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Abstract: The logrank test is widely used to compare groups on distribution of survival time in the presence of 
censoring. There is no convention for post hoc pairwise comparisons after a significant omnibus k-group logrank test. 
This simulation study compares four post hoc pairwise testing procedures: Bonferroni, Dunn- idák, Hochberg, and 

unadjusted post hoc logrank test procedure. Evaluation criteria include, familywise type I error rate, correct decision rate, 
number of correctly rejected pairs, and false discovery rate. We demonstrated that when conditioned upon rejection of 
the omnibus test, multiplicity adjustments may be unnecessary and can be overly conservative when k is at most 4, or 

number of comparisons is no greater than 6. This is supported by the results that the performance of the unadjusted post 
hoc logrank test procedure is preferred over the others on all criteria except for the false discovery rate. The Hochberg 
procedure appears to be superior among the adjustments examined. Data from a clinical trial for suicide prevention 

illustrate these approaches where number of comparison groups is often limited. 
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INTRODUCTION 

Survival analysis is a class of statistical procedures 

that can assess the efficacy of multiple (k) treatments 

by comparing distributions of time to event, or survival 

time T, in the presence of censoring in clinical trials 

where the number of comparison groups is often 

limited. For example, trials with k=3 will compare an 

investigational treatment with both the current standard 

treatment and placebo. Psychiatric trials in particular 

include studies of time to remission from major 

depression (e.g., [1]), time to recurrence of major 

depression (e.g., [2]) and time to discontinuation from 

study medication [3]. In the illustration that follows, 

remission of depressive symptoms is the target 

“terminal event” in survival analysis terminology.  

The differences in distributions of survival times T, a 

main study hypothesis in many clinical trials, can be 

tested typically applying logrank 
2
 tests [4, 5]. 

Specifically, an omnibus logrank 
2
 test with k – 1 

degrees of freedom (df) with a significance level G = 

.05 can be applied to test a global null hypothesis  

H0: S1(t) = S2(t) = ... = Sk(t)          (1) 

of equality in distributions of the survival time among k 

(  2) groups, where Si(t)=P(Ti >t) is the survival 

function of the survival times in group i. When k>2 and  
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the global hypothesis is rejected by the omnibus test, 

post hoc multiple comparison procedures are needed 

to identify the specific pairs of groups that significantly 

differ in treatment efficacy. (By post hoc we mean “after 

rejection of the global test.”) Although such effort was 

made recently in Lieberman et al. [3] with the Hochberg 

adjustment procedure [6], no convention exists that 

guides the choice of approaches in applied settings.  

There had been a few studies on multiplicity 

adjustment in survival analysis. For example, Logan et 

al. [7] compared performances of Bonferroni-type 

procedures, simulated martingale approaches and 

closed test procedures [8] for pairwise comparisons of 

survival distributions between groups. Chen [9] 

proposed a multiple comparison testing procedure 

based on Slepian’s inequality [10] and compared with 

both generalized Steel’s testing procedure [11] and the 

closed testing procedure [8] in an experimental setting 

with many treatment groups and one control group. 

These three procedures were compared through 

application of three two-sample logrank statistics with 

different weighting types—namely, Gehan’s statistic 

[12], the logrank statistic and the Peto-Prentice statistic 

[13]—in multiple pairwise comparisons of survival 

distributions between groups treated with a treatment 

and a control. Nevertheless, these studies did not 

compare multiple adjustment procedures conditional on 

rejection of a global test, and more importantly the 

comparison criteria were based only on type I error rate 

and statistical power.  

In some clinical trials involving survival times and 

beyond, however, testing the global null hypothesis (1) 
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often serves as a primary aim and followed are 

secondary analyses of post-hoc comparisons to identify 

specific pairs of groups that are significantly different in 

survival distributions. In this context, the primary 

objective of this paper is to compare four types of 

general post hoc testing procedures conditional on 

rejecting the global null hypothesis when applied to 

logrank tests used in k-group RCTs: Bonferroni, Dunn-

idák [14], Hochberg [6], and unadjusted post hoc 

logrank test procedure. That is to evaluate general 

multiplicity adjustments when specifically aimed for 

post hoc logrank tests. When the global null hypothesis 

H0 (1) is rejected by the omnibus test, these general 

multiplicity adjustment procedures can be applied to 

multiple logrank 1 df 
2
 tests for all c = k(k-1)/2 post 

hoc pairwise comparisons of testing H0ij: Si(t) = Sj(t), i < 

j  k. All of those procedures except for the unadjusted 

post hoc logrank test procedure controls for a 

familywise type I error (FWE), FWE, by adjusting the 

thresholds for significance level for each comparison. 

Formally, a family F of null hypotheses is a union F = 

F0 F1, where F0={H0ij| i < j  k such that Si(t) = Sj(t) for 

some pairs of i and j} consisting of true null hypotheses 

and F1={H0ij| i < j  k such that Si(t)  Sj(t) for some 

pairs of i and j } consisting of false null hypothesis are 

mutually exclusive, i.e., F0 F1= . The familywise type I 

error FWE quantifies the rate of falsely rejecting any 

hypothesis H0ij that belong to a special family F that 

consists of only true null hypotheses {H0ij| i < j  k such 

that Si(t) = Sj(t) for all pairs of i and j}. In other words, 

the familywise type I error quantifies the rate of falsely 

rejecting any null hypothesis in F when F=F0. It follows 

that FWE = P(Reject any H0ij| H0ij  F = F0). 

The primary focus of our evaluations is, however, to 

identify a post hoc procedure that correctly rejects only 

false null hypotheses that belongs to the family F = 

F0 F1 in general. We denote this rate as correct 

decision rate, or CDR, that is, the rate of rejecting null 

hypotheses if and only if they belong to F1  F, i.e.,  

CDR = P[(Reject all H0ij| H0ij  F1  F)  (Do not reject 

any H0ij| H0ij  F0  F)].          (2) 

Apparently CDR will be 0 when F=F0, i.e., F1= . 

Other performance evaluation criteria include:  

Familywise type I error rate = P(Reject any H0ij| H0ij  

F0=F);             (3) 

Number of correctly rejected pairs = #{Rejected H0ij| 

H0ij F1  F},             (4) 

where #{ } is the number of elements in the set { }; and  

Empirical FDR = #{Rejected H0ij| H0ij F0 F} ⁄ 

#{Rejected H0ij| H0ij F}.         (5) 

This false discovery rate (FDR) [15] is the ratio of 

the number of falsely rejected null hypotheses to that of 

all rejected null hypotheses, and is referred here to as 

“empirical” FDR because these evaluations are made 

based on Monte Carlo Simulations. When the global 

null hypothesis (1) is true and if any H0ij is rejected 

based on a post hoc procedure, the empirical FDR will 

be 1 because F0=F. In contrast, when Si(t)  Sj(t) for all 

pairs of i and j (i < j  k), i.e., when H0ij F1=F, the 

empirical FDR will be 0 because F0= . We believe that 

a comprehensive evaluation of these criteria has not 

been conducted for post-hoc logrank tests. 

POST HOC MULTIPLE PAIRWISE COMPARISON 
PROCEDURES 

The following procedures, adjusted or not, are 

“protected” in the sense that they are conditional upon 

the rejection of the global hypothesis, which is implicit 

in the terminology of “post-hoc” as noted above. Here 

we consider FWE = .05. 

Bonferroni Adjustment 

The Bonferroni-adjusted significance level B 

partitions FWE evenly among c tests, resulting in B = 

FWE/c. This adjustment is rather conservative in a 

sense that familywise error based on B is less than the 

pre-specified FWE even if independence among pairs 

is assumed. In this case, it follows that 1–(1– B)
C
 = 1– 

(1– FWE/c)
C
 < FWE = .05 for all c > 1 with limC [1–(1– 

FWE/c)
C
] = 1–exp(– FWE) > .04877, a lower bound. For 

instance, with c = 3 pairwise comparisons among k = 3 

groups with FWE = .05, B=.05/3 = .01667 and 

subsequently 1-(1-.01667)
3 

= .04918. When this 

adjustment is implemented, the pairs of groups with p-

values (from 1 df logrank 
2
 test) less than B will be 

declared to differ significantly in efficacy.  

Dunn- idák Adjustment 

The Dunn- idák adjustment [14] was proposed to 

return the familywise error as the pre-specified FWE 

yielding an adjusted significance level for each 

comparison as DS =1– (1– FWE)
1/C

. Familywise error 

based on this adjustment DS is precisely equal to the 

pre-specified FWE if independence among pairs is 

assumed [9]; i.e., 1–(1– DS)
C
 = 1– ((1– FWE)

1/C
)
C
 = 

FWE = .05 for all c. When this adjustment is 

implemented, the pairs of groups with p-values less 

than DS will be declared to differ significantly in 
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efficacy. Thus the Dunn- idák adjustment should have 

somewhat greater FWE than the Bonferroni adjustment 

because DS > B for all k or c. For instance, FWE of 

the Dunn- idák adjustment is greater by 0.00083 and 

0.00103 for c = 3 and c = 6, respectively, than that of 

the Bonferroni adjustment. Nevertheless, in practice 

the interpretation of results from the two approaches 

will seldom differ. 

Hochberg’s Step-Up Procedure 

Individual pairwise comparisons are tested in 

descending order of the c number of p-values into p(c) > 

p(c-1) > …> p(1). Each successively smaller p-value has 

a more rigorous -threshold: FWE > FWE/2 > … > FWE 

/(c–1) > FWE /c. For instance for c=3 and FWE =.05, the 

successive -levels are .05, .025, and .01667. The 

sequential Hochberg tests do not reject null pairwise 

hypotheses until the first significant comparison with p-

value p(i) such that p(i) < FWE/i , and then declares that 

all subsequent comparisons statistically significant 

without further examination of subsequent thresholds. 

In theory, familywise error of the sequentially rejective 

Hochberg’s procedure should be greater than or equal 

to those based on the Bonferroni adjustment because 

the last threshold FWE/c of the Hochberg procedure is 

the Bonferroni-adjusted significance level. In other 

words, rejection with the Hochberg procedure is a 

necessary condition for the Bonferroni adjustment in 

rejecting at least one pair. 

Unadjusted Post Hoc Logrank Test Procedure 

As described in Keppel [17], the essential idea of 

the least significant difference testing procedure 

originally proposed by Fisher [18] involves two steps: 1) 

Test a global null hypothesis; 2) If the global null 

hypothesis is rejected, then proceed with pairwise 

comparisons using test statistics should be based on a 

pooled standard error yet with no alpha-threshold 

adjustment. In the context of ANOVA, this procedure is 

known to have weak control of FWE [19] despite the 

use of pooled standard error and increased degrees of 

freedom. We apply this concept to the present problem 

with survival distributions and call it “unadjusted post 

hoc logrank procedure.” Specifically, this procedure 

does not adjust the pre-specified familywise 

significance level FWE for any of the post hoc pairwise 

comparisons when the global null hypothesis (1) is 

rejected by the omnibus logrank test. That is, the 

significance level unadjusted for each pair of groups is 

fixed as FWE, i.e., the function connecting unadjusted and 

FWE is the identity function yielding unadjusted = FWE. It 

follows that each pair of groups with a p-value < 

unadjusted will be declared to be significant. Furthermore, 

unlike post-hoc t-tests following ANOVA, the number of 

degrees of freedom for the pairwise logrank statistic 

are always one regardless of the number of 

observations. Nevertheless, we did not use the 

estimated variance of the score statistic of the omnibus 

test, but instead conducted simple and straightforward 

pairwise comparisons. We simply applied the standard 

two-group logrank tests for those post-hoc 

comparisons.  

APPLICATION 

The post hoc multiple comparison procedures are 

illustrated in an examination of the intervention effects 

in the Prevention of Suicide in Primary Care Elderly: 

Collaborative Trial (PROSPECT) study [20]. This study 

recruited subjects from May 1999 through August 2001 

and followed them for up to 24 months. The primary 

report from the PROSPECT study evaluated the 24-

month course of participants who were enrolled with a 

diagnosis of depression. The assessments were made 

at baseline and months 4, 8, 12, 18, and 24. Here, in 

this application of multiplicity adjustments for logrank 

test, we included subjects who met the following 

criteria: 1) diagnosed with major depressive disorder 

(MDD); 2) baseline 24-item Hamilton Depression 

Rating Scale (HDRS) [21] greater than 17; 3) available 

for baseline Clinical Anxiety Scale (CAS) [22]; 4) 

available for month 4 evaluations.  

The analyses included 188 subjects (103 in the 

intervention arm and 85 in the control arm). The 

primary outcome was time to remission of depressive 

symptoms until month 18. The remission was defined 

as the 24-item HDRS < 10. Of particular interest was 

whether the intervention was more effective for 

subjects with anxiety measured with CAS compared to 

the conventional usual care control [1]. To illustrate the 

post hoc procedures that are compared here, subjects 

were classified into the following four groups: 

intervention with higher anxiety (IHA, N= 56), 

intervention with lower anxiety (ILA, N=47), control with 

higher anxiety (CHA, N= 46), and control with lower 

anxiety (CLA, N=39), where the higher vs. lower 

anxiety criterion was based on a whole sample median 

split of the baseline Clinical Anxiety Scale ratings 

(CAS>=6 vs. CAS<6). We acknowledge that 

alternatively, this could have been tested with a Cox 

proportional hazards model with an intervention by 

CAS interaction term. 
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The omnibus logrank test rejected the homogeneity 

of survival time distributions among the four groups 

with 
2 

= 11.615, df = 3, and p=0.0088. Figure 1 

suggests that the intervention effect could depend upon 

severity of clinical anxiety symptoms. Table 1 shows 

subsequent pairwise comparison results. The 

unadjusted post hoc logrank test procedure indicated 

that the ILA subjects achieved a significantly higher 

remission rate than the other three groups of CHA, 

IHA, and CLA. Therefore, in this study, the intervention 

is particularly effective for subjects with low anxiety. In 

contrast, the results of the other three procedures 

indicate that ILA group achieved a significantly higher 

remission rate than the CHA group only. The 

interpretation of these results differs based on the post 

hoc testing procedure that is chosen. Thus a simulation 

study is now presented that compares the performance 

of those procedures.  

SIMULATION DESIGN, PROCEDURES, AND 
EVALUATION CRITERIA 

Simulation Design 

A Monte Carlo simulation compares the 

performance of the approaches that have been 

described. The study design parameters that are 

typically seen in randomized clinical trials in 

psychopharmacology guided the choice of the following 

simulation specifications: 

1. Unit of time T = day. 

2. Length of trial in days L = 28 days (4 weeks). 

3. Number of groups k = 3 for a trial with 3 arms of 

Placebo Control, Active Control Drug (A), and 

Investigational Drug (B); and k = 4 for a trial with 

4 arms of Placebo Control, Drug A, Drug B, and 

Drug A plus B. (The corresponding numbers of 

post hoc pairwise comparisons for k=3 and k=4 

are c=3 and 6, respectively.) 

4. Number of subjects per group: N/group = 50, 

100, and 200. Therefore, the total sample size 

will be kN subjects. 

5. Remission rates R during a trial:  

a. Placebo Control: R = 5% or 20%; 

b. Active Control Drug (A): R = 30% (small), 

40% (medium), or 50% (large); 

c. Investigational Drug (B): R = 30% (small), 

40% (medium), or 50% (large). 

6. The lost follow-up rate LF during the trial is fixed 

at 30% for each group. 

Generation of Observed Survival Time 

The distribution of a “true” survival time (time to 

remission) T is assumed to be exponential with a rate 
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Figure 1: Cumulative remission rates (24-Item HDRS<10) in MDD subjects in the PROSPECT study with higher and lower 
Clinical Anxiety Scale (CAS) scores than the sample median. 
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parameter . The global null hypothesis (1) can then be 

expressed as follows: 

H0: 1 = 2 = ... = k.          (6) 

We also assume that a censoring time C is also 

exponentially distributed with a rate parameter . We 

further assume that T and C are independent to each 

other although the practicality of this assumption is not 

always reasonable. Then the observed survival time Y 

= min(T,C) is also exponentially distributed with a rate 

parameter , which is  + . It follows that P (Y<L) = 1 – 

exp(– L)= R+ LF for  = –log( R+ LF)/L. Furthermore, 

by definition, R = P(T<C & Y<L) and LF = P(C<T & 

Y<L). Therefore, P(T<C|Y<L) = R/( R+ LF) and 

P(C<T|Y<L) = LF/( R+ LF). It follows that once Y is 

drawn from exp( ) and if Y<L, then the distribution of 

the event indicator D = 1(Y=T|Y<L) before the end of 

the study is Bernoulli with the “success” probability of 

R/( R+ LF), where 1( ) is an indicator function that 

returns 1 if the condition in ( ) is satisfied or 0 

otherwise. Therefore, we drew first randomly Y, and if 

Y < L then we determined D based on a random draw 

from the Bernoulli distribution. For subjects with Y > L, 

we fixed D = 0. Collectively, the observed survival time 

will be Y= min(T, C) with event indicator D defined as 1 

if “remitted” and 0 otherwise. Therefore, the subjects 

with time Y with D = 0 will be considered as censored 

or lost at time Y. The subjects with time Y with D = 1 

will be considered as remitted at time Y or T. We 

generated Nsim = 10,000 data sets for each simulation 

specification described above. 

Post Hoc Testing Procedures 

We first applied the omnibus logrank 
2
 test with k-1 

df to simulated data to test the global null hypothesis 

H0 (6), the equality of the rate parameters among the k 

groups. Only if the omnibus test rejected H0, did we 

proceed with a logrank 
2
 test statistic with 1 df for 

each of the c pairs of groups with a null hypothesis H0ij: 

i = j where i < j  k, and reserved p-values. Each of 

the post hoc procedures was applied to evaluate the p-

values for each pairwise comparison. 

Evaluation Criteria 

The following four criteria were evaluated based on 

simulation results. In each case, the denominator of the 

respective proportions or means was the total number 

of simulated data sets Nsim = 10,000. It was not based 

on number of rejected omnibus tests. 

1. Type I error: This was computed as a proportion 

of simulations in which at least one pairwise null 

hypothesis was rejected following a significant 

omnibus test when, in fact, the null hypothesis 

(6) of equal efficacy is true, or H0ij  F0=F for all i 

< j  k as defined in equation (3). 

2. Number of correctly rejected pairs: For each 

simulated data set, numbers of correctly rejected 

pairs (4) following a significant omnibus test 

were counted. These counts were averaged over 

the number of simulations. When these results 

are presented, the number of true false null 

hypotheses will be shown for reference. 

3. Correct decision rate (CDR): The CDR was 

computed as a proportion of simulations in which 

a post hoc procedure rejects all of the false null 

hypotheses, but rejects only the false null 

hypotheses as defined in equation (2) following a 

significant omnibus test result. 

4. Empirical false discovery rates (FDR): For each 

simulated data set, empirical FDR was computed 

as number of falsely rejected pairs divided by 

Table 1: Post Hoc Pairwise Comparisons with the PROSPECT Study Subjects 

Logrank Post hoc multiple comparison procedures 

Pairs
 2

(1) p Unadjusted Bonferroni Dunn- idák
 

Hochberg 

ILA vs. CHA 9.687 .0019 *
 

* * * 

ILA vs. IHA 6.410 .0113 * ns ns ns 

ILA vs. CLA 3.948 .0469 * ns ns ns 

CLA vs. CHA 1.116 .2908 ns
 

ns ns ns 

IHA vs. CHA 0.384 .5356 ns ns ns ns 

IHA vs. CLA 0.184 .6673 ns ns ns ns 

IHA: intervention with high anxiety; ILA: intervention with low anxiety; CHA: control with high anxiety; CLA: control with low anxiety. 
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number of all rejected pairs as defined in 

equation (5) following a significant omnibus test 

result.  

Of note, the total number of rejected null 

hypothesis, that is #{Rejected H0ij| H0ij F}, can easily 

be obtained from the number of correctly rejected pairs 

and the empirical FDR as:  

#{Rejected H0ij| H0ij F} = #{Rejected H0ij| H0ij F1  F}/(1 

– FDR).             (7) 

SIMULATION STUDY RESULTS 

Type I Error 

The empirically estimated type I error rates (Table 

2) represent familywise error conditional upon rejection 

of a global null hypothesis. By design, the type I error 

of each post hoc procedure to reject at least one 

pairwise hypothesis never exceeded that of the 

omnibus test. This, of course, is a function of the 

condition in the simulation study that required rejection 

of the omnibus test prior to pairwise testing. For the 

Table 2: Type I Error for Post Hoc Pairwise Comparisons Based on Nsim=10,000 Simulated Data Sets. 

Post hoc multiple comparison procedures 
k N/group R Omnibus 

Unadjusted Bonferroni Dunn- idák
 

Hochberg 

(.05, .05, .05) 0.042 0.038 0.017 0.017 0.017 

(.20, .20, .20) 0.047 0.047 0.036 0.037 0.037 

(.30, .30, .30) 0.052 0.052 0.043 0.043 0.044 

(.40, .40, .40) 0.050 0.050 0.040 0.041 0.040 

50 

(.50, .50, .50) 0.054 0.054 0.043 0.044 0.044 

(.05, .05, .05) 0.047 0.047 0.033 0.033 0.033 

(.20, .20, .20) 0.050 0.050 0.041 0.041 0.041 

(.30, .30, .30) 0.050 0.050 0.042 0.043 0.043 

(.40, .40, .40) 0.052 0.052 0.044 0.044 0.045 

100 

(.50, .50, .50) 0.051 0.051 0.042 0.043 0.042 

(.05, .05, .05) 0.051 0.051 0.038 0.039 0.039 

(.20, .20, .20) 0.055 0.055 0.046 0.046 0.047 

(.30, .30, .30) 0.052 0.052 0.044 0.045 0.045 

(.40, .40, .40) 0.048 0.048 0.040 0.041 0.041 

3 

200 

(.50, .50, .50) 0.052 0.052 0.042 0.042 0.043 

(.05,.05,.05,.05) 0.043 0.042 0.010 0.010 0.010 

(.20,.20,.20,.20) 0.055 0.055 0.035 0.036 0.036 

(.30,.30,.30,.30) 0.052 0.052 0.035 0.036 0.035 

(.40,.40,.40,.40) 0.056 0.056 0.039 0.039 0.039 

50 

(.50,.50,.50,.50) 0.058 0.058 0.040 0.040 0.040 

(.05,.05,.05,.05) 0.044 0.044 0.024 0.024 0.024 

(.20,.20,.20,.20) 0.056 0.056 0.039 0.039 0.039 

(.30,.30,.30,.30) 0.053 0.053 0.038 0.039 0.038 

(.40,.40,.40,.40) 0.049 0.049 0.037 0.037 0.037 

100 

(.50,.50,.50,.50) 0.052 0.052 0.040 0.040 0.040 

(.05,.05,.05,.05) 0.048 0.048 0.032 0.033 0.032 

(.20,.20,.20,.20) 0.048 0.048 0.034 0.035 0.035 

(.30,.30,.30,.30) 0.052 0.052 0.038 0.038 0.038 

(.40,.40,.40,.40) 0.052 0.052 0.039 0.039 0.039 

4 

200 

(.50,.50,.50,.50) 0.051 0.051 0.038 0.039 0.039 
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most part, the unadjusted post hoc logrank test 

procedure without multiplicity adjustment has the 

identical type I error as the omnibus test as is expected 

based on theory [8]. The type I error rates for the other 

post hoc procedures are lower than that of the omnibus 

test. By definition, Bonferroni procedure has smaller 

type I error rates than both Dunn- idák adjustment and 

Hochberg procedure as demonstrated in Table 2. 

Overall, for a given set of simulation specifications, 

type I error for each of the three procedures with 

multiplicity adjustments is in general greater for larger 

N/group, for larger remission rates, and for smaller k.  

Number of Correctly Rejected Pairs 

Table 3 presents the number of correctly rejected 

pairs for N/group =200. The order of the number of 

correctly rejected pairs is as follows: unadjusted post 

Table 3: Number of Correctly Rejected Pairs for Post Hoc Pairwise Comparisons Based on Nsim=10,000 Simulated 
Data Sets (N/group = 200) 

Unequal Post hoc multiple comparison procedures 
k R 

pairs Unadjusted Bonferroni Dunn- idák
 

Hochberg 

(.05, .2, .3) 3 2.708 2.540 2.542 2.708 

(.05, .3, .3) 2 2.000 2.000 2.000 2.000 

(.05, .2, .4) 3 2.998 2.988 2.989 2.998 

(.05, .3, .4) 3 2.669 2.501 2.504 2.669 

(.05, .4, .4) 2 2.000 2.000 2.000 2.000 

(.05, .2, .5) 3 2.999 2.994 2.994 2.999 

(.05, .3, .5) 3 2.999 2.996 2.996 2.999 

(.05, .4, .5) 3 2.721 2.556 2.559 2.721 

(.05, .5, .5) 2 2.000 2.000 2.000 2.000 

(.2, .2, .3) 2 1.285 1.059 1.063 1.135 

(.2, .3, .3) 2 1.263 1.063 1.066 1.139 

(.2, .2, .4) 2 1.996 1.988 1.988 1.993 

(.2, .3, .4) 3 2.369 2.016 2.021 2.315 

(.2, .4, .4) 2 1.995 1.987 1.987 1.991 

(.2, .2, .5) 2 2.000 2.000 2.000 2.000 

(.2, .3, .5) 3 2.700 2.538 2.541 2.700 

(.2, .4, .5) 3 2.719 2.552 2.553 2.719 

3 

(.2, .5, .5) 2 2.000 2.000 2.000 2.000 

(.05, .3, .3, .3) 3 3.000 3.000 3.000 3.000 

(.05, .3, .3, .4) 5 4.349 3.819 3.825 4.082 

(.05, .3, .3, .5) 5 4.998 4.979 4.980 4.995 

(.05, .3, .4, .4) 5 4.334 3.809 3.815 4.068 

(.05, .3, .4, .5) 6 5.390 4.859 4.864 5.345 

(.05, .4, .4, .4) 3 3.000 3.000 3.000 3.000 

(.05, .4, .4, .5) 5 4.451 3.930 3.937 4.199 

(.05, .4, .5, .5) 5 4.437 3.920 3.925 4.191 

(.05, .5, .5, .5) 3 3.000 3.000 3.000 3.000 

(.2, .3, .3, .3) 3 1.810 1.290 1.298 1.377 

(.2, .3, .3, .4) 5 3.735 2.668 2.679 3.029 

(.2, .3, .3, .5) 5 4.411 3.856 3.862 4.142 

(.2, .3, .4, .4) 5 4.041 3.219 3.228 3.558 

(.2, .3, .4, .5) 6 5.091 4.282 4.291 4.922 

(.2, .4, .4, .4) 3 2.994 2.963 2.964 2.975 

(.2, .4, .4, .5) 5 4.428 3.890 3.897 4.168 

(.2, .4, .5, .5) 5 4.448 3.911 3.917 4.200 

4 

(.2, .5, .5,. 5) 3 3.000 3.000 3.000 3.000 
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hoc logrank test procedure > Hochberg >> Dunn- idák 

> Bonferroni, where the symbol “>>” reads “much 

greater.” This ordering was consistent regardless of 

configurations of remission rates R. The overall 

pattern reflected in Table 3 was similar for N/group = 

50 and 100 (not presented), albeit with a smaller 

number of rejected pairs with a smaller N/group. In 

summary, the unadjusted post hoc logrank test 

procedure correctly rejected greater number of false 

null hypotheses than the other procedures. In this 

regard, the Hochberg procedure rejected more than 

both Dunn- idák and Bonferroni procedures, which are 

close each other.  

Correct Decision Rates 

Table 4 presents the CDR for N/group = 200. The 

pattern of the results is similar to that above in the 

Table 4: Correct Decision Rate (CDR) for Post Hoc Pairwise Comparisons Based on Nsim=10,000 Simulated Data Sets 
(N/group = 200) 

Post hoc multiple comparison procedures 
k R 

Unadjusted Bonferroni Dunn- idák
 

Hochberg 

(.05, .2, .3) 0.708 0.540 0.542 0.708 

(.05, .3, .3) 1.000 1.000 1.000 1.000 

(.05, .2, .4) 0.998 0.988 0.989 0.998 

(.05, .3, .4) 0.669 0.501 0.504 0.669 

(.05, .4, .4) 1.000 1.000 1.000 1.000 

(.05, .2, .5) 0.999 0.994 0.994 0.999 

(.05, .3, .5) 0.999 0.996 0.996 0.999 

(.05, .4, .5) 0.721 0.556 0.559 0.721 

(.05, .5, .5) 1.000 1.000 1.000 1.000 

(.2, .2, .3) 0.546 0.366 0.368 0.436 

(.2, .3, .3) 0.542 0.366 0.369 0.437 

(.2, .2, .4) 0.997 0.989 0.989 0.994 

(.2, .3, .4) 0.412 0.179 0.182 0.412 

(.2, .4, .4) 0.996 0.988 0.988 0.992 

(.2, .2, .5) 1.000 1.000 1.000 1.000 

(.2, .3, .5) 0.700 0.539 0.541 0.700 

(.2, .4, .5) 0.719 0.552 0.554 0.719 

3 

(.2, .5, .5) 1.000 1.000 1.000 1.000 

(.05, .3, .3, .3) 1.000 1.000 1.000 1.000 

(.05, .3, .3, .4) 0.528 0.247 0.250 0.406 

(.05, .3, .3, .5) 0.998 0.980 0.981 0.996 

(.05, .3, .4, .4) 0.515 0.242 0.244 0.397 

(.05, .3, .4, .5) 0.429 0.111 0.113 0.429 

(.05, .4, .4, .4) 1.000 1.000 1.000 1.000 

(.05, .4, .4, .5) 0.588 0.297 0.300 0.465 

(.05, .4, .5, .5) 0.580 0.292 0.295 0.462 

(.05, .5, .5, .5) 1.000 1.000 1.000 1.000 

(.2, .3, .3, .3) 0.451 0.189 0.190 0.239 

(.2, .3, .3, .4) 0.262 0.044 0.045 0.146 

(.2, .3, .3, .5) 0.560 0.265 0.269 0.439 

(.2, .3, .4, .4) 0.289 0.039 0.040 0.150 

(.2, .3, .4, .5) 0.248 0.018 0.019 0.248 

(.2, .4, .4, .4) 0.995 0.967 0.968 0.978 

(.2, .4, .4, .5) 0.572 0.282 0.285 0.449 

(.2, .4, .5, .5) 0.584 0.283 0.286 0.462 

4 

(.2, .5, .5,. 5) 1.000 1.000 1.000 1.000 
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Table 5: False Discovery Rate (FDR) for Post Hoc Pairwise Comparisons Based on Nsim=10,000 Simulated Data Sets 
(k=3) 

Post hoc multiple comparison procedures 
N/group R 

Unadjusted Bonferroni Dunn- idák
 

Hochberg 

(.05, .3, .3) 0.025 0.009 0.009 0.023 

(.05, .4, .4) 0.024 0.009 0.009 0.024 

(.05, .5, .5) 0.024 0.008 0.008 0.024 

(.2, .2, .3) 0.080 0.053 0.054 0.072 

(.2, .3, .3) 0.108 0.062 0.062 0.073 

(.2, .2, .4) 0.036 0.015 0.016 0.028 

(.2, .4, .4) 0.040 0.016 0.017 0.028 

(.2, .2, .5) 0.025 0.009 0.009 0.023 

50 

(.2, .5, .5) 0.024 0.008 0.008 0.023 

(.05, .3, .3) 0.024 0.009 0.009 0.024 

(.05, .4, .4) 0.025 0.009 0.009 0.025 

(.05, .5, .5) 0.024 0.008 0.008 0.024 

(.2, .2, .3) 0.052 0.028 0.028 0.040 

(.2, .3, .3) 0.062 0.027 0.027 0.038 

(.2, .2, .4) 0.028 0.009 0.009 0.024 

(.2, .4, .4) 0.026 0.009 0.009 0.023 

(.2, .2, .5) 0.026 0.009 0.010 0.026 

100 

(.2, .5, .5) 0.024 0.009 0.009 0.024 

(.05, .3, .3) 0.026 0.009 0.009 0.026 

(.05, .4, .4) 0.022 0.008 0.008 0.022 

(.05, .5, .5) 0.024 0.008 0.008 0.024 

(.2, .2, .3) 0.038 0.016 0.016 0.029 

(.2, .3, .3) 0.040 0.015 0.015 0.029 

(.2, .2, .4) 0.023 0.008 0.008 0.023 

(.2, .4, .4) 0.024 0.009 0.009 0.023 

(.2, .2, .5) 0.024 0.008 0.008 0.024 

200 

(.2, .5, .5) 0.025 0.008 0.009 0.025 

 

number of correctly rejected pairs. Again, the order of 

CDR is the same regardless of configurations of 

remission rates as R: unadjusted post hoc logrank test 

procedure > Hochberg >> Dunn- idák > Bonferroni. 

Likewise, the overall pattern reflected in Table 3 was 

similar for N/group = 50 and 100 (not presented), albeit 

with lower CDRs. In general, CDR was higher when 

k=3 than when k=4 perhaps in part because the former 

case has smaller number of pairwise comparisons. 

However, the CDR depends on differences in 

remission rates between i-th and j-th groups. For 

instance, regardless of k for the same remission rates 

of the other active or investigative drugs, all procedures 

have (much) higher CDR for remission rate of placebo 

= 0.05 than for remission rate of placebo = 0.20, where 

the former case has pairs with greater differences in 

remission rates for the same number of unequal pairs. 

Empirical False Discovery Rates 

Tables 5 and 6 present the empirically estimated 

FDR for k = 3 and 4, respectively. For a given 

configuration of remission rates, the ordering of FDR 

among the procedures was consistent with those of 

CDR and the number of correctly rejected pairs, but 

was not necessarily consistent with that of type I error 

rate (Table 2). For instance, the Hochberg procedure 
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Table 6: False Discovery Rate (FDR) for Post Hoc Pairwise Comparisons Based on Nsim=10,000 Simulated Data Sets 
(k=4) 

Post hoc multiple comparison procedures 
N/group R 

Unadjusted Bonferroni Dunn- idák
 

Hochberg 

(.05, .3, .3, .3) 0.049 0.010 0.010 0.017 

(.05, .3, .3, .4) 0.015 0.003 0.004 0.007 

(.05, .3, .3, .5) 0.011 0.002 0.002 0.006 

(.05, .3, .4, .4) 0.015 0.003 0.003 0.007 

(.05, .4, .4, .4) 0.049 0.009 0.009 0.018 

(.05, .4, .4, .5) 0.015 0.003 0.003 0.007 

(.05, .4, .5, .5) 0.014 0.003 0.003 0.007 

(.05, .5, .5, .5) 0.047 0.008 0.009 0.018 

(.2, .3, .3, .3) 0.204 0.091 0.091 0.100 

(.2, .3, .3, .4) 0.034 0.013 0.013 0.016 

(.2, .3, .3, .5) 0.018 0.005 0.005 0.008 

(.2, .3, .4, .4) 0.027 0.007 0.008 0.010 

(.2, .4, .4, .4) 0.079 0.019 0.020 0.026 

(.2, .4, .4, .5) 0.018 0.004 0.004 0.007 

(.2, .4, .5, .5) 0.016 0.004 0.004 0.007 

50 

(.2, .5, .5,. 5) 0.051 0.010 0.010 0.018 

(.05, .3, .3, .3) 0.047 0.007 0.008 0.017 

(.05, .3, .3, .4) 0.014 0.003 0.003 0.007 

(.05, .3, .3, .5) 0.010 0.002 0.002 0.009 

(.05, .3, .4, .4) 0.014 0.003 0.003 0.008 

(.05, .4, .4, .4) 0.051 0.009 0.009 0.021 

(.05, .4, .4, .5) 0.013 0.002 0.002 0.007 

(.05, .4, .5, .5) 0.013 0.002 0.002 0.007 

(.05, .5, .5, .5) 0.048 0.008 0.009 0.018 

(.2, .3, .3, .3) 0.129 0.047 0.048 0.056 

(.2, .3, .3, .4) 0.020 0.005 0.005 0.008 

(.2, .3, .3, .5) 0.013 0.003 0.003 0.006 

(.2, .3, .4, .4) 0.016 0.003 0.003 0.006 

(.2, .4, .4, .4) 0.052 0.010 0.011 0.018 

(.2, .4, .4, .5) 0.013 0.003 0.003 0.006 

(.2, .4, .5, .5) 0.013 0.003 0.003 0.007 

100 

(.2, .5, .5, .5) 0.047 0.009 0.009 0.019 

(.05, .3, .3, .3) 0.048 0.008 0.009 0.018 

(.05, .3, .3, .4) 0.011 0.002 0.002 0.008 

(.05, .3, .3, .5) 0.010 0.002 0.002 0.010 

(.05, .3, .4, .4) 0.011 0.002 0.002 0.007 

(.05, .4, .4, .4) 0.049 0.008 0.008 0.019 

(.05, .4, .4, .5) 0.011 0.003 0.003 0.008 

(.05, .4, .5, .5) 0.012 0.002 0.002 0.008 

(.05, .5, .5, .5) 0.047 0.008 0.008 0.018 

(.2, .3, .3, .3) 0.072 0.017 0.017 0.024 

(.2, .3, .3, .4) 0.014 0.003 0.003 0.007 

(.2, .3, .3, .5) 0.011 0.002 0.002 0.007 

(.2, .3, .4, .4) 0.012 0.003 0.003 0.007 

(.2, .4, .4, .4) 0.049 0.009 0.009 0.018 

(.2, .4, .4, .5) 0.011 0.002 0.002 0.008 

(.2, .4, .5, .5) 0.011 0.002 0.002 0.007 

200 

(.2, .5, .5, .5) 0.047 0.008 0.008 0.018 
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has greater FDRs than Dunn- idák procedure but they 

have lower type I error rates, especially when k=4.  

DISCUSSION  

A summary of the findings from this simulation study 

is as follows. The three post hoc procedures for 

multiplicity adjustments are relatively conservative even 

when conditional upon rejection of the global null 

hypothesis. However, this does not apply to the 

unadjusted post hoc logrank test procedure. The 

sequentially rejective Hochberg procedure generally 

has greater CDR than the other two adjustment 

procedures (Bonferroni and Dunn- idák), but less than 

the unadjusted post hoc logrank test procedure. 

Similarly, the Hochbergh procedure always correctly 

rejected more pairs than the other adjustment 

procedures, but less than the unadjusted post hoc 

logrank test procedure. When not protected, even if the 

number of comparisons are as small as 4, the family 

wise type I error rate is as high as 0.18 if the size of 

test for each pair is 0.05. Therefore, the inflation of type 

I error may not be moderate. However, when protected 

or when conditional upon rejection of the omnibus 

testing, the performance of the unadjusted procedure is 

good compared with the other adjusted procedures. 

Nevertheless, application of these findings should be 

limited to the use of post-hoc pairwise logrank tests 

within the ranges of k and c considered here; that is 3  

k  4 and 3  c  6. 

The three procedures with multiplicity adjustments 

have FDR less than 0.05 except for a few cases 

particularly with small sample size N/group = 50. 

However, the unadjusted post hoc logrank test 

procedure has FDR > 0.05 when both 1) number of null 

pairs is large relative to the total number of pairwise 

comparisons and 2) remission rates of non-null pairs 

are close each other. In these circumstances, the 

numbers of all rejected pairs (7) tended to be greater 

than those of true unequal pairs for the unadjusted post 

hoc logrank test procedure and for the other four post 

hoc comparison procedures as well. Nevertheless, the 

numbers of all rejected pairs (7) are not presented 

since they can be obtained from FDR (5) and the 

number of correctly rejected pairs (4).  

In theory, the results might very well apply to any 

post hoc pairwise comparisons following rejection of 

other omnibus tests. For instance, an omnibus 3 df 

Pearson 
2
 can be applied to test homogeneity of 

proportions of a four category outcome between two 

groups in a 4 by 2 contingency table. Upon the 

rejection by the omnibus test, a data analyst can go 

forward with four 1 df Pearson 
2
 tests for four 2 by 2 

contingency tables to identify specific outcome 

categories that differ in proportions between the two 

groups. In addition, the results could also apply to the 

case where the clinical trial protocol specifies a priori 

limited number of contrasts of interest but not all 

possible combinations of contrasts. In short, once the 

number of potential post hoc comparisons (i.e., the size 

of a family F) is given, the multiplicity adjustments can 

accordingly be adjusted except for the unadjusted post 

hoc procedure. 

The conservative nature (beyond conditioning upon 

the rejection of the omnibus test) of the three 

procedures with multiplicity adjustments may stem from 

the correlations among test statistics for pairwise 

comparisons. That is, the correlations among outcomes 

may not be zero when pairwise comparisons involve 

the same group. For instance, when k = 3, all of the c = 

3 pairwise comparisons may be correlated each other 

unlike post hoc comparisons following ANOVA with 

normal distributions. (In this latter case, the three 

pairwise group mean comparisons (say, μ1 vs. μ2, μ1 

vs. μ2, and μ2 vs. μ3) are uncorrelated each other if 

Var(X1) = Var(X2) = Var(X3), where Xi and μi represent 

a normal outcome variable and its mean for the i-th 

group.) When such correlations exist, the four multiple 

adjustment procedures are even more conservative 

compared to uncorrelated pairwise comparisons, yet 

that distinction is most apparent when correlation of 

outcomes >.5 [23]. Therefore, an investigation of 

procedures that explicitly account for the correlation 

among pairwise comparisons would be of value. For 

instance, adoption of the James approach [24] for post 

hoc multiple comparisons will likely be less 

conservative, as shown with correlated binary end 

points [23]. This might identify a procedure that would 

increase CDR without sacrificing FDR.  

It is noteworthy, however, that the type I error (3) 

and FDR are not necessarily consistent across the 

procedures, particularly between the Hochberg 

procedure and the Bonferroni or Dunn- idák 

procedure. That is, one procedure can have 

comparable type I error but lower FDR. This 

inconsistency may be due to the fact that the Hochberg 

rejective procedure is based on varying threshold for 

ordered p-values whereas the Bonferroni or Dunn-

idák procedure is based on a fixed threshold for all p-

values. That is, the Hochberg procedure rejects 

pairwise hypotheses even in cases when their p-values 

exceed the fixed thresholds of Bonferroni or Dunn-
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idák. Nonetheless, the number of all or correctly 

rejected pairs (4) and FDR are consistent across the 

procedures. FDR is strongly correlated with number of 

“null” pairs within each procedure.  

In clinical trials, it is rare to compare more than four 

groups in any biomedical research field. For this 

reason, we considered only k = 3 or 4 in this paper. 

However, we caution that extrapolation of the present 

study findings to unconditional comparisons is 

unwarranted. Often in applied settings, a global null 

hypothesis is not of interest. Instead, there is a family 

of numerous null hypotheses such as those seen in 

neuroimaging studies (e.g., [25]) and in microarray 

analyses in genetic bioinformatics (e.g., [26]). Thus, in 

such unconditional comparisons, the unadjusted post 

hoc procedure should be avoided due to inflated type I 

error (e.g., [23]) and excessively inflated FDR. 

Nevertheless, we believe that a decision as to whether 

to apply conditional or unconditional procedures should 

depend on the context of studies or investigations more 

than on statistical considerations. For examples, if a 

trial intends to test effects of specific pairs of drugs 

targeted a priori in a multiple arm setting, then 

unconditional adjustments should be applied and 

power computations should be based on individual 

pairwise testing with adjusted significance level. 

There are limitations to our simulation findings. For 

instance, it is unknown how relatively large number of 

equal pairs compared to the number of k (>2) groups 

would be associated with large FDR (e.g. >.05) for the 

unadjusted post hoc logrank test procedure. Therefore, 

when many sample parameter estimates among 

groups of interest are (or expected to be) relatively 

similar, the use of the unadjusted post hoc logrank test 

procedure may be discouraged. In which case, the 

Hochberg procedure may be preferred, which has low 

FDR and the highest CDR among the others. Finally, 

the study findings are based on empirical simulations 

with limited scenario of situations rather than on 

theoretical derivations.  

In conclusion, we demonstrated that if conditioned 

on the rejection of the global hypothesis, the 

unadjusted post hoc logrank test procedure performs 

acceptably with regard to type I error, number of 

correctly rejected pairs, and correct decision rate, but 

less well on false discovery rate. Therefore, when 

conditioned upon the rejection of a global hypothesis 

any adjustment of the significance levels may not be 

necessary, and can be overly conservative. 

Nevertheless, if conditional adjustments are necessary 

or warranted, the Hochberg procedure may be 

preferred.  
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