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Abstract: In this study, we validate the smooth test of goodness-of-fit for the proportionality of the hazard function in the 
two-sample problem in cancer survival studies. The smooth test considered here is an extension of Neyman’s smooth 
test for proportional hazard functions. Simulations are conducted to compare the performance of the smooth test, the 
data-driven smooth test, the Kolmogorov-Smirnov proportional hazards test and the global test, in terms of power. Eight 
real cancer datasets from different settings are assessed for the proportional hazard assumption in the Cox proportional 
hazard models, for validation. The smooth test performed best and is independent of the number of covariates in the Cox 
proportional hazard models. 
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1. BACKGROUND 

Most cancer studies that focus on the identification 
of survival risk factors use models that assume 
proportional hazards. With over 100 different types of 
cancer known today, targeted research in this area is 
particularly important for the ten most prevalent 
cancers (i.e. lung and bronchus, prostate, breast, colon 
and rectum, pancreas, liver and intrahepatic bile duct, 
leukemia, urinary bladder, non-hodgkin lymphoma, 
brain and other nervous system [1]) in the fight against 
cancer. Oncologic research models failure-time data in 
order to identify the risk factors. The time-to-failure data 
analyses in this aspect have consistently used the Cox 
proportional hazard (CPH) models. An important 
aspect of analysis using the CPH model is the 
verification of the proportional hazards assumption. 
The CPH model assumes that the effects of covariates 
do not change over time. Verification of the 
proportionality assumption is critical because the model 
will be rendered invalid if it is violated [2]. Since the 
development of the CPH model [3], different authors 
have proposed several methods of ascertaining the 
proportionality assumption, ranging from graphical 
methods (e.g. [4-7]) to non-graphical methods (e.g. [3, 
8-14]). 

To the best of our knowledge, the validation of 
existing methods for assessing the proportional 
hazards assumption using real datasets from different 
bio-medical settings has not been performed. Here, we 
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assess the performance of the smooth test against the 
Kolmogorov-Smirnov and the global test for the 
proportional hazards assumption. The null hypothesis 
is that the coefficient of the j th  covariate in the CPH 
model is independent of time (i.e. ! j (t) = ! j ). 

The smooth test considered here is an extension of 
Neyman’s smooth tests to proportional hazard 
functions. Neyman’s classical approach [15] has been 
extended to hazard functions (see [16-22]). In these 
studies, one or two example datasets have been used 
to illustrate the validity of the test. Our approach 
employs datasets from eight different cancer survival 
studies. 

The test is essentially a score test and is derived by 
nesting the null hypothesis in a larger class of hazard 
functions. Directional tests are designed to have high 
power against a specific departure from the null 
hypothesis and omnibus tests are constructed without 
any specific alternative. Neyman’s smooth test is 
considered to be a compromise between the two [19] 
and is capable of detecting a wider range of 
alternatives. 

We focused on smooth tests for the two-sample 
problem in the presence of censoring, a situation that is 
common in failure-time data. We also compared data-
driven versions of smooth test as proposed by Kraus 
[18] and Ledwina [15]. The eight cancer datasets 
analyzed are from the most prevalent and deadly 
cancers for men and women in United States [1]. 

The Cox PH model is defined as  

!i (t) = Yi (t)!0 (t) exp{"
T Xi (t)},          (1) 
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where !i (t)  is the intensity process of the i -th 
component of an n -variate counting process 

 N(t) = {(N1(t),N2 (t),!,Nn (t)) : t ! T} ; Yi (t)  is the risk 
indicator process; Xi (t)  is a p -dimensional covariate 
(predictable process); !0 (t)  is the unknown baseline 
hazard; and !  is a vector of unknown regression 
coefficients. Under the proportional hazards 
assumption, the covariate process is time-dependent 
but the baseline hazard function is not, so that  

!(t | X (1) (t))
!(t | X (2) (t))

= !0 (t) exp{"
T X (1) (t)}

!0 (t) exp{"
T X (2) (t)}

= exp{"T (X (1) (t)# X (2) (t))}.
        (2) 

Here X (1)  is the covariate vector from sample 1 and 
X (2)  is the covariate vector from sample 2. Testing the 
proportional hazard assumption is also equivalent to 
testing H 0 :!0 (t) = !0  (constant) versus HA :!0 (t) " !0  
(time-dependent). 

This paper is organized as follows. We present the 
general overview of the smooth tests, the Kolmogorov-
Smirnov test and the global test in the presence of 
censoring in section 2. In section 3, we give a 
motivation for the study and describe the cancer 
datasets used for validation. We also provide results for 
tests of proportionality. Section 4 provides a discussion 
of main results from the analysis in section 3. Finally, 
we provide concluding remarks and limitations of our 
study. 

2. TESTS OF GOODNESS-OF-FIT 

2.1. Two-Sample Smooth Test 

By nesting the Cox PH model defined in (1), we 
obtain the model of analysis (3) below [18].  

!i (t) = Yi (t)!0 (t) exp{"
T Xi (t)+#

T$ i (%,")Xiq (t)},        (3) 

where  ! i (",#) = {($1(",#),$2 (",#),!,$k (",#))}  is a vector 
of some basis functions in standardized time, i.e.  

!i (",#) =$ i (1% exp{%&̂0 (",#)}).          (4) 

Here, !̂0 (",#)  is the Breslow estimator of 

!0 (",#) = 0

t
$ %0 (s)ds  and ! i (")  is some bounded function 

on [0,1]  [18]. Details of the derivation of the test 
statistic, its asymptotic properties and how to choose 
k , including the data-driven version of the test, have 
been discussed by [18, 19, 21]. 

Note that testing for the hypothesized proportional 
hazard function in (3) above is equivalent to testing for 
the constant baseline hazard function ( !0 (t) = !0 ) and 
is obtained by setting ! = 0  (i.e. within this nesting, 
H 0 :!(") = !0 (")  is equivalent to H 0 :! = 0 ). The score 
test statistic for testing H 0 :! = 0  against HA :! " 0  is 
defined by  

Sk =U(!; "̂)
T #(!; "̂)U(!; "̂),           (5) 

where U(!; "̂)  is a score process for !  evaluated at 

 (!
T ,"T ) = (!T , (0, 0,!, 0))  and has been shown by [18] 

to be  

i=1

n

! 0

t
" #(s,$)X% (s)dNi (s)& 0

t
"

i=1

n

!Yi (t)'(s,$)X% (s) exp{$
T Xi (t)}

i=1

n

!Yi (t) exp{$T Xi (t)}
dN(s).

         (6) 

The estimated variance of the score is given as  

!("; #̂) = !22 ("; #̂)$ !21("; #̂)!11("; #̂)
$1!12 ("; #̂).        (7) 

Here !11(";#) = [U1(";#)](t) , !22 (";#) = [U2 (";#)](t)  and 

!21(";#) = [U2 (";#),U1(";#)](t) . Sk ! "k
2  for n!"  under 

H 0  and H 0  is rejected for large values of Sk . 

2.2. Two-Sample Kolmogorov-Smirnov ( Dn ) Test 

The Kolmogorov-Smirnov test for the two-sample 
proportional hazards with right censoring has been 
discussed by [4, 23], and its asymptotic properties, by 
[24]. The test is based on the simplified partial 
likelihood score process and it tests the hypothesis that 
transformation hazards are proportional in the two 
samples with right censored data. The test uses the 
Kolmogorov-Smirnov supremum statistic. Martingale 
simulations are used to compute the p-values. Let  

 U(!̂, t) = {U1(!̂, t),U2 (!̂, t),!,Up (!̂, t)}         (8) 

be the empirical score process. Then the standardized 
score process, F !1/2U("̂, t) , is asymptotically equivalent 

to the Brownian bridge ( B0 ), where !̂  is the 
nonparametric maximum likelihood estimator (NPMLE) 
of ! . For the supremum test, if p ! 1, each of the 
proportional hazards test statistics [25, 26],  
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t
sup{F 

!1("̂) jj}
1
2 |Uj ("̂, t) | ( j = 1, 2,!, p),         (9) 

has the asymptotic distribution of 0!u!1sup | B0 (u) |  if 
{V (t)} jk = 0  for ( j ! k)  for all t, where V (!)  is the 

limiting covariance matrix for n
!
1
2U("0 , #)  [4, 26]. 

Therefore, testing for the overall proportionality can be 
done using the test statistic  

t
sup ||U(!̂, t) || or 

t
sup

j=1

p

"{F !1("̂) jj}
1
2 |Uj ("̂, t) | .      (10) 

Details about the consistency of the test against 
nonproportional hazards alternative have been 
discussed by [4, 9, 12, 21, 26]. 

2.3. Global Test 

The global test is widely used to test the 
proportional hazards assumption for the CPH model. 
The test was first proposed by [8] and is based on a 
semi-parametric generalization of the proportional 
hazards regression model. The hazard function 
corresponding to a covariate vector X  has the time-
function defined as  

!(t) = 1+ log["0 (t)],         (11) 

where !0 (t)  is the cumulative baseline hazard 
function, which is essentially Breslow’s maximum 
likelihood estimator under H 0  [27]. The hypothesis of 
proportional hazards, H 0 :! = 0 , is tested using a score 
statistic derived from the partial likelihood. The Breslow 
estimator for !0 (t) = 0

t
" #0 (u)du  is  

!̂0 (t) =
i=1

n

" 0

t
# dNi (u)

j=1

n

"Yj (u) exp($̂
T X j (u))

,       (12) 

where !̂  maximizes the partial log-likelihood of ! . As 
in the special case of the proportional hazards model, 
!̂  and !̂0 (t)  are the NPMLEs. For an exhaustive 
coverage for !0 (t) , see [8, 23, 27, 28]. 

3. SIMULATIONS 

We conducted a simulation study to ascertain 
proportionality under right censoring in the CPH model. 
Independent samples of size 10, 50, 100, 200, 500 and 
1,000 were simulated and adjusted to give a chosen 
percentage of censored observations before the end of 

follow-up (i.e. 25% to 35% censoring, 45% to 55% 
censoring and 65% to 75% censoring). Each simulated 
dataset had a treatment covariate stratified by group 
(i.e. 1 or 2) and one other covariate arranged to contain 
equal numbers of observations. The power of the test 
was calculated as the percentage of rejection at the 5% 
level of significance. All simulations and comparative 
analyses were performed using the R packages 
survival, eha, prodlim and surv2sample. For each 
sample size (i.e n ! (10, 50,100, 200, 500,1000)) , 1,000 
samples were generated and percentage rejection was 
computed as the number of cases rejected (with 
p < 0.05 ). 

Simulation studies show that as the censoring 
percentage increases, the percentage rejection of the 
global and Kolmogorov-Smirnov tests increases. Also 
the Kolmogorov-Smirnov test is strongly affected by 
sample size, such that as the sample size increases, 
percentage rejection increases as well. It fails to detect 
proportionality. The smooth tests are not affected by 
the percentage of censoring and sample size (see 
Figures 16 to 21). 

4. DATA SETTING AND ANALYSIS 

4.1. Motivation for Analysis of Different Cancer 
Datasets 

Despite decades of research in cancer, the overall 
prognosis, recurrences and survival rates are still 
attracting huge research interest. Much of the research 
is specific to cancer-type and is beneficial to patients 
through advanced technologies and cancer treatment 
protocols. Cancer is a major public health problem and 
is the second leading cause of death in the United 
States [1]. Prostate, lung and bronchus, and colorectal 
cancers account for 44% of all cases in men, with 
prostate cancer alone accounting for 20% of new 
diagnoses. For women, the three most commonly 
diagnosed cancers are breast, lung and bronchus, and 
colorectum, representing 50% of all cases. Breast 
cancer alone accounts for 29% of all new cancer 
diagnoses in women. The National Center for Health 
Statistics (NCHS) estimated 1,600 deaths per day due 
to cancer in 2016. The most common causes of cancer 
death are cancers of the lung and bronchus, prostate, 
and colorectum in men and lung and bronchus, breast, 
and colorectum in women. These four cancer-types 
account for 46% of all cancer deaths, with more than 
one-quarter (27%) due to lung cancer. The largest 
geographic variation in cancer occurrence by far is for 
lung cancer. Cancers in adolescents (aged 15 to 19 
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years) differ from those in children in terms of type and 
distribution. 

With these variations in mind, this study does not 
aim to provide an exhaustive performance of smooth 
tests for proportionality for all types of cancer, but 
instead it aims to statistically compare its performance 
in selected eight different practical settings. Our goal is 
to provide an overview of the performance of smooth 
test and to help validate the test in different cancer 
settings. Ultimately, we hope that our findings will lead 
to higher overall standards and quality of oncological 
research by the survival analysis community, and limit 
the risk of using invalid models. 

4.2. Dataset 1: Survival with Malignant Melanoma 

This dataset consists of measurements made on 
patients with malignant melanoma. Each patient had 
their tumour removed by surgery at the Department of 
Plastic Surgery, University Hospital of Odense, 
Denmark during the period 1962 to 1977. The surgery 
consisted of a complete removal of the tumour together 
with about 2.5cm of the surrounding skin. 
Measurements taken included the thickness of the 
tumour and whether it was ulcerated or not. Patients 
were followed until the end of 1977. Time was defined 
as survival time in days since the operation, possibly 
censored. The patients’ status at the end of the study 
were death from melanoma, alive and death from 
causes unrelated to their melanoma. The sex of the 
patients was also recorded. Age was recorded in years 
at the time of the operation. Other variables measured 
included tumor thickness and an indicator of ulceration 
[29]. 

We fitted a Cox PH model with sex, tumor 
thickness, ulceration indicator and age as covariates.  

Table 1: Fitting of the CPH Model: Malignant Melanoma 
Data 

Covariate  !  chisq  p-value  

sex  0.151 1.35 0.2456  

tumour thickness  -0.249  3.02  0.0823 

ulceration 0.163  1.52  0.2182  

age 0.207  3.08  0.0791 

 
From Table 1 above, all the covariates are 

insignificant at ! = 0.05 . Our focus, however, was on 
testing the proportionality assumption and so we 
created the plots of the Schoenfeld residuals against 

time for the overall fit. Testing the time-dependent 
covariates is equivalent to testing for a non-zero slope. 
A non-zero slope indicates a violation of the 
proportional hazards assumption. We started by 
looking at the graphs of the Cox regression models 
before performing the tests of non-zero slopes. 

 
Figure 1: Schoenfeld residual plot for the overall fit: 
Malignant Melanoma Data. 

The overall fit of the CPH model shows residuals 
scattered all over with a general zero slope (Figure 1). 
Hence proportionality exists despite the fact that the 
covariates are insignificant. The next step was to 
create Schoenfeld residual plots for each of the four 
covariates, including a lowess smoothing curve. The 
graphs for the residuals were still scattered for the four 
covariates (Figure 2).  

Like in the plots, we expect all tests to fail to reject 
the null hypothesis, indicating that the proportionality 
assumption holds. We then compared the power of 
rejection between Kolmogorov-Smirnov test for 
proportional hazard, the smooth test (Legendre 
polynomials with d = 3  with 3 degrees of freedom), 
data-driven smooth test (Legendre polynomials as the 
basis functions, nested with 5 dimensions) and the 
global test for all the interactions tested at once. Note 
that a p-value less than 0.05 indicates a violation of the 
proportionality assumption.  

Both the smooth test of order 3 and the data-driven 
version fail to reject the null hypothesis, with p-values 
of 0.12 and 0.15, respectively, whereas the global test 
rejects the null hypothesis at ! < 0.05 . On the other 
hand, the Kolmogorov-Smirnov test also fails to reject 
the null at ! < 0.05  but does not do well at ! < 0.1  (null 
hypothesis is rejected). 
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4.3. Dataset 2: Cohort Study On Breast Cancer 
Patients From Netherlands 

This dataset contains follow-up data on 2,982 
women with breast cancer who went through breast 
surgery. The women were followed from the time of 
surgery until death, relapse or censoring. Only female 
patients diagnosed with primary epithelial breast 
cancer between 1 January 1990 and 31 December 
2010 were selected from the Netherlands Cancer 
Registry (NCR). The register is a population-based 
independent cancer registry containing clinical 
administrative data of every newly diagnosed cancer 
patient in the Netherlands. Topography and 
morphology is coded according to the International 
Classification of Diseases for Oncology and staging 
according to the TNM-classification. Patients were 
included from hospitals in the Northern Netherlands 
and the Rotterdam region. Patients from hospitals from 
other regions that never participated before 2009 were 
included in the control group. Patients that were 
diagnosed with neuroendocrine tumors, synchronous 

tumors, diagnosed at autopsy and that had any type of 
previous malignancy were excluded. Hospitals from the 
intervention group were categorized by the 
implementation proportion (IP) of recommendations 
that were given in the final reports of each peer review. 
Rating the implementation was performed by studying 
final reports from subsequent reviews, follow-up 
correspondence, hospital documents and interviews 
with shareholders when necessary. Implementation of 
a recommendation was ranked on a scale from 0 to 4. 
The IP per hospital was expressed as a percentage of 
the total possible score. When implementation of a 
recommendation could not be determined (lost to 
follow-up), this recommendation was subtracted from 
the total possible score. The average IP of all peer 
reviews per hospital was used because it is not known 
what the time period is in which changes based on 
organizational change can occur and quality 
improvement is a continuous process. Ranking the 
implementation of recommendations was performed by 
the principal investigator and is described in [30]. 

 
Figure 2: Schoenfeld residual plots for the covariates: Malignant Melanoma Data. 

 

Table 2: Tests of Proportionality: Malignant Melanoma Data 

Test  Statisic  p-value  

Global test  10.03 0.04 

Two-sample Kolmogorov-Smirnov test  3.89 0.09 

Smooth test of order 3  5.84 0.12 

Data-driven Smooth test  2.28 0.15 
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We fitted a Cox PH model with age, menopausal 
status (meno), oestrogen receptors (er), differentiation 
grade (grade), number of nodes (nodes) and 
progesterone receptors (pr) as covariates.  

Table 3: Fitting of the CPH Model: Breast Cancer Data 

Covariate  !  chisq  p-value  

age  0.0519  4.28 3.85e-02 

meno  0.0293  1.10  2.94e-01 

er  0.1375  26.10 3.24e-07 

grade  -0.0304  1.20  2.74e-01 

nodes  -0.0569  2.54 1.11e-01 

pr  0.1077 18.42  1.77e-05 

 
From Table 3 above, all the covariates are 

significant at ! = 0.5 . Figure 3 below shows the 
Schoenfeld residual plot for the overall fit. The solid line 
is a smoothing spline fit to the plot, with the broken 
lines representing a ±2 -standard-error band around 
the fit.  

 
Figure 3: Schoenfeld residual plot for overall fit: Breast 
Cancer Patient Data. 

The Schoenfeld residual plots show scatter plots 
with general non-zero slopes, indicating time-
dependence (Figures 3 and 4). The proportionality 
assumption does not hold in this dataset. Table 4 
shows the proportionality tests for this dataset. We also 
compared the power of rejection for the Kolmogorov-
Smirnov test for proportional hazard, the smooth test 
(Legendre d = 3  with 3 degrees of freedom), the data-
driven smooth test (Legendre functions as basis, 
nested with 5 dimensions) and the global test for all the 
interactions. 

 
Figure 4: Schoenfeld residual plots for the covariates: Breast 
Cancer Patient Data. 

 

Table 4: Tests of Proportionality: Breast Cancer Patient 
Data 

Test  Statisic  p-value  

Global test  83.48 6.66e-16 

Two-sample Kolmogorov-Smirnov test  29.63 0.01 

Smooth test of order 3  17.73 0.00 

Data-driven Smooth test  8.48 0.01 

 
All the four tests are consistent in the rejection of 

the null hypothesis, which is supported by the 
Schoenfeld residual plots as well. 

4.4. Dataset 3: Ovarian Cancer Survival Data 

Between mid-1974 to mid-1977, 82 patients with 
advanced ovarian carcinoma and 29 patients with 
minimal residual disease were followed. Patients 
included in the minimal disease group had surgical 
excision of all turmor > 2  cm in diameter at the time of 
total abdominal hysterectomy, bilateral salpingo-
oophorectomy and omentectomy within one month 
before enrolment. Following surgery, they were 
classified according to the distribution of residual 
diseases in arbitrary defined stages II to IIIA. All 
patients in each of the groups had histologically proved 
epithelial type ovarian carcinoma and all had adequate 
renal hepatic and marrow functions. The dataset is 
described in [31]. We fitted a Cox PH model for 
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censoring time (futime) and censoring status (fustat) 
with covariates age, ECOG performance status 
(ecog.ps), treatment group (rx) and residual disease 
present (resid.ds). 

Table 5: Fitting the CPH Model: Ovarian Cancer Data 

Covariates  !  chisq  p-value  

age  -0.0399 0.0262 0.871 

ecog.ps  0.4845 1.8819  0.170 

rx  0.1325   0.2001  0.655 

resid.ds  -0.1417  0.2463 0.620 

 
From Table 5 above, all covariates are insignificant 

at ! = 0.05 .  

For testing the proportionality assumption, we 
plotted the Schoenfeld residual plot for the overall fit 
and each of the four covariates (Figures 5 and 6).  

 
Figure 5: Schoenfeld residual plot for overall fit: Ovarian 
Cancer Survival Data. 

The Schoenfeld residual plots show non-zero 
slopes, suggesting time-dependence. The 
proportionality assumption holds in this dataset. Table 
6 shows the proportionality tests for this dataset. We 
compared the power of rejection between Kolmogorov-
Smirnov test for proportional hazard, the smooth test 
(Legendre d = 3  with 3 degrees of freedom), data-
driven smooth test (Legendre functions as basis, 
nested with 5 dimensions) and the global test for all the 
interactions.  

The global test and the smooth tests (fixed 
dimension and data-driven) fail to reject the null 
hypothesis. This is in agreement with the Schoenfeld 

residual plots for the general zero slope. However, the 
two-sample Kolmogorov-Smirnov test rejects the null 
hypothesis at ! < 10% . This is misleading and 
inconsistent with the Schoenfeld residual plots. 

 
Figure 6: Schoenfeld residual plots for the covariates: 
Ovarian Cancer Survival Data. 

 

Table 6: Tests of Proportionality: Ovarian Cancer Data 

Test  Statisic  p-value  

Global test  3.36 0.50 

Two-sample Kolmogorov-Smirnov test  1.89 0.07 

Smooth test of order 3  4.84 0.18 

Data-driven Smooth test  2.23 0.20 

 
4.5. Dataset 4: Remission Times for Acute 
Myelogenous Leukaemia 

Acute myeloid leukemia (AML) represents a group 
of clonal hematopoietic stem cell disorders in which 
both a block in differentiation and unchecked 
proliferation result in the accumulation of myeloblasts 
at the expense of normal hematopoietic precursors. 
The patients in the study of maintenance therapy 
included 22 adults with AML, two with promyelocytic 
leukemia and two who had subacute myelogenous 
leukemia before conversion to classical AML. Patients 
had received no previous therapy for AML and there 
had been complete remission with standardized 
induction regimens supervised by the Stanford 
University Hematology Division. The median age of 
patients entered on the study was 45 years, with a 



56     International Journal of Statistics in Medical Research, 2017, Vol. 6, No. 2 Odhiambo et al. 

range of 18 to 72 years. The induction program was 
modified from the programs of Clarkson, Gee and 
colleagues by the addition of daunarubicin. With minor 
modifications, therapy was administered as follows: 
daunarubicin, 60 mg per sq meter by rapid intravenous 
infusion, was given on the first day. This was followed 
in 12 hours by cytarabine, 3 mg per kg of body weight 
by rapid intravenous infusion, and 6-thioguanine, 2.5 
mg per kg of body weight given orally. Administration of 
the last two agents was continued every 12 hours until 
biopsy-proven marrow hypoplasia was achieved. A 
second dose of daunarubicin between days 7 and 10 
was nearly always given, the dose varying, depending 
on the cellularity of a marrow biopsy specimen. 
Changes in therapy from the original program were 
undertaken so as to shorten the treatment program and 
decrease the time at risk from severe neutropenia and 
thrombopenia. That this was achieved is reflected in 
the shorter treatment period required to reach 
hypoplasia with the current drug program compared 
with earlier regimen employing only a single daily dose 
of cytarabine and 6-thioguanine. The question at the 
time was whether the standard course of 
chemotherapy should be extended (‘maintenance’) for 
additional cycles. The dataset is described in [32]. 

We fitted a Cox PH model for remission time and 
status with covariate X, representing ‘maintenance’ or 
non-maintenance’ of patients in chemotherapy.  

Table 7: Fitting the CPH Model: Acute Myelogenous 
Leukaemia Data 

Covariates !  chisq  p-value  

x(‘non-maintenance)’ 0.0198  0.00691 0.934 

 
The covariate in this case (‘non-maintenance’) is not 

significant.  

The Schoenfeld residual plots show a general zero-
slope indicating proportionality. The proportionality 
tests are indicated in Table 8 below. We compared the 
power of rejection between Kolmogorov-Smirnov test 
for proportional hazard, the smooth test (Legendre 
d = 3  with 3 degrees of freedom), data-driven smooth 
test (Legendre functions as basis, nested with 5 
dimensions). The global tests did not yield any result.  

The global test did not give any result but the other 
3 tests (i.e. the two-sample Kolmogorov-Smirnov test, 
smooth test and data-driven smooth test) failed rejects 
the null hypothesis. That is, they detected 
proportionality. 

 
Figure 7: Schoenfeld residuals versus log(time) for overall fit: 
Acute Myelogenous Leukaemia Data. 

 

Table 8: Tests of Proportionality: Acute Myelogenous 
Leukaemia Data 

Test Statisic p-value 

Global test  NA NA 

Two-sample Kolmogorov-Smirnov test  1.131 0.63 

Smooth test of order 3  3.07 0.38 

Data-driven Smooth test  0.15 0.75 

 
4.6. Dataset 5: North Central Cancer Treatment 
Group Lung Cancer Data 

This data shows survival of patients with advanced 
lung cancer from the North Central Cancer Treatment 
Group(NCCTG). The study looked at how performance 
scores can rate how well a patient performs usual daily 
activities. An initial detailed questionnaire was 
administered to approximately 150 patients with 
advanced cancer. This questionnaire was subsequently 
revised and given to a total of 1,115 patients with 
advanced colorectal or lung cancer. Thirty six variables 
showed significant prognostic information for survival in 
univariate analyses, even though many of these 
variables were associated with only a minimal increase 
in risk. A multivariate analysis demonstrated that there 
was a high correlation between many variables. Three 
major groups of variables became apparent as 
providing strong prognostic information (i.e. physician’s 
assessment, patient’s assessment and nutritional factor 
such as appetite). Data contained 228 patients with 
advanced lung cancer and includes measurements of 
the survival time in days, as well as other demographic 
and biological information for each patient. Variables 
such as weight loss were categorized by quartiles, and 
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ECOG scores were grouped into categories with 
subjects rated as either 0/1 or 2/3, with 0/1 
representing the best and 2/3 representing a poor 
score. The data set was 28% censored, with a median 
observed failure time of 256 days. The baseline group 
(n = 16) were males with ECOG performance scores 
equal to 1 and a weight loss measure in the first 
quartile [33]. We fitted a Cox PH model with age, sex, 
ECOG performance score (ph.ecog), Karnofsky 
performance score rated by physician (ph.karno), 
Karnofsky performance score rated by patient 
(pat.karno), calories consumed at meals (meal.cal) and 
weight loss in last six months (wt.loss) as covariates. 

Table 9: Fitting Cox PH Model: NCCTG Lung Cancer 
Data 

Covariates !  chisq  p-value  

age  0.0710  0.6553 0.4182 

sex  0.1773  3.7609  0.0525 

ph.ecog  -0.0189 0.0491 0.8247 

ph.karno  0.1718  2.5791 0.1083 

pat.karno  0.0298  0.1403 0.7080 

meal.cal  0.1793 4.1493 0.0417 

wt.loss  0.0764  1.0117  0.3145 

 
From Table 9 above, meal.cal and sex are the only 

significant covariates. The other covariates are 
insignificant at ! = 0.05  significance level.  

 
Figure 8: Schoenfeld residual plot for the overall fit: NCCTG 
Lung Cancer Data. 

The Schoenfeld residual plots for four covariates in 
the model including a lowess smoothing curve yields  

 
Figure 9: Schoenfeld residual plots for the covariates: 
NCCTG Lung Cancer Data. 

The overall Schoenfeld residual plot together with 
the plots for the four covariates show a zero slope, 
indicating proportionality. The hazard proportionality 
tests for the two-sample results are provided in Table 
10 below. We compare the power of rejection between 
Kolmogorov-Smirnov test for proportional hazard, the 
smooth test (Legendre d = 3  with 3 degrees of 
freedom), data-driven smooth test (Legendre functions 
as basis, nested with 5 dimensions) and the global test. 

Table 10: Tests of Proportionality in CPH: Lung Cancer 
Data 

Test Statisic p-value 

Global test  13.8 0.06 

Two-sample Kolmogorov-Smirnov test  1.97 0.99 

Smooth test of order 3 0.81  0.85 

Data-driven Smooth test 0.01 0.96 

 
Results show that the global test rejects the null 

hypothesis at ! < 0.1  but does well for ! < 0.05 . The 
other three tests fail to reject the null hypothesis. This 
is coherent with the Schoenfeld residual plots. 

4.7. Dataset 6: Stage C Prostate Cancer 

Data contained 146 patients with stage C prostate 
cancer, from a study exploring the prognostic value of 
flow cytometry. Patients were followed and variables 
for time to progression or last follow-up (years) 
recorded. Other measurements were status (1= 
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progression observed, 0 = censored), age in years, 
status for endocrine captured (i.e. early endocrine 
therapy, 1 = no, 2 = yes), percent of cells in G2 phase, 
as found by flow cytometry, grade of the tumor, grade 
of the tumor, the ploidy status of the tumor, from flow 
cytometry, values for diploid, tetraploid, and aneuploid. 
A tumor was determined to be diploid (normal 
complement of dividing cells) if the fraction of cells in 
G2 phase was determined to be 13% or less. 
Aneuploid cells were given a measurable fraction with 
a chromosome count that is neither 24 nor 48. For 
these, the G2 percent is difficult or impossible to 
measure [34]. 

We fitted a Cox PH model for time and status with 
covariates age, early endocrine therapy (eet), 
percentage of cells in G2 phase (g2), grade of tumor by 
the Farrow system (grade), grade of tumor by the 
Gleason system (gleason), and the ploidy status of the 
tumor (diploid and tetraploid).  

Table 11: Fitting Cox PH Model: Stage C Prostate Cancer 
Data 

Covariates !  chisq p-value  

age  0.0529  0.2361 0.6270 

eet  -0.0406  0.1106 0.7395 

g2  0.0134  0.0109  0.9170 

grade  -0.0716  0.2733 0.6012 

gleason  -0.1328  0.9858 0.3208 

diploid  0.1311 1.2196  0.2694 

tetraploid  0.1945 2.9799  0.0843 

 
From Table 11 above all covariates are also 

insignificant at ! = 0.05 . The Schoenfeld residual plot 
for the overall fit is shown in Figure 10 below.  

 
Figure 10: Schoenfeld residual plot for the overall fit: Stage C 
Prostate Cancer data. 

We also created the Schoenfeld residual plots for 
the four covariates and fitted a lowess smoothing 
curve.  

 
Figure 11: Schoenfeld residual plots for the covariates: 
Stage C Prostate Cancer data. 

The Schoenfeld residual plots show a general slope 
of zero, indicating proportionality. The proportionality 
tests for the two-sample results are provided in Table 
12 below. We compared the power of rejection 
between Kolmogorov-Smirnov test for proportional 
hazard, the smooth test (Legendre d = 3  with 3 
degrees of freedom), the data-driven smooth test 
(Legendre functions as basis, nested with 5 
dimensions) and the global test.  

Table 12: Tests of Proportionality in CPH: Stage C 
Prostate Cancer Data 

Test Statisic p-value 

Global test  7.30 0.40 

Two-sample Kolmogorov-Smirnov test  2.35 0.50 

Smooth test of order 3 1.31 0.73 

Data-driven Smooth test 1.12  0.31 

 
Results show that all the tests are consistent and 

fail to rejects the null hypothesis at ! < 0.05 . 

4.8. Dataset 7: Chemotherapy for Stage B/C Colon 
Cancer Data 

This was a national intergroup trial that was 
sponsored by the National Cancer Institute and 
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involved the Eastern Cooperative Oncology Group, the 
NCCTG, the Southwest Oncology Group, and the 
Mayo Clinic. Enrollment of patients started in March 
1984, when a preliminary analysis of the NCCTG study 
indicated the likelihood of a treatment advantage for 
levamisole plus fluorouracil and for levamisole alone, 
with regard to time-to-recurrence. Enrollment was 
completed in October 1987. All patients were required 
to have undergone a potentially curative 
adenocarcinoma of the colon without gross or 
microscopic evidence of residual disease. Patients with 
rectal carcinoma were excluded from the study. The 
resected specimen in eligible patients showed one of 
two indicators of poor prognosis - invasion extending at 
least to the serosa or pericolonic fat (Stage B2) or 
metastasis to regional lymph nodes (Stage C). It was 
further required that the patient be able to swallow oral 
medication and have a leukocyte count of at least 4000 
per microliter and a platelet count of at least 130,000 
per microliter. Eligibility was determined by careful 
review of study forms, operative reports, and pathology 
reports. Entry into the study was allowed no earlier 
than one week and no later than five weeks after 
surgery. These are data from one of the first successful 
trials of adjuvant chemotherapy for colon cancer. 
Levamisole is a low-toxicity compound previously used 
to treat worm infestations in animals. There are two 
records per person, one for recurrence and one for 
death [35]. 

We fitted the Cox PH model for time and status with 
covariates age, sex, Levamisole (rxLev), 
Levamisole+5-FU (rxLev+5FU), obstruction of colon by 
tumor (obstruct), adherence to nearby organs (adhere), 

differentiation of tumor (differ), extent of local 
spread(extent), time from surgery to registration (surg), 
more than 4 positive lymph nodes (node4) and event 
type (etype).  

Results from Table 13 show that all the selected 
covariates are also significant at ! = 0.05 . For testing 
proportionality the Schoenfeld residual plot for the 
overall fit is shown in Figure 12 below.  

 
Figure 12: Schoenfeld residual plot for the overall fit: Stage 
B/C Colon Cancer Data. 

The Schoenfeld residual plots for the four selected 
covariates in the model are shown in Figure 13.  

 
Figure 13: Schoenfeld residual plots for four selected 
covariates: Stage B/C Colon Cancer Data. 

The Schoenfeld residual plots show a general non-
zero slope, indicative of non-proportionality. The 

Table 13: Fitting Cox PH Model: Stage B/C Colon Cancer 
Data 

Covariates !  chisq p-value  

age  -0.0107 0.111  7.39e-01 

sex  0.0563 2.869 9.03e-02 

rxLev  -0.0475  2.068 1.50e-01 

rxLev+5FU -0.0198  0.355 5.51e-01 

obstruct  -0.1093 11.113 8.57e-04 

adhere 0.0470  2.032 1.54e-01 

differ  -0.1480  22.515 2.08e-06 

extent  -0.0364 1.229 2.68e-01 

surg  0.0135  0.166 6.84e-01 

node4  -0.1121  10.788 1.02e-03 

etype  0.3561 112.926 0.00e+00 
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proportionality tests for the two-sample results in are 
indicated in Table 14 below. We compared the power 
of rejection between Kolmogorov-Smirnov test for 
proportional hazard, the smooth test (Legendre d = 3  
with 3 degrees of freedom), the data-driven smooth test 
(Legendre functions as basis, nested with 5 
dimensions) and the global test.  

Table 14: Tests of Hazard Proportionality in CPH: Colon 
Cancer Data 

Test Statisic  p-value  

Global test  161.05 0.00 

Two-sample Kolmogorov-Smirnov test  73.17 < 2.22e-16 

Smooth test of order 3 97.76  < 2.22e-16 

Data-driven Smooth test 97.21  < 2.22e-16 

 
Results show that all the tests are consistent in 

rejecting the null hypothesis. Despite the fact that all 
covariates incorporated in this model are significant, 
proportionality does not hold. The covariates are 
therefore time dependent ! < 0.05 . 

4.9. Dataset 8: Veteran Administration Lung Cancer 
Study 

The study population consisted of 109 patients with 
newly diagnosed Small Cell Lung Cancer (SCLC) 
investigated at the Pulmonary Division of Mainz 
University Hospital between 1989 and 1999. Clinical 
data were collected from chart review. The staging 
procedure for the majority of patients was standardized 
including a fiberoptic bronchoscopy, routine laboratory 
parameters, chest CT, abdomen CT and bone scan. In 
89% of the patients chemotherapy was performed as 
first-line treatment. Three different standard 
combinations were applied with a median of four 
cycles. Response was first evaluated after two cycles 
of chemotherapy and every second cycles thereafter or 
if new clinical symptoms occurred. Response to 
chemotherapy was classified according to the WHO 
criteria in complete response, partial response, stable 
disease or progressive disease. Complete response 
was achieved in 24% of patients, partial response in 
29%, and stable disease in 5% of patients. 42% of 
patients progressed during therapy. In 35% of all 
patients chemotherapy was followed by radiotherapy of 
the primary tumor. From all subjects four patients with 
complete response underwent surgical resection of the 
primary tumor side. The majority of patients were 
followed-up regularly in a time frame of 2 to 3 months. 

The survival time was calculated from the date of 
histological diagnosis [36]. 

We fitted the Cox PH Model for time and status with 
covariates age, Karnofsky performance score (karno), 
treatment (trt), months from diagnosis to randomization 
(diagtime), prior therapy (prior) and celltype (small-cell, 
adeno, and large).  

Table 15: Fitting Cox PH Model: Veteran Administration 
Lung Cancer Study 

Covariates !  chisq  p-value 

age  0.1890  5.3476  0.020750 

karno 0.3073  13.0449 0.000304 

trt  -0.0273  0.1227 0.726104 

diagtime 0.1491 2.9436 0.086217 

prior  -0.1767  4.4714 0.034467 

smallcell 0.0128  0.0261 0.871621 

adeno  0.1424 2.9794 0.084329 

large  0.1712  4.1093 0.042649 

 
From Table 15 above some covariates (i.e. large, 

prior, karno and age) were significance at ! < 0.05 . 
The other covariates were not significant at ! = 0.05 . 
The Schoenfeld residual plot for the overall fit is shown 
in Figure 14 below.  

 
Figure 14: Schoenfeld residual plot for the overall fit: Veteran 
Administration Lung Cancer study. 

The Schoenfeld residual plots for four selected 
covariates, including lowess smoothing curves, are 
shown in Figure 15 below.  

The Schoenfeld residual plots show a non-zero 
slope, except prior, thereby indicating proportionality. 
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The proportionality tests for the two-sample results are 
indicated in Table 16 below. We compared the power 
of rejection between Kolmogorov-Smirnov test for 
proportional hazard, the smooth test (Legendre d = 3  
with 3 degrees of freedom), the data-driven smooth test 
(Legendre functions as basis, nested with 5 
dimensions) and the global test.  

 
Figure 15: Schoenfeld residual plots for four selected 
covariates: Veteran Administration Lung Cancer study. 

 

Table 16: Tests of Proportionality in CPH Model: Lung 
Cancer Data 

Test Statisic p-value 

Global test  28.00 0.00 

Two-sample Kolmogorov-Smirnov test  9.09 0.06 

Smooth test of order 3 6.84  0.08 

Data-driven Smooth test 2.03 0.18 

 
In this case the global test strongly rejects 

proportionality, whereas the two-sample Kolmogorov-
Smirnov test and smooth test of order 3 rejects 
proportionality at ! < 0.10 . The data-driven version of 
the smooth test however remains stable and fails to 
reject the null, an indication of proportionality. Table 17 
below provides a concise summary of the results from 
the analysis of the eight datasets. 

5. DISCUSSIONS 

The CPH model is commonly used to determine risk 
factors. The assumption of proportional hazards is 

therefore important whenever the model is applied. 
Numerous methods for assessing the assumption of 
hazard proportions have been proposed. These 
methods (e.g. global test, G-test, Kolmogorov-Smirnov 
test, smooth test etc.) together with their asymptotic 
properties, have been studied theoretically by several 
authors. However, validation of these tests in light of 
real settings have generally utilized either none or at 
most two real datasets. Furthermore, the combined use 
of graphical and non-graphical analysis, which is one of 
the contributions of this manuscript, have been studied 
comparatively by few authors. Also, in practice there 
exist variations in real data settings, particularly in 
cancer studies and validations of these tests in multiple 
settings have not been done. Moreover, most 
researchers, usually fit CPH models using several 
explanatory variables in order to identify risk factors. 
However, in the fitted CPH model, the covariates 
included in the model should satisfy the assumption 
that the relative risk is proportional over the time for 
different levels. 

This study sought to validate the performance of the 
smooth test in different cancer settings and compare 
with that of the global goodness-of-fit test and 
Kolmogorov-Smirnov proportional hazard test. In 
particular, we assessed the performance of these tests 
under different cancer study settings when testing for 
the PH assumption. For each of the eight datasets, we 
have displayed the projected hazard plots together with 
their log(!(t))  projection. We chose graphs that are 
based on the Schoenfeld residuals because they are 
more robust compared to Kaplan-Meier (K-M) survival 
curves. Furthermore, the K-M curves with fewer time 
points are usually not straight-forward when detecting 
proportionality. In these cases, the resulting power of 
rejection is compared with the graphical presentation. 
Whereas there are certain types of non-proportionality 
that cannot be detected by the tests of non-zero slopes 
alone, it becomes obvious when looking at the graphs 
of the residuals to see a nonlinear relationship between 
the residuals and the function of time. In this regard, 
the behavior of smooth tests is similar to the other tests 
if we have a “sizeable" sample size. 

The two versions of smooth tests provide a 
procedure with power that is more stable than the other 
methods. The smooth test is analyzed with a fixed 
dimension of order 3 with 3 degrees of freedom. For 
the data-driven version of the smooth test, we nested 
subsets in order to avoid the use of many components. 
The nested subsets selection procedure is not sensitive 
with respect to the choice of the maximum dimension 
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(d) if d is large enough to cover realistic departures 
from the hypothesis (see [21]). Similarly, in all the 
Figures 1-15, all the tests detect the non-proportionality 
in log (protime), but only the tests based on the score 
process detect non-proportionality in most covariates. 
Since we have analyzed these datasets in order to 
validate the smooth test in different settings, we have 
utilized Schoenfeld residuals plots to see if either 
proportionality does or does not hold for log (time). We 
have consequently applied the four tests to determine 
consistency between the plots and the level of rejection 
of null hypothesis (proportionality). We have done this 
simultaneously for comparison and verification of 
results obtained with both the graphical and data 
analysis. The results of applying the tests to the eight 
cancer datasets are reported in each subsection under 
the Methods section. The eight datasets were obtained 
from already published articles and are readily 
accessible in R . For the graphical representation, 
testing the time-dependent covariates is equivalent to 
testing for a non-zero gradient. Therefore if the 
proportional hazards assumption is true, beta (t) will be 
a horizontal line along !(t) = 0 . 

All analyses were performed using the coxph , 
cox.zph , survival  packages in R . In each situation we 
described the general setting of the study and the 
power of each test is computed. A CPH model was 
then fitted to the data, using forward selection 
procedure that ended up including as many covariates 
as possible into the model. It is important to note that 
our interest was not how good covariates fit in CPH 

model, but how accurate the hazard proportionality 
assumption is determined. Then the Schoenfeld 
residuals for overall and consequently four covariates 
were studied. 

Dataset 1 

The setting here is malignant melanoma with 205 
patients. The overall Schoenfeld residual plot shows 
zero line slope. Further, the Schoenfeld residual plots 
for all the four covariates, except sex, show zero-slope. 
Analytical results on the other hand show smooth tests 
fail to reject the null hypothesis( p = 0.12  and p = 0.15 , 
respectively), whereas the global test rejects the null 
hypothesis at ! < 0.05 . On the other hand, the 
Kolmogorov-Smirnov test also fails to reject the null at 
! < 0.05  but does not do well at ! < 0.1  (null 
hypothesis is rejected). The smooth test in this setting 
does better than the other two tests in determining 
hazard proportionality. The smooth test is generally, 
coherent with the Schoenfeld residuals plots. 

Dataset 2 

For the cohort study on breast cancer patients 
analyzed here, the overall Schoenfeld residual plot and 
for three of the selected four covariates depict non-zero 
slope. This is an indication of time-dependent 
covariates. In this setting, the sample size is also 
significantly large ( n = 2, 982 ). Results show all the four 
tests are consistent in rejecting the null hypothesis, 
which is consistent with Schoenfeld residual plots. 

Table 17: Summary of Analyses of the Datasets when Testing Proportionality ( H 0 ) 

Dataset  Article  Schoenfeld 
residual plots 

Global test 2-sample K-S  
test 

Smooth test  
(order 3) 

Data-driven 
smooth test 

Dataset 1  Andersen et al. 
(2012)  

zero line slope rejects H0  fails to reject H0  fails to reject H0  fails to reject H0   

Dataset 2  Royston et al. 
(2011)  

non-zero slope rejects H0  rejects H0  rejects H0  rejects H0   

Dataset 3  Edmonson et al. 
(1979)  

zero slope fails to reject H0  fails to reject H0  fails to reject H0  fails to reject H0   

Dataset 4 Embury et al.  
(1977)  

zero slope NA fails to reject H0  fails to reject H0  fails to reject H0   

Dataset 5  Loprinzi et al. 
(1994)  

zero slope marginal fails to reject H0  fails to reject H0  fails to reject H0   

Dataset 6 Zagars et al.  
(1993)  

non-zero slope fails to reject H0  fails to reject H0  fails to reject H0  fails to reject H0  

Dataset 7 Moertel et al.  
(1990)  

non-zero slope rejects H0  rejects H0  rejects H0  rejects H0   

Dataset 8 Micke et al.  
(2002)  

zero slope rejects H0  marginal fails to reject H0  fails to reject H0   
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Dataset 3 

The setting here is ovarian cancer with 82 patients 
being observed. Results show that the global test and 
the smooth test fail to rejects the null hypothesis. This 
is in agreement with the Schoenfeld residual plots 
which show a general zero slope. However, the two-
sample Kolmogorov-Smirnov test rejects the null 
hypothesis at ! < 0.10 . The Kolmogorov-Smirnov test 
will still be consistent with the other two test at ! < 0.05  
but may be misleading at ! < 0.1 . 

Dataset 4 

The setting here involves patients with clonal 
hematopoietic stem cell disorder (acute myeloid 
leukemia). With a sample size of 23 and one covariate, 
the global test did not give any result but the other 3 
tests (i.e. two-sample Kolmogorov-Smirnov test, 
smooth test and data-driven smooth test) failed to 
reject the null hypothesis. Despite the fact that the 
covariate was insignificant ( ! = 0.00691, p = 0.934 ), our 
interest was to check proportionality and not the best fit 
and it is after ascertaining proportionality assumption 
that we can objectively say that the covariate is 
insignificant. This is an indication that researchers can 
utilize the smooth test and two-sample Kolmogorov-
Smirnov test whenever other variables (e.g. sample 
size, number of covariate etc.) are not appropriate in 
the global test.  

Dataset 5 

Survival data in this setting involves 228 patients 
with advanced lung cancer. The overall Schoenfeld 
residual plot shows a zero slope. Three of the four 
selected covariates (age, ph.karno and pat.karno rx) 
also show zero slope. Results show the global test 
rejects the null hypothesis at ! < 0.1  but not at 
! < 0.05 . The other three tests fail to reject the null 
hypothesis. This is consistent with the Schoenfeld 
residual plots. It is also an indication that the global test 
may not be accurate.  

Dataset 6 

Data analyzed in this setting involved 146 patients 
with stage C prostate cancer. All the seven covariates 
were statistically insignificant at ! < 0.05 . The overall 
Schoenfeld residual plot depicts a zero slope. 
However, only one (eet) of the four selected covariates 
showed a non-zero slope. Analytical result showed that 
all the tests are consistent and fail to rejects the null 
hypothesis at ! < 0.05 .  

Dataset 7 

This is the setting of national intergroup trial and 
involved 1,858 patients with stage B and stage C colon 
cancer. Results show that all the tests are consistent in 
rejecting the null hypothesis, which is consistent with 
both the overall Schoenfeld residual plot and the four 
selected covariates Schoenfeld residual plots. Despite 
the fact that all covariates incorporated in this model 
are significant, proportionality does not hold. The 
covariates are therefore time-dependent ! < 0.05 . 

Dataset 8 

The study setting here involves a population 
consisting of 109 patients with small cell lung cancer. 
The overall Schoenfeld residual plot depicts a zero 
slope. Only one covariate (prior) of the four selected 
covariates shows non-zero slope. In this case the 
global test strongly rejects proportionality, whereas the 
two-sample Kolmogorov-Smirnov test and the smooth 
test of order 3 rejects the null (proportionality) at 
! < 0.10 . The data-driven version of the smooth test 
however remains stable and fails to reject the null 
hypothesis, an indication of proportionality. This is a 
situation where data-driven smooth test performs better 
than the other tests. 

Analysis of cancer data showed that the smooth test 
and its data-driven version are stable compared to the 
global and the Kolmogorov-Smirnov tests when 
assessing the proportional hazards assumption in 
variety of practical settings. Furthermore, although the 
smooth test does not universally dominate the other 
two tests in different cancer study settings, it remains 
relatively stable irrespective of the sample size and the 
number of covariates. The application of the smooth 
test and its data-driven version to assess 
proportionality illustrates how the global test and 
Kolmogorov-Smirnov test inadequacies can result in 
invalid models. We therefore implore researchers to 
use smooth tests of goodness-of-fit whenever 
Schoenfeld residual plots conflicts with the global test 
and Kolmogorov-Smirnov test. 

6. CONCLUSION 

The smooth test for proportional hazard assumption 
in two-sample problem is revisited in light of real cancer 
datasets. We have shown that the smooth test is the 
“gold standard" for testing proportionality. The smooth 
test is robust and has better power against the other 
two tests when detecting departure from proportionality 
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Figure 16: Percentage rejection when n=10 at varying censoring percentages. 

 

 
Figure 17: Percentage rejection when n=50 at varying censoring percentages. 

 

 
Figure 18: Percentage rejection when n=100 at varying censoring percentages. 
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Figure 19: Percentage rejection when n=200 at varying censoring percentages. 

 

 
Figure 20: Percentage rejection when n=500 at varying censoring percentages. 

 

 
Figure 21: Percentage rejection when n=1000 at varying censoring percentages. 
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under different practical settings. The limitation for this 
study is that the smooth test is not capable to 
distinguish which covariates are proportional and which 
are not [19]. 
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