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Inference about the Population Kurtosis with Confidence: 
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Abstract: This paper considers some classical and bootstrap methods in constructing confidence intervals for the 
kurtosis parameter of a distribution. The bootstrap techniques used are: Bias-Corrected Standard Bootstrap, Efron’s 
Percentile Bootstrap, Hall’s Percentile Bootstrap and Bias-Corrected Percentile Bootstrap. The performance of these 
estimators is compared through confidence intervals by determining the average width and probabilities of capturing the 
kurtosis parameter of a distribution. We observed that the parametric method works well in terms of coverage probability 
when data come from a normal distribution, while the bootstrap intervals struggled in constantly reaching a 95% 
confidence level. When sample data are from a distribution with negative kurtosis, both parametric and bootstrap 
confidence intervals performed well, although we noticed that bootstrap methods tend to have shorter intervals. When it 
comes to positive kurtosis, bootstrap methods perform slightly better than classical methods in the sense of high 
coverage probability. For illustration purposes, two real life health related data are analyzed.  
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1. INTRODUCTION 

In Statistics, kurtosis of a distribution is one of the 
more obscure population parameters and has not been 
discussed by many. To begin, we would first want to 
define what is kurtosis. The historical misconception is 
that the kurtosis is a characterization of the 
peakedness of a distribution. In various books, the 
kurtosis is described as the "flatness or peakedness of 
a distribution" [1], and the paper entitled: Kurtosis as 
Peakedness, 1908 - 2014, R.I.P. [2] strongly 
addressed said misconception. Westfall wrote: 
“Kurtosis tells you virtually nothing about the shape of 
the peak – its only unambiguous interpretation is in 
terms of tail extremity.” His claims were supported with 
numerous examples of why you cannot relate the 
peakedness of distributions to kurtosis. We can now 
define the kurtosis of a distribution as the measurement 
of its tails. Distributions with positive kurtosis, also 
known as leptokurtic, have longer tails and tend to 
generate more outliers while distribution with negative 
kurtosis, or platykurtic, produce fewer to no outliers. 
Distributions with zero kurtosis are referred to as 
mesokurtic and the most prominent of such 
distributions is the Normal Distribution [1]. 

The kurtosis parameter of a probability distribution 
was first defined by Karl Pearson in 1905 [2] as: 

! ! =
!!
!!

=
! ! − ! !

! ! − ! ! ! 

where !! is the fourth moment about the mean and 
!!, the variance. The Normal distribution with a mean µ 
and variance !! has a kurtosis of 3. Often statisticians  
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adjust the kurtosis of the normal distribution to zero by 
simply subtracting 3 from the kurtosis. When this 
adjustment is made, it is usually referred to as the 
Excess Kurtosis. In this paper, excess kurtosis is 
defined as 

!"#$ ! =
!!
!!

− 3  

=
! ! − ! !

!!
− 3. 

Since the kurtosis defined above is the parameter of 
a distribution, often estimators of the parameter are 
derived and the three most common kurtosis 
estimators proposed are !!, !! and !!. For more on 
kurtosis, we refer our readers to [3] and [4] among 
others.  

2. KURTOSIS ESTIMATORS 

2.1. Estimator !! 

For a sample of size n, the sample moment is 
defined as 

!! =
!
!

!! − ! !!
!!! .       (1) 

In the definition of the excess kurtosis of a 
population, by replacing the population moments with 
sample moments, the first estimator, !!, is derived as 
follows: 

!! =
!!
!!
! − 3        (2) 

with variance of !!:  

!"# !! = !"! !!! !!!
!!! !(!!!)(!!!)

 .      (3) 

Fisher showed that !!  is a biased estimator 
because !(!!) =   −

!
!!!

 [5]. By simply applying a 

correction of − !!!
!

, !!  would be an unbiased 
estimator, but [6] suggests that instead of using this 
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simple correction mentioned above, it is preferable to 
use ratios of unbiased cumulants to construct unbiased 
estimators of kurtosis. 

2.2. Estimator !! 

First, we describe a cumulant generating function, 
!(!). From moment generating functions, the cumulant 
generating function is defined as the natural log of an 
MGF as:  

!! ! = ln  [!! ! ].       (4) 

The cumulants are obtained from a power series 
expansion of the cumulant generating function: 

!! ! = ln !!!!

!!
!
!!! .       (5) 

Expanding equation (5) will result in creating a 
Maclaurin series. Therefore, n-th cumulant can be 
obtained by taking the derivative of the above 
expansion ! times and evaluating the result at ! = 0. 

Based on the general formula above, we get the 
first four cumulants: 

!! = ! ! =   !!! = !  
!! = !"# ! = !!! − !!! ! =   !!  
!! = 2!!!

! − 3!!!!!! + !!! =   !!  
!! = −6!!!" + 12!!!"!!! − 3!!!" − 4!!!!!! +   !!!   

where !! can be rewritten as !! =   !! − 3!!. 

As it was previously defined, the excess kurtosis is 

!"#$ ! = !!
!!
− 3       (6) 

Then, in terms of the population cumulant, excess 
kurtosis can be defined in [6] as 

! = !!
!! ! − 3.         (7) 

Now, assume an unbiased cumulant estimator,  !! 
for which  ! !! = !!, then [3] shows that the unbiased 
sample cumulants !!  are: 

!! =
!

! − 1
!! 

!! =
!!

! − 1 ! − 2
!! 

!! =
!!

(!!!)(!!!)(!!!)
! + 1 !! − 3 ! − 1 }!!

!     (8) 

where !! , is the sample moment, which was first 
defined in equation (1). Then, the kurtosis estimator, 
!!, solely using unbiased cumulants is defined in [6] as  

!! =
!!
!!!

 

!! =
!!!

!!! (!!!)
{ ! + 1 !! + 6}      (9) 

!! , the estimator derived is the sample kurtosis 
adopted by statistical packages such as SAS and 
SPSS [7]. It is generally biased, but unbiased for the 
normal distribution. 

Its variance is  

!"# !! =    !!! !!!
!!! !!!

!
!"# !! .    (10) 

The variance of !! can be approximated with the 
following: 

!"# !! = 1 + !"
!
!"# !!  for all ! > 3   (11) 

2.3. Estimator !! 

Recall that !! is defined as !! =
!!
!!
!,  where !! is 

the second sample moment, a biased estimator of the 
sample standard deviation. Using the unbiased 
standard deviation of the sample instead would give us 
the third estimator. We refer to it as !! and this sample 
kurtosis estimator is used by computer software 
packages such as MINITAB and BMDP [6]. It is defined 
as  

!! =
!!
!!
− 3       (12) 

with 

! =
!! − ! !!

!
! − 1

   

Expanding the definition of !!, we can rewrite !! 
as:  

!! =
!!!
!

!
  !!
!!
! − 3      (13) 

To get the variance of !!, let us first rewrite !!  in 
terms of !!  as 

!! =
!!!
!

!
!! + 3

!!!
!

!
− 1    (14) 

Then its variance is 

!"#(!!) =
!!!
!

!
!"#(!!)    (15) 

which can be approximated as:  

!"# !! = 1 − !
!
!"# !! .    (16) 

From the approximations mentioned in (11) and 
(16), the following inequality holds:  

!"# !! ≤ !"# !! ≤ !"# !! .    (17) 

The organization of this paper is as follows: we 
define both parametric and non-parametric confidence 
intervals in Section 3. A simulation study is conducted 
in Section 4. Two real life data sets are analyzed in 
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Section 5. Finally, some concluding remarks are given 
in Section 6. 

3. CONFIDENCE INTERVALS 

Let !!,!!,⋯ ,!!  independent and identically 
distributed random sample of size n from a population 
with mean µ and variance !!. Given a specific level of 
confidence, we can construct confidence intervals to 
estimate the parameter of the distribution of concern. 
Since we are studying kurtosis in this paper, then the 
excess kurtosis parameter, !"#$(!)   = !(!) − 3, is the 
value we want to estimate. We will rely on parametric 
and non-parametric approaches to construct 
confidence intervals with (1 − !)100% confidence level. 

3.1. Parametric Approaches 

The general format of parametric confidence 
intervals is  

estimator ± critical value × standard error of estimator 

Given this general format, to construct confidence 
intervals for excess kurtosis parameter of a given 
population, we will use one of the three estimators 
!!,!!  and !!  for a sample of size n, with their 
respective standard error and critical value !!/! which 
is the upper α/2 percentile of the standard normal 
distribution [6]. 

For estimator !!  with sample size n, the 1 −
! 100% confidence interval is 

!! ± !!/! ⋅
!"! !!! !!!
!!! ! !!! !!!

.    (18) 

For estimator !!  with sample size n, the (1 − 
α)100% confidence interval is: 

!! ± !!/! ⋅
!"! !!! !

(!!!)(!!!)(!!!)(!!!)
.    (19) 

For estimator !!  with sample size n, the (1 − 
α)100% confidence interval is: 

!! ± !!/! ⋅
24! ! − 1 !(! − 2)(! − 3)
! + 1 !(! + 3)(! + 5)

 

3.2. Bootstrap Approaches 

[8] argued that parametric confidence intervals can 
be quite inaccurate in practice since they rely on 
asymptotic approximation; this means that the sample 
size ! used to estimate parameter of a population is 
assumed to grow indefinitely [9]. Bootstrap process, on 
the other hand, does not need to worry about such 
assumption. The basic idea of the bootstrap is to 
resample from a sample of size ! with replacement. 
The new samples obtained from resampling from the 
original sample are referred to as the Bootstrap 
Samples, and must be of size n as well. When a 
bootstrap sample vector !∗ =    !!∗, !!∗,⋯ , !!∗  is 

obtained, a statistic is then computed. The statistic of 
concern in this paper is any of the three kurtosis 
estimators !!,!!  and !!  previously defined. This 
process is repeated B-times, where B is expected to be 
at least 1000 to get reliable results [10]. The bootstrap 
method is a non-parametric tool where the need to 
know about the underlying distribution to make 
statistical inference, such as constructing confidence 
intervals to estimate the parameter of a population, is 
not needed. Bootstrapping process is best used 
through the aid of a computer since the number of 
bootstrap samples needed are required to be large to 
get reliable results. We will consider the following 
bootstrap confidence intervals. 

3.2.1. Bias-Corrected Standard Bootstrap 
Approach 

Let !∗  be one of the three point estimates for 
kurtosis previously defined. Then the bias-corrected 
standard bootstrap confidence intervals is 

!∗ − !"#$ !∗ ± !!
!
⋅ !!     (20) 

where  

!! =
!

!!!
!∗ − !∗ !!

!   

!"#$ !∗ = !∗ − !∗  

!∗ is the mean of all kurtosis estimators derived 
from the bootstrap process. 

3.2.2. Efron’s Percentile Bootstrap Approach 

Introduced by [11], Efron’s Percentile Bootstrap 
approach is to construct a 100(1   − !)%  percentile 
confidence interval. Let !!,!/!  ∗  be the value for which 
(!/2)% bootstrap estimates are less than and !!,!/!∗  , 
the value for which (!/2)%  bootstrap estimates 
exceed. Then the confidence interval would have the 
following lower and upper bounds: 

!!,!/!∗ , !!,!/!∗ .      (21) 

3.2.3. Hall’s Percentile Bootstrap Approach 

Introduced by [12], the method uses the bootstrap 
on distribution of !∗ − !. For any of the excess kurtosis 
estimators previously defined, we calculate the B 
bootstrap kurtosis estimates !!∗, !!∗,⋯ , !!∗ . For a given 
distribution with its known kurtosis parameter,  !, we 
calculate the following differences !!∗ − !, !!∗ −
!,⋯ , !!∗ − !. For simplicity, we may label each !!∗ − ! 
as !!∗. Then the differences can be written as:  

!!∗, !!∗,⋯ , !!∗  

Like Efron's method, for a value !!,!/!∗  which (!/
2)% of the differences,  !∗!, are less than and for a 
value !!,!/!∗  which (!/2)% of the differences exceed. 
Then, the lower and upper bound of the confidence 
interval is given by the following confidence interval: 
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! = ! − ! !!!/! ∗!
∗  and U= ! − ! !/! ∗!

∗    (22) 

3.2.4. Bias Corrected Percentile Bootstrap 

[11] proposed the method when sample estimators 
consistently under or overestimate its parameter. Efron 
suggested that instead of using the usual 0.025 and 
0.975 percentiles of the bootstraps, we should use and 
!!.!"# and !!.!"# instead. Where: 

!!.!"# = Φ !∗ + !∗!!.!"
!!! !∗!!.!"

 and 

!!.!"# = Φ !∗ + !∗!!.!"
!!! !∗!!.!"

     (23) 

• Φ ⋅  is the standard normal cumulative 
distribution function (CDF). 

• !∗  is the bias-correction that is calculated as 
Φ!! |!!

∗!!
!

 which is the inverse normal CDF of 
the proportion of bootstrap statistics values that 
are less than the empirical sample statistics. 

• !  is the “acceleration factor.” For normal 
bootstrap processes, a = 0.000. 

We calculate the confidence intervals as:  

! = !!(!!∗!!.!")
∗  and ! = !!(!!∗!!.!")

∗    (24) 

4. SIMULATION STUDY 

Since a theoretical comparison among estimators is 
outside the scope of the paper, a simulation study is 
conducted to compare the performance of the interval 
estimators in this section. 

4.1. Simulation Techniques 

The main objective of this paper is to compare the 
performance of the estimators. The criteria in judging 
performance is derived from the coverage probability 
and average width of constructed confidence intervals. 
In order to get these intervals, we had to simulate our 
dataset and the simulation was done the following way:  

For sample sizes n = 30, 50, 100 and 300, we 
generated data for the following distributions using the 
statistical software R: 

• Standard normal distribution to capture zero 
kurtosis	  

• Beta(2,2) distribution to capture negative 
kurtosis	  

• Standard logistic distribution to capture positive 
kurtosis.	  

In constructing confidence intervals with 95% 
confidence level using the parametric method, for any 
of the given distributions mentioned, we generate 
samples of size n = 30, 50, 100 and 300. Confidence 
intervals are calculated for each of the estimators 

!!,!!and !!. For each of the three distributions, the 
process was simulated 3,000 times to generate 3,000 
lower and upper bound values for each of the three 
estimators. We then take the average width of each 
estimator as well as calculate the percentage of times 
the true kurtosis parameter of a given distribution is 
within the 3000 constructed intervals. 

For the construction of confidence intervals with 
95% confidence level using the bootstrap method, from 
any of the three distributions mentioned above, given a 
sample size n and one of the three estimators, !∗, we 
generate the bootstrap confidence intervals using 
1,000 bootstrap statistics. We then simulate the 
process 3,000 times to construct the bootstrap intervals 
using the various bootstrap confidence interval 
techniques we discussed in Section 3. We then take 
the average width of each intervals as well as the 
percent coverage every time the true kurtosis 
parameter is within the 3,000 constructed bootstrap 
intervals. Refer to [13] for more on simulation 
techniques. 

4.2. Results and Discussion 

As mentioned, for a given estimator, we are to 
construct confidence intervals using both parametric 
and bootstrap methods. We would then calculate the 
coverage probability as well as the average width of 
these intervals as our criteria to compare the 
performance of these estimators. We constructed 
confidence intervals for the normal distribution, 
Beta(2,2) and standard logistic distribution in order to 
capture zero excess kurtosis, positive and negative 
excess kurtosis. R-Software was used to complete the 
simulation procedures.  

4.2.1. Standard Normal Distribution: Zero Kurtosis 

The average width and coverage probability for all 
confidence intervals using both parametric and 
non-parametric methods when data are generated from 
N(0,1) are reported in Table 1. As expected, the larger 
the sample sizes, the smaller the average width of the 
intervals, regardless of confidence interval methods. 
When the width of all three estimators are compared, in 
every case, the average width of !!  is always less than 
or equal to that of !!. Furthermore, the average width 
of !!  is also always less than or equal to !! , 
regardless of sample sizes. This observation agrees 
with equation (17) since 

!"#(!!)   ≤   !"#(!!)   ≤   !"#(!!) 

As for the coverage intervals, the classical method 
achieved 95% coverage for sample sizes n = 30 or 
higher for any of the three estimators. We noticed that 
the classical method does show higher coverage 
probability when compared to all non-parametric 
intervals for sample sizes 50 or higher. Last, we see 
that !!  tends to also have the highest percent 
coverage when compared to the other two estimators 
regardless of sample sizes as well as confidence 
interval construction method. In all cases, !! achieved 
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Table 1: Average Width and Coverage Probability of The Intervals when The Data Are Generated from N(0,1)  

Method Coverage Probability Width Estimator Sample Size Distribution 

Bias Corrected Standard Bootstrap 0.797 2.376 g2 30 Normal(0,1) 

Bias Corrected Standard Bootstrap 0.869 2.827 G_2 30 Normal(0,1) 

Bias Corrected Standard Bootstrap 0.720 2.224 b2 30 Normal(0,1) 

Bias Corrected Percentile Bootstrap 0.882 2.763 g2 30 Normal(0,1) 

Bias Corrected Percentile Bootstrap 0.917 3.286 G_2 30 Normal(0,1) 

Bias Corrected Percentile Bootstrap 0.834 2.592 b2 30 Normal(0,1) 

Classical 0.963 2.745 g2 30 Normal(0,1) 

Classical 0.953 3.264 G_2 30 Normal(0,1) 

Classical 0.961 2.565 b2 30 Normal(0,1) 

Efron's Percentile Bootstrap 0.901 2.366 g2 30 Normal(0,1) 

Efron's Percentile Bootstrap 0.959 2.813 G_2 30 Normal(0,1) 

Efron's Percentile Bootstrap 0.819 2.208 b2 30 Normal(0,1) 

Hall's Percentile Bootstrap 0.740 2.349 g2 30 Normal(0,1) 

Hall's Percentile Bootstrap 0.820 2.793 G_2 30 Normal(0,1) 

Hall's Percentile Bootstrap 0.634 2.195 b2 30 Normal(0,1) 

Bias Corrected Standard Bootstrap 0.830 1.940 g2 50 Normal(0,1) 

Bias Corrected Standard Bootstrap 0.872 2.148 G_2 50 Normal(0,1) 

Bias Corrected Standard Bootstrap 0.780 1.862 b2 50 Normal(0,1) 

Bias Corrected Percentile Bootstrap 0.881 2.116 g2 50 Normal(0,1) 

Bias Corrected Percentile Bootstrap 0.909 2.339 G_2 50 Normal(0,1) 

Bias Corrected Percentile Bootstrap 0.845 2.027 b2 50 Normal(0,1) 

Classical 0.959 2.342 g2 50 Normal(0,1) 

Classical 0.951 2.595 G_2 50 Normal(0,1) 

Classical 0.963 2.250 b2 50 Normal(0,1) 

Efron's Percentile Bootstrap 0.879 1.898 g2 50 Normal(0,1) 

Efron's Percentile Bootstrap 0.921 2.103 G_2 50 Normal(0,1) 

Efron's Percentile Bootstrap 0.818 1.824 b2 50 Normal(0,1) 

Hall's Percentile Bootstrap 0.763 1.846 g2 50 Normal(0,1) 

Hall's Percentile Bootstrap 0.815 2.042 G_2 50 Normal(0,1) 

Hall's Percentile Bootstrap 0.701 1.770 b2 50 Normal(0,1) 

Bias Corrected Standard Bootstrap 0.837 1.464 g2 100 Normal(0,1) 

Bias Corrected Standard Bootstrap 0.872 1.540 G_2 100 Normal(0,1) 

Bias Corrected Standard Bootstrap 0.807 1.434 b2 100 Normal(0,1) 

Bias Corrected Percentile Bootstrap 0.890 1.520 g2 100 Normal(0,1) 

Bias Corrected Percentile Bootstrap 0.905 1.599 G_2 100 Normal(0,1) 

Bias Corrected Percentile Bootstrap 0.867 1.492 b2 100 Normal(0,1) 

Classical 0.962 1.783 g2 100 Normal(0,1) 

Classical 0.958 1.875 G_2 100 Normal(0,1) 

Classical 0.961 1.747 b2 100 Normal(0,1) 

Efron's Percentile Bootstrap 0.874 1.434 g2 100 Normal(0,1) 

Efron's Percentile Bootstrap 0.908 1.509 G_2 100 Normal(0,1) 

Efron's Percentile Bootstrap 0.845 1.406 b2 100 Normal(0,1) 

Hall's Percentile Bootstrap 0.819 1.434 g2 100 Normal(0,1) 

Hall's Percentile Bootstrap 0.851 1.509 G_2 100 Normal(0,1) 
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(Table 1). Continued. 

Method Coverage Probability Width Estimator Sample Size Distribution 

Hall's Percentile Bootstrap 0.784 1.406 b2 100 Normal(0,1) 

Bias Corrected Standard Bootstrap 0.884 0.961 g2 300 Normal(0,1) 

Bias Corrected Standard Bootstrap 0.892 0.977 G_2 300 Normal(0,1) 

Bias Corrected Standard Bootstrap 0.874 0.955 b2 300 Normal(0,1) 

Bias Corrected Percentile Bootstrap 0.906 0.974 g2 300 Normal(0,1) 

Bias Corrected Percentile Bootstrap 0.913 0.990 G_2 300 Normal(0,1) 

Bias Corrected Percentile Bootstrap 0.900 0.967 b2 300 Normal(0,1) 

Classical 0.951 1.081 g2 300 Normal(0,1) 

Classical 0.949 1.100 G_2 300 Normal(0,1) 

Classical 0.955 1.074 b2 300 Normal(0,1) 

Efron's Percentile Bootstrap 0.889 0.930 g2 300 Normal(0,1) 

Efron's Percentile Bootstrap 0.901 0.946 G_2 300 Normal(0,1) 

Efron's Percentile Bootstrap 0.874 0.924 b2 300 Normal(0,1) 

Hall's Percentile Bootstrap 0.864 0.945 g2 300 Normal(0,1) 

Hall's Percentile Bootstrap 0.877 0.961 G_2 300 Normal(0,1) 

Hall's Percentile Bootstrap 0.852 0.939 b2 300 Normal(0,1) 

 

Table 2: Average Width and Coverage Probability of The Intervals When The Data Are Generated from Beta(2,2) 

Method Coverage Probability Width Estimator Sample Size Distribution 

Bias Corrected Standard Bootstrap 0.960 1.581 g2 30 Beta(2,2) 

Bias Corrected Standard Bootstrap 0.975 1.879 G_2 30 Beta(2,2) 

Bias Corrected Standard Bootstrap 0.905 1.476 b2 30 Beta(2,2) 

Bias Corrected Percentile Bootstrap 0.959 1.616 g2 30 Beta(2,2) 

Bias Corrected Percentile Bootstrap 0.954 1.919 G_2 30 Beta(2,2) 

Bias Corrected Percentile Bootstrap 0.936 1.508 b2 30 Beta(2,2) 

Classical 0.997 2.745 g2 30 Beta(2,2) 

Classical 0.997 3.264 G_2 30 Beta(2,2) 

Classical 0.999 2.565 b2 30 Beta(2,2) 

Efron's Percentile Bootstrap 0.996 1.562 g2 30 Beta(2,2) 

Efron's Percentile Bootstrap 0.994 1.856 G_2 30 Beta(2,2) 

Efron's Percentile Bootstrap 0.990 1.460 b2 30 Beta(2,2) 

Hall's Percentile Bootstrap 0.897 1.568 g2 30 Beta(2,2) 

Hall's Percentile Bootstrap 0.927 1.863 G_2 30 Beta(2,2) 

Hall's Percentile Bootstrap 0.793 1.464 b2 30 Beta(2,2) 

Bias Corrected Standard Bootstrap 0.958 1.113 g2 50 Beta(2,2) 

Bias Corrected Standard Bootstrap 0.966 1.234 G_2 50 Beta(2,2) 

Bias Corrected Standard Bootstrap 0.917 1.070 b2 50 Beta(2,2) 

Bias Corrected Percentile Bootstrap 0.958 1.106 g2 50 Beta(2,2) 

Bias Corrected Percentile Bootstrap 0.951 1.225 G_2 50 Beta(2,2) 

Bias Corrected Percentile Bootstrap 0.946 1.062 b2 50 Beta(2,2) 

Classical 0.999 2.342 g2 50 Beta(2,2) 

Classical 0.999 2.595 G_2 50 Beta(2,2) 

Classical 1.000 2.250 b2 50 Beta(2,2) 
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(Table 2). Continued. 

Method Coverage Probability Width Estimator Sample Size Distribution 

Efron's Percentile Bootstrap 0.987 1.099 g2 50 Beta(2,2) 

Efron's Percentile Bootstrap 0.986 1.218 G_2 50 Beta(2,2) 

Efron's Percentile Bootstrap 0.978 1.055 b2 50 Beta(2,2) 

Hall's Percentile Bootstrap 0.918 1.095 g2 50 Beta(2,2) 

Hall's Percentile Bootstrap 0.936 1.211 G_2 50 Beta(2,2) 

Hall's Percentile Bootstrap 0.848 1.050 b2 50 Beta(2,2) 

Bias Corrected Standard Bootstrap 0.952 0.714 g2 100 Beta(2,2) 

Bias Corrected Standard Bootstrap 0.957 0.751 G_2 100 Beta(2,2) 

Bias Corrected Standard Bootstrap 0.927 0.700 b2 100 Beta(2,2) 

Bias Corrected Percentile Bootstrap 0.952 0.710 g2 100 Beta(2,2) 

Bias Corrected Percentile Bootstrap 0.952 0.747 G_2 100 Beta(2,2) 

Bias Corrected Percentile Bootstrap 0.947 0.696 b2 100 Beta(2,2) 

Classical 1.000 1.783 g2 100 Beta(2,2) 

Classical 1.000 1.875 G_2 100 Beta(2,2) 

Classical 1.000 1.747 b2 100 Beta(2,2) 

Efron's Percentile Bootstrap 0.968 0.706 g2 100 Beta(2,2) 

Efron's Percentile Bootstrap 0.967 0.743 G_2 100 Beta(2,2) 

Efron's Percentile Bootstrap 0.962 0.693 b2 100 Beta(2,2) 

Hall's Percentile Bootstrap 0.937 0.712 g2 100 Beta(2,2) 

Hall's Percentile Bootstrap 0.945 0.748 G_2 100 Beta(2,2) 

Hall's Percentile Bootstrap 0.903 0.697 b2 100 Beta(2,2) 

Bias Corrected Standard Bootstrap 0.947 0.385 g2 300 Beta(2,2) 

Bias Corrected Standard Bootstrap 0.950 0.391 G_2 300 Beta(2,2) 

Bias Corrected Standard Bootstrap 0.939 0.382 b2 300 Beta(2,2) 

Bias Corrected Percentile Bootstrap 0.952 0.384 g2 300 Beta(2,2) 

Bias Corrected Percentile Bootstrap 0.952 0.390 G_2 300 Beta(2,2) 

Bias Corrected Percentile Bootstrap 0.949 0.381 b2 300 Beta(2,2) 

Classical 1.000 1.081 g2 300 Beta(2,2) 

Classical 1.000 1.100 G_2 300 Beta(2,2) 

Classical 1.000 1.074 b2 300 Beta(2,2) 

Efron's Percentile Bootstrap 0.952 0.383 g2 300 Beta(2,2) 

Efron's Percentile Bootstrap 0.952 0.390 G_2 300 Beta(2,2) 

Efron's Percentile Bootstrap 0.951 0.381 b2 300 Beta(2,2) 

Hall's Percentile Bootstrap 0.940 0.384 g2 300 Beta(2,2) 

Hall's Percentile Bootstrap 0.944 0.390 G_2 300 Beta(2,2) 

Hall's Percentile Bootstrap 0.927 0.381 b2 300 Beta(2,2) 

 
at least 94% coverage, regardless of confidence 
interval method used. On the other hand, out of all 
three estimators, !!  performs the worst in almost 
every case. From these observations, we can say that 
for the normal distribution, the best method in 
estimating the true kurtosis parameter is to use the 
classical method with !! estimator.  

4.2.2. Negative Kurtosis 

To assess performance of estimators on 
distributions with negative kurtosis, we simulated data 

from Beta(2,2) with excess kurtosis Kurt(X) = 
-0.8571429 and results are reported in Table 2. As for 
interval average width, the higher the sample size, the 
shorter the intervals, as expected. Also, regardless of 
methods, the average width inequality !! ≤ !! ≤ !! 
for all three estimator holds since this was guaranteed 
by equation (17). For large sample sizes (!   >   30), the 
parametric method has higher average width when 
compared to non-parametric methods. 

In terms of coverage probability, Efron's Percentile 
Bootstrap performs well and sometimes better than the 
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Table 3: Average Width and Coverage Probability of The Intervals When The Data Are Generated from logistic(0,1) 

Method Coverage Probability Width Estimator Sample Size Distribution 

Bias Corrected Standard Bootstrap 0.5773 3.3279 g2 30 Logistic(0,1) 

Bias Corrected Standard Bootstrap 0.6850 3.9585 G_2 30 Logistic(0,1) 

Bias Corrected Standard Bootstrap 0.5137 3.1085 b2 30 Logistic(0,1) 

Bias Corrected Percentile Bootstrap 0.7530 4.0430 g2 30 Logistic(0,1) 

Bias Corrected Percentile Bootstrap 0.8180 4.8215 G_2 30 Logistic(0,1) 

Bias Corrected Percentile Bootstrap 0.6897 3.7799 b2 30 Logistic(0,1) 

Classical 0.5900 2.7451 g2 30 Logistic(0,1) 

Classical 0.7573 3.2643 G_2 30 Logistic(0,1) 

Classical 0.4560 2.5651 b2 30 Logistic(0,1) 

Efron's Percentile Bootstrap 0.6220 3.2284 g2 30 Logistic(0,1) 

Efron's Percentile Bootstrap 0.7427 3.8376 G_2 30 Logistic(0,1) 

Efron's Percentile Bootstrap 0.5400 3.0187 b2 30 Logistic(0,1) 

Hall's Percentile Bootstrap 0.5090 3.2410 g2 30 Logistic(0,1) 

Hall's Percentile Bootstrap 0.6100 3.8516 G_2 30 Logistic(0,1) 

Hall's Percentile Bootstrap 0.4370 3.0290 b2 30 Logistic(0,1) 

Bias Corrected Standard Bootstrap 0.6190 3.0854 g2 50 Logistic(0,1) 

Bias Corrected Standard Bootstrap 0.6893 3.4202 G_2 50 Logistic(0,1) 

Bias Corrected Standard Bootstrap 0.5737 2.9659 b2 50 Logistic(0,1) 

Bias Corrected Percentile Bootstrap 0.7293 3.3831 g2 50 Logistic(0,1) 

Bias Corrected Percentile Bootstrap 0.7793 3.7516 G_2 50 Logistic(0,1) 

Bias Corrected Percentile Bootstrap 0.6827 3.2458 b2 50 Logistic(0,1) 

Classical 0.5800 2.3423 g2 50 Logistic(0,1) 

Classical 0.6887 2.5946 G_2 50 Logistic(0,1) 

Classical 0.5010 2.2496 b2 50 Logistic(0,1) 

Efron's Percentile Bootstrap 0.6377 2.9113 g2 50 Logistic(0,1) 

Efron's Percentile Bootstrap 0.7200 3.2268 G_2 50 Logistic(0,1) 

Efron's Percentile Bootstrap 0.5800 2.7992 b2 50 Logistic(0,1) 

Hall's Percentile Bootstrap 0.5643 2.9532 g2 50 Logistic(0,1) 

Hall's Percentile Bootstrap 0.6270 3.2727 G_2 50 Logistic(0,1) 

Hall's Percentile Bootstrap 0.5150 2.8361 b2 50 Logistic(0,1) 

Bias Corrected Standard Bootstrap 0.6557 2.6514 g2 100 Logistic(0,1) 

Bias Corrected Standard Bootstrap 0.6907 2.7890 G_2 100 Logistic(0,1) 

Bias Corrected Standard Bootstrap 0.6307 2.5984 b2 100 Logistic(0,1) 

Bias Corrected Percentile Bootstrap 0.7407 2.7079 g2 100 Logistic(0,1) 

Bias Corrected Percentile Bootstrap 0.7670 2.8499 G_2 100 Logistic(0,1) 

Bias Corrected Percentile Bootstrap 0.7140 2.6534 b2 100 Logistic(0,1) 

Classical 0.5693 1.7826 g2 100 Logistic(0,1) 

Classical 0.6117 1.8750 G_2 100 Logistic(0,1) 

Classical 0.5310 1.7471 b2 100 Logistic(0,1) 

Efron's Percentile Bootstrap 0.6793 2.5542 g2 100 Logistic(0,1) 

Efron's Percentile Bootstrap 0.7247 2.6854 G_2 100 Logistic(0,1) 

Efron's Percentile Bootstrap 0.6463 2.5043 b2 100 Logistic(0,1) 

Hall's Percentile Bootstrap 0.6203 2.5317 g2 100 Logistic(0,1) 

Hall's Percentile Bootstrap 0.6613 2.6629 G_2 100 Logistic(0,1) 
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(Table 3). Continued. 

Method Coverage Probability Width Estimator Sample Size Distribution 

Hall's Percentile Bootstrap 0.5937 2.4781 b2 100 Logistic(0,1) 

Bias Corrected Standard Bootstrap 0.7567 2.1501 g2 300 Logistic(0,1) 

Bias Corrected Standard Bootstrap 0.7777 2.1868 G_2 300 Logistic(0,1) 

Bias Corrected Standard Bootstrap 0.7510 2.1366 b2 300 Logistic(0,1) 

Bias Corrected Percentile Bootstrap 0.7933 2.1595 g2 300 Logistic(0,1) 

Bias Corrected Percentile Bootstrap 0.8067 2.1926 G_2 300 Logistic(0,1) 

Bias Corrected Percentile Bootstrap 0.7830 2.1429 b2 300 Logistic(0,1) 

Classical 0.5060 1.0814 g2 300 Logistic(0,1) 

Classical 0.5277 1.0997 G_2 300 Logistic(0,1) 

Classical 0.4893 1.0742 b2 300 Logistic(0,1) 

Efron's Percentile Bootstrap 0.7460 2.0395 g2 300 Logistic(0,1) 

Efron's Percentile Bootstrap 0.7650 2.0750 G_2 300 Logistic(0,1) 

Efron's Percentile Bootstrap 0.7357 2.0274 b2 300 Logistic(0,1) 

Hall's Percentile Bootstrap 0.7230 2.0705 g2 300 Logistic(0,1) 

Hall's Percentile Bootstrap 0.7383 2.1050 G_2 300 Logistic(0,1) 

Hall's Percentile Bootstrap 0.7160 2.0559 b2 300 Logistic(0,1) 

 

classical method. The advantage of Efron's Percentile 
Bootstrap is that its average interval is always less than 
that of the classical method or any other 
non-parametric methods regardless of sample size or 
estimators. Thus, we can say that Efron's Percentile 
Bootstrap process is the best method when it comes to 
constructing confidence intervals for !"#$(2,2). 

4.2.3. Positive Kurtosis 

To assess performance of estimators with positive 
kurtosis, we simulated data from the standard logistic 
distribution and results are presented in Table 3. 
Average width of the classical method is longer when 
compared to all other bootstrap confidence interval 
methods for sample sizes less than or equal to 50 and 
its coverage probability is also slightly higher than all 
other bootstrap methods. In constructing bootstrap 
intervals, estimator !!  always generates coverage 
probability that is greater than or equal to coverage 
probability of the other two estimators. As for average 
width, it was observed that, for samples ! ≥ 50, the 
classical method performs a lot worst when it is 
compared to any of the bootstrap methods simulated. 
And in every case, we see that the coverage probability 
never reached its 95% threshold. Comparing the 
classical method and bootstrap methods, we observed 
that the bootstrap methods do have higher coverage 
probability, but none of these confidence interval 
methods consistently meet their 95% threshold. When 
it comes to positive kurtosis estimators, there are no 
clear winners since all methods failed to meet the 95% 
threshold. But Efron's method as well as Bias 
Corrected Percentile bootstrap do get closer than most. 
Last, in choosing an estimator, it is recommended to 
always use !! since it consistently will have higher 
coverage intervals guaranteed by equation (17).  

5. APPLICATIONS 

We will consider two real life health related data to 
illustrate the findings of the paper in this section. 

5.1. Healthy Bones and PTH Data: 

In this example, we consider the values of 
parathyroid hormone (PTH) measured on a sample of 
30 boys and girls aged between 12 to 15 years. 
(Source, Moore, McCabe and Craig (2012), page 19). 
There was one missing value, so we have 29 
observations to construct confidence intervals for the 
true Kurtosis parameter of the PTH data.  

39, 59, 30, 48, 71, 31, 25, 31, 71, 50, 38, 63, 49, 45, 31, 
33, 28, 40, 127, 49, 59, 50, 64, 28, 46, 35, 28, 19, 29 

The histogram of the PTH data is given in Figure 1, 
and it showed that the PTH data is right skewed. Thus, 
the PTH data was fitted to a log normal distribution with 
mean 3.731 and variance 0.161 and ks test give 
p-value=0.83. Therefore, there is no evidence against 
the log-normal distribution assumption. The excess 
kurtosis parameter for lognormal with variance 0.16, is  

!"#$ ! =   !!!! + 2!!!! + 3!!!! − 6 

Kurt(X) =3.26 

The R code for estimating parameters is, 
fitdistr(x,"log-normal")$estimate and testing for 
log-normal distribution is, ks.test(x, "plnorm", 2.992, 
0.041). The confidence intervals and widths of the PTH 
data are provided in Table 4. We observed that all the 
intervals but classical do not capture the true excess 
kurtosis, which is 3.26. Among those captured the true 
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excess kurtosis, b2Hall has the shortest width followed 
by b2Efron, g2Hall.  

 
Figure 1: Histogram of the PTH data. 

 

Table 4: The Upper and Lower Bounds and Width of the 
Intervals 

 Lower 
Bound 

Upper 
Bound 

Width 

g2Classic 4.14719 6.91614 2.76895 

G2Classic 5.20176 8.51504 3.31328 

b2Classic 3.8661 6.4phht4739 2.58128 

g2Hall 2.02021 12.3694 10.3492 

G2Hall 3.0743 15.0534 11.9791 

b2Hall 2.18435 11.5375 9.35317 

g2Efron -1.3036 9.08888 10.3925 

G2Efron -1.3122 11.3518 12.664 

b2Efron -1.2188 8.20284 9.42167 

g2BCorrPerc 0.624 14.2955 13.6715 

G2BCorrPerc 1.26003 15.6546 14.3946 

b2BCorrPerc -0.2520 11.1544 11.4069 

g2BCorr 1.99452 14.4326 12.4381 

G2BCorr 2.32695 17.7747 15.4477 

b2BCorr 1.95643 13.3926 11.4362 

 

5.2. Diabetes and Glucose Data: 

Here we consider the fasting plasma glucose levels 
(mg/dl) for 18 diabetics enrolled in a diabetes control 
class, five months after the end of class. (Source: 
Debora L. Arsenau “Comparison of diet management 
instruction for patients with non-insulin dependent 
diabetes: Learning activity packages vs. group 
instruction. [14, page 25]. 

141, 158, 112, 153, 134, 95, 96, 78, 148, 172, 200, 271, 
103, 172, 359, 145, 147, 255 

 
Figure 2: Histogram of the Diabetes and Glucose. 

The histogram of the diabetes and glucose data is 
given in Figure 2, and it showed that the data is right 
skewed.  

The data was fitted to a gamma distribution with 
shape parameter 6.75 and rate 0.041 and KS-test give 
p-value=0.59. Thus, we may assume that the data 
follow a gamma distribution. Then the population 
kurtosis will be 6/6.751=0.89. We have computed the 
lower and upper bound and the width of the intervals 
and provided them in Table 5. It appears that all the 
proposed estimators captured the true excess kurtosis 
0.89. However, we obtain the shortest interval by !! 
classical interval followed by !!classical, !! classical, 
!! Hall, !! Hall and !! Efron’s method.  

Table 5: The Upper and Lower Bounds and Width of the 
Intervals 

 Lower Bound Upper 
Bound 

Width 

g2Classic -0.0352 2.98769 3.02272 

G2Classic 0.3781 4.44593 4.06808 

b2Classic -0.0313 2.66494 2.69619 

g2Hall -2.5db304 4.14826 6.67869 

G2Hall -3.5907 5.90345 9.49411 

b2Hall -2.1887 3.6919 5.88058 

g2Efron -1.2206 5.68061 6.90121 

G2Efron -1.1382 8.3246 9.46283 

b2Efron -1.0823 4.91494 5.99726 

g2BCorrPerc -0.311 8.48216 8.79303 

G2BCorrPerc -0.0272 12.2041 12.2313 

b2BCorrPerc -0.37 6.9432 7.31283 

g2BCorr -1.4399 5.35257 6.79249 

G2BCorr -1.4034 7.59479 8.99823 

b2BCorr -1.2378 4.779 6.01678 
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6. SOME CONCLUDING REMARKS 

This paper considers some classical confidence 
intervals based on !!, !! and !! kurtosis estimators 
and bootstrap methods in constructing confidence 
intervals for the kurtosis parameter of a distribution. 
The bootstrap techniques used are: Bias-Corrected 
Standard Bootstrap, Efron’s Percentile Bootstrap, 
Hall’s Percentile Bootstrap and Bias-Corrected 
Percentile Bootstrap. Since a theoretical comparison is 
not possible, a simulation study was conducted to 
compare the performance of the interval estimators. 
The criteria of performance were judged on which had 
shorter intervals with coverage probability of at least 
meeting the 95% confidence threshold. We saw that 
when dealing with a normal distribution with kurtosis 0, 
the classical method with parameter !! performs best 
since it generates the smallest interval while meeting 
its 95% threshold. When dealing with beta(2,2), a 
distribution with negative kurtosis, the classical method 
did perform well. We observed that Efron's Percentile 
Method performed equally as well, but with shorter 
intervals. For the normal logistic distribution with 
positive kurtosis, it is best to use Efron's Percentile 
Method with sample estimator !!  even though all 
methods had a hard time reaching that 95% coverage 
threshold. To illustrate the finding of this paper, two real 
life health related data are analyzed and the results 
supported the simulation study to some extent. Hope 
the findings of this paper will be useful for the 
researchers in various fields, not limited to health and 
medical sciences.  
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