimate of !̂1 . 

These IV diagrams indicate why the instrumental 
variable must be orthogonal to the omitted, correlated 
regressor: that orthogonality is used to construct similar 
triangles to retrieve consistent estimates. To get similar 
triangles, the IV Z variable must be correlated with 
respective X but uncorrelated with the correlated 
omitted factor (in Figure 4, this correlated omitted factor 
is µ̂ ). 

EXAMPLE FROM A PROSPECTIVE LOW BACK 
PAIN STUDY OF CLAIM COSTS 

Low back pain (LBP) is the most costly claim type in 
the US workers' compensation system. In a 
prospective survey of LBP costs and initial patient 
satisfaction with their medical care, Butler and Johnson 

(2008) [1] collect three measures of back pain disability 
at the onset of LBP claims: Roland-Morris scale of back 
disability, physical SF12 scale of activity limitations, 
and a self-assessed measure of backpain (0 to 100%). 
The reported Roland-Morris index at claim onset is a 
noisy measure of back limitations, subject to 
measurement error. Hence, estimated effect of the 
Roland-Morris on subsequent workers’ compensation 
costs likely suffers from attenuation bias. This 
possibility is explored in Table 1, where total claim 
costs are regressed on the Roland-Morris scale and 
other control variables. 

Consistent with research in workers' compensation, 
the socio-demographic variables in Table 1 have the 
expected signs: older workers and males have higher 
workers’ compensation costs while those reporting 
"good experience" with their initial treatment have lower 
costs. Workers in states allowing employee choice of 
initial treating physician (ee choice=1) also have lower 
costs, although the results are not statistically 
significant. 

In this sample, the Roland-Morris scale has a 
(normalized) mean of 48 (out of a 100), and a standard 
deviation of 32, with higher values indicating more 
disability limitations. The OLS results in the far left 
hand column indicates that a one standard deviation 
increase in scale values (32) increases costs by about 
48 percent (32 *.015). Figure 2 suggests that this is 
biased towards zero.  

The use of SF12 and backpain variables as 
instrumental variables (IV) for the Roland-Morris index 
in separate analyses going from left to right, mitigates 
the attenuation bias as indicated graphically in Figure 
3. In the second column from the left, the SF12 IV 
estimates increases costs from 48 percent to 80 
percent, and for the backpain IV estimate from 48 
percent to 58 percent for a one standard deviation 
increase in Roland-Morris scale values. 

The right hand column in Table 1 employs both 
instrumental variables to predict the Roland-Morris 
value in the first stage (instead of one at a time, as in 
the middle columns). Figure 3 indicates what happens 
when the IV assumption of orthogonality with the 
measurement error fails: if the IV is even slightly 
negatively correlated with the error, the estimated 
Roland-Morris coefficient will tend to be too small in 
this example, and if the IV is even slightly positively 
correlated with the measurement error, the estimated 
Roland-Morris coefficient will tend to be too large. The 
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over-identification test is a test of the coherency of 
these alternative IV estimates: do they satisfy the 
appropriate orthogonality condition and estimate the 
same effect [2, 3]? In this case, the over-identification 
test for the right hand specification has a probability 
significance level of .077, suggesting the instruments 
did not both wholly satisfy the orthogonality conditions 
necessary as indicated in Figures 3 and 4. (Coherent 
IVs will generate estimated differences that are 
statistically insignificant from each other in over-
identification tests). 

Leaving out correlated (with X1
* ) determinants of Y *  

(say correlated vectors X2
* , !̂, or µ̂  respectively for 

OVB, CME, or SEM) from our regressions yield biased 
estimates of key parameters ( !̂1 ). Instrumental variable 
estimation solves this problem by constructing similar 
triangles to retrieve consistent estimates. When we 
have more instrumental variables than correlated 
regressors, the over-identification test indicates 
whether those IVs provide coherent estimates in the 
sense of identifying the same coefficient [4-7]. 

Stata and SAS computer code [4-7] for this model 
(right hand column) 

STATA: 

 

ivreg cost age male good_expee_choice (RM=SF12 
backpain) 

SAS: 

procsyslin 2sls; 

endogeneous cost RM; 

instruments age male good_expee_choice SF12 
backpain; 

model cost =age male good_expee_choice RM; 

run;  
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