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Abstract: The Poisson and the Negative Binomial distributions are commonly used as analytic tools to model count data. 
The Poisson is characterized by the equality of mean and variance whereas the Negative Binomial has a variance larger 
than the mean and therefore is appropriate to model over-dispersed count data. The Generalized Poisson Distribution is 
becoming a popular alternative to the Negative Binomial. We have considered inference procedures on a modified form 
of this distribution when two samples are available from two independent populations and the target effect size of interest 
is the ratio of the two population means. The statistical objective is to construct confidence limits on the ratio. We first 
test the presence of over dispersion and derive several estimators in the single sample situation. When two samples are 
available, our interest is focused on the estimation of an effect size measured by the ratio of the respective population 
means. We have compared two methods; namely the Fieller’s and the delta methods in terms of coverage probabilities. 
We have illustrated the methodologies on published genomic datasets.  
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1. INTRODUCTION  

The Poisson distribution is commonly used to 
model count data. However, a restriction of this 
distribution is that the response variable must have a 
mean equal to the variance. This restriction does not 
often hold for many biological and epidemiological 
data. In reality, the variance can be much larger 
than the mean, a phenomenon known as 
“overdispersion”. This overdispersion may occur 
due to population heterogeneity, or the presence of 
outliers in the data [1]. An analysis of data with overly 
dispersed counts can lead to the underestimation of 
parameter standard error if overdispersion is ignored. A 
review of the issue of overdispersion in both binary and 
count data was reviewed by Hinde and Demetrio [2], 
and in a more recent review by Hayat and Higgins [3]. 
Diagnosing and accounting for overdispersion is not a 
simple issue and should be appropriately dealt with to 
avoid bias in interpreting the results.  

When overdispersion is suspected, the 
Negative-Binomial (NB) distribution has been adopted 
as a common alternative to the Poisson distribution. 
The NB has two parameters and a variance that is a 
quadratic function of the mean and has therefore has 
been the model of choice to model count data that 
exhibit overdispersion. Since accounting for measured 
covariates is one of the methods used to address the 
issue  of  over  dispersion  by  including them in a  
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regression model, Hinde [4] reviewed the 
methodologies of NB regression. Joe and Zhu [5] drew 
a comparison between the NB and a mixture-based 
generalization of the Poisson distribution. 

In this paper, we discuss several inferential 
statistical issues related to a modified form of the 
Generalized Poisson Distribution (GPD). The GPD 
distribution was introduced to the statistical literature by 
Consul and Jain [6] and a detailed account of its 
properties was given by Consul [7]. The distribution has 
two parameters and has variance larger than the mean. 
This makes the GPD an attractive competitor of the 
Negative Binomial Distribution (NBD). The distribution 
has been used to analyze data in the fields of genetics 
[8] as a queuing model [9,10,11] and genomics [12]. 
The modified form of the GPD, which we shall call 
“Modified Poisson Distribution” (MGPD)was first 
discussed in [9]. The modification was the result of a 
double parametric transformation on the original 
parameters of the GPD. The main purpose of the 
transformation is to achieve parameters orthogonality 
[13], which will improve the statistical properties of the 
maximum likelihood estimators, and make the MGPD a 
member of the “Generalized Linear Models” [14]. 

There are situations when the researchers have the 
opportunity to study count data under two experimental 
conditions. One of the questions of interest is to 
conduct statistical inference on the ratio of the mean 
counts. To the best of our knowledge, the issue of 
constructing a confidence interval on the ratio of means 
of two MGPD’s has not been discussed before.  

The paper is divided into 6 sections. In Section 1, 
we discuss the issue of parameters estimation in single 
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samples. We study several estimators and evaluate 
their asymptotic efficiencies relative to the method of 
maximum likelihood. In Section 2 we introduce the 
score test for overdispersion. In Section 3 we consider 
the problem of testing for over dispersion, and in 
section 4 we deal with the problem of constructing 
confidence intervals on the ratio of means, where we 
compare two approaches; the Fieller’s interval and the 
delta method. In section 5 illustrate the methodology on 
published data arising from reading counts of and RNA 
sequencing of gene expressions data. The 
conventional abbreviation is RNA_SEQ. General 
discussion will be given in section 6. 

2. MODIFIED GENERALIZED POISSON 
DISTRIBUTION 

The GPD was introduced by Consul and Jain [6] 

! ! = ! =
!! !! + !!! !!!

!!
exp −!! − !!!    1  

!! > 0 

0 ≼ !! < 1 

The GPD whose probability function is given in (1) 
reduces to the well-known Poisson distribution when 
!! = 0.  Therefore the parameter !!  with the above 
restriction on its range, is considered the dispersion 
parameter. Shoukri and Mian [9] employed the 
parametric transformations: 

!! = ! 1 + !"  

!! = !!!     (2) 

Therefore, equation (1) reduces to:  

! ! = ! = !!!" !!!

!!
  !! !, ! exp − !

!!!"
 (3) 

where ! !, ! = !
!!!"

exp !!"
!!!"

 

For fixed !,  the function g(.) is the natural 
parameter the transformation which renders the GPD a 
member of the linear family of exponential class (see; 
McCaullagh and Nelder [14]): 

! ! = ℎ ! exp !" ! − ! !  

We call the transformed GPD, the “Modified 
Generalized Poisson Distribution” or MGPD 

Shoukri and Mian [9] showed that a recurrence 
relation among the rth non-central moments !!!   is such 
that: 

!!!!! = !! !
!!!!   
!"

+ !!!!                                                          4  

Here, !!! ≡ 1,!!! ≡ ! = ! !   .   

Moreover, !! ! = ! 1 + !" ! ≡ var !  (5)  

Equation (5) shows that variance is a cubic function 
of the population mean. Of interest to us is the situation 
when ! > 0.  

Using the recurrence relation (4) one can show that 
the higher central moments are given by: 

!! = ! ! − ! ! = ! 1 + !" ! 1 + 3!"  (6) 

!! = ! ! − ! ! = ! 1 + !" ! 1 + 3! + 10!" + 
15!!!!     (7) 

2.2. Estimation of the Model Parameters 

2.2.1. Maximum Likelihood Estimators 

Let  !!, !!,… . . !!  denote  a  random  sample  from  the  MGPD. 

The likelihood function is given by: 

! =
1 + !!! !!!!

!!!
!!! !, !

!

!!!

exp
−!"
1 + !"

 

where ! !, ! = !
!!!"

exp !!"
!!!"

 

The log-likelihood function: 

! = !! − 1
!

!!!

ln 1 + !!! + !!
−!"
1 + !"

+ log
!

1 + !"
 

−
!"

1 + !"
 

The first partial derivatives of the log-likelihood 
function with respect to the model parameters are: 

!"
!"
= +!! !

! !!!" ! − ! !
!!!" !  (7)  

Equating !"
!"

 to zero we get, explicit unique solution 
for ! as ! = !. On the other hand; 

!"
!"
= !! !!!!

!!!!!
− !

!!!!
!
!!! = 0    (8) 

Consul and Shoukri [15] showed that equation (8) 
has a unique root in !, in (0,1) if and only if !! > !. 

We can also show that: 

  −! !!!
!!!

= !
! !!!" !    (9) 

−! !!!
!!!"

= 0     (10) 

Equation (10) indicates that the model parameters 
are orthogonal. Moreover; 

−! !!!
!!!

= !!!!

!!!!!!!!!!!"!!!!!!!!!!!
   (11)  

Hence, the variance of the maximum likelihood 
estimators are: 
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!"#(µμ) = 1/ −! !!!
!!!

 , !"#(!) = 1/ −! !!!
!!!

 , and the 
two estimators (µμ, ! ) are stochastically independent 
because they are orthogonal to each other as shown in 
equation (10).  

2.2.2. Moment Estimators 

Equating the first two sample moments to their 
corresponding population moments  

! = ! 

!! =
1
!

!! − ! !
!

!!!

= ! 1 + !" ! 

and solving for the parameters we get:  

! = ! 

! = !! ! ! ! !! ! − ! !! 

The variance of the ml estimators are (due to the 
parameters orthogonality) 

var ! = ! 1 + !" ! !  (12) 

var ! = !
!!!!

1 + 2! + 4!!! + !" + !!!! + 2!!!!  (13) 

And for the moment estimator 

var ! = !!!" !

!!!!
1 + 2! + 3!!!   (14) 

The relative efficiency of the moment estimator of 
the dispersion parameter is measured by the ratio of 
the variance of the maximum likelihood estimator to the 
variance of the corresponding estimator.  

Table 1: Efficiency of the Moment Estimator for the 
Dispersion Parameter 

e m eff_moment 

0.00 1 1.00 

0.01 2 0.98 

0.01 3 0.97 

0.01 4 0.96 

0.01 5 0.95 

0.20 10 0.45 

0.20 20 0.32 

0.20 50 0.17 

0.20 100 0.10 

0.50 10 0.19 

0.50 20 0.11 

0.50 50 0.04 

0.50 100 0.02 

 

RELEFF = var ! var ! . Calculations are given in 
Table 1 for a few values of the model parameters. The 
relative efficiency (eff_moment) of the moment 
estimator is quite high for small values of the mean and 

the dispersion parameter but declines rapidly as both 
parameters increase. 

Another type of estimator for the dispersion 
parameter (!) which has not been discussed before is 
the so-called mixed estimator. We consider this 
estimator in the next sub-section.  

2.2.3. Mixed Estimators 

Here we use two-sample statistics to estimate the 
model parameters. Let !!, !!,… !! be the outcomes of 
a simple random sample let !! denote the count of 
zeros. Clearly !! ! , !  are sufficient statistics for 
!!, ! , where  

!! = !! !! = 0 = exp
−!

1 + !"
 

Solving the equations:  

! = !, and !! =
!!
!
= exp !!

!!!!
, for ! we get: 

!! = −1 log!! − 1 ! 

To find the variance of !!, we use the delta method 
so that to the first order of approximation we have 

var !! = var log!!
!!!

! !"#!!

!
+ 

var !
!!!
!!

!

+ 2cov log!! , !
!!!

! log!!
!!!
!!

   

It is known that var log!! = !!!!
!!!

,   and var ! =
! !!!" !

!
, however, the derivation of 

  !ov   log!! , !  is not straight forward. To derive the 
covariance between the sample mean and the fraction 
of zeros in the sample we proceed as follows: 

Since !! = !!!  has binomial distribution 
!!~bin !,!! ,! !! = !!!  and  ! the sample total has 
expected value !", one can show that the joint MGF 
of !, !! ; 

! !!, !! = ! !!! + !!!!
!

 

= ! !! + !! !!! − 1 ! 

The function ! !!  is the mgf of the MGPD, which 
does not have an explicit expression. 

Differentiating ! !!, !!  with respect to !! and !!, 
setting !! = !! = 0, we get 

! !!! =
! + 1
!

!!! 

Therefore  

cov !,!! =
!!!
!

 

Using the delta method, we can show that 
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cov !, log!! = ! ! − ! !! − !! ∙
! log!!
!!!

 

= −
!
! 

Direct substitution gives: 

!"# !! = !!!" !

!!!
exp !

!!!"
− 1 − !!!" !

!!!
 (15) 

Similar to the calculation of the efficiency of the 
moment estimator we measure the efficiency of the 
mixed estimator by the ratio: 

var ! /!"# !!  

Table 2 shows the relative efficiency of the mixed 
estimator (eff_mixed). The behavior of the relative 
efficiency of the mixed estimator is similar to that of the 
moment estimator in terms of variations in the 
parameter values. However, the relative efficiency of 
the moment estimator of the dispersion parameter is 
lower than that of the mixed estimator, for large values 
of the population mean and the dispersion parameter.  

Table 2: Efficiency of the Mixed Estimator for the 
Dispersion Parameter 

eps mu eff_mixed 

0.01 2  0.45 

0.01 3  0.28 

0.01 4  0.17 

0.01 5  0.10 

0.20 10  0.25 

0.20 20  0.18 

0.20 50  0.15 

0.20 100  0.13 

0.50 10  0.64 

0.50 20  0.63 

0.50 50  0.63 

0.50 100  0.63 

3. TESTING FOR OVERDISPERSION: SAMPLE 
SIZE REQUIREMENTS TO DETECT OVER- 
DISPERSION USING THE SCORE TEST 

As mentioned, the MGPD reduces to the Poisson 
distribution when the dispersion parameter !  is set 
equal to zero. Therefore, to construct a goodness of fit 
test where the null hypothesis is that the available data 
is drawn from a Poisson distribution against an 
alternative in the direction of the MGPD, our best 
approach is to use the score-testing. The score 
function is obtained by differentiating the log-likelihood 
function with respect to the dispersion parameter, and 
setting the value of the dispersion parameter equal to 
zero. The advantage of the score test is that the test 
statistic is evaluated only under the null hypothesis [16]. 
We proceed as follows:  

Based on a !"!, !!, !!,… !!  the score test on the 
null hypothesis !!: ! = 0 against one-sided alternative 
!!: ! > 0 is given by: 

! = !"
!" !!!

= ! !! − !    (16) 

In equation (16) !!  and !  are respectively the 
sample variance and the sample mean. 

The mean and variance of ! are given as: 

! ! = ! ! 1 + !" ! − ! ≡ !" !  

var ! = !" 1 + !" ! 2! + 4!" + 4!!! + 30!!!! 

+2!!!! + 40!!!! + 15!!!!  

≡ !" !  

For Type I error rate !,  and power 1 − !  the 
approximate sample size n to detect the departure from 
the Poisson (i.e. ! = 0) in the direction of MGPD is: 

! ≃
!!! !!!! ! !!! !

! !

!

   (17) 

For example, when ! = 0.05,! = 0.20 

! = 1, ! = .01,  then  ! = 13314 

! = 2, ! = .01,  then  ! = 823 

! = 1, ! = .05,  then  ! = 512 

! = 2, ! = 0.05,  then  ! = 30 

In Table 3 we show the empirical power for small, 
moderate, and large samples at a 5% level of 
significance. The power increases the farther away ! 
from its null value, when the sample size is large and 
when the population means is large as well. 

In the previous sections we dealt with the problem 
of statistical estimation in a single sample. This was 
inevitable to properly deal with the two samples 
situation. 

3.1. Estimation of the Ratio of Two Means 

Let Y1, Y2 be random variables with expected 
values E(Y1) and E(Y2 ). Of interest is the ratio of the 
two means; R= E (Y1)/E(Y2) = !!/!!. We know that 
the unbiased maximum likelihood estimators of the 
population mean, are the sample means. We assume 
that we have two independent sample !!!, !!",… . . !!!! 
from a MGPD with parameters (!!, !!  ), and another 
independent sample !!", !!!,… . . !!!!  from 
independent MGPD with parameters !!, !!   .  We 
shall discuss two methods for constructing confidence 
levels on the ratio of mean R.  
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4. FIELLER’S METHOD 

The approach to construct confidence limits on the 
ratio of means is the Fieller’s method [16,17], applied to 
independent samples with unequal variances as was 
shown for the normal distribution [18].  

We denote the maximum likelihood estimator of R 
by !! = !!/!!. Furthermore, we denote  

!! = !"#(!!  ) =  !! 1 + !!!! !/!! , ! = 1,2 

Let ! = !! − !!!! 

Var ! = !! + !!!!! 

For a Type I error rate α, we have:  

 ! = Pr !!!!!!! !

! !
≽ !! !

!    (18) 

The inequality in the square bracket in equation (18) 
may be written as: 

!!
! + !!!!!! − 2!!!!!! > !! !

! !! + !!!!!  

!"  !!
! + !!!!!! − 2!!  !!!! − !!!! !

! − !!!!!!! !
! ≽0 

!!! !!! − !!!! !
! − 2!!!!!! + !!

! − !!!! !
! ≽ 0 

Solving the quadratic for !! we get:  

!! =
2 !!!! ± 4 !!!! ! − 4 !!! − !!!! !

! !!
! − !!!! !

!

2 !!! − !!!! !
!  

Simplifying we get: 

 !! =
!!!! ± !!!!

!!!!!!
! !! !

! ! !! !! !! !
!

!
!

!!
!!!!!! !

!  (19) 

= ! ± ! 

where  

! =
!!!!

!!! − !!!! !
!  

! =
!! ! !!!!! + !!!!

! − !! !! !! !
!

!
!

!!! − !!!! !
!  

When Fieller’s confidence set for the ratio is finite, 
then it is given by ! = ! − !,! + ! . 

We can establish bioequivalence using the Fieller’s 
theorem. The confidence set is an interval if !!! −
!!!! !

! > 0 and !  is contained in !!, !!!! , that is if 
Fieller’s confidence interval is included in the 
equivalence range. Usually !! = 0.80 ⇒ !!!! = 1.25. 
Hence as shown in [19] and [20] the equivalence range 
is 0.8, 1.25 . 

 
Figure 1: Region of Bioequivalence of the Fieller’s interval. 

4.1. Delta Method 

From [21], the variance of the ratio of two random 
variables is, to the first order of approximation given by: 

Var ρ =
!ρ
!!!

!

  Var !! +
!ρ
!!!

!

Var !!  

  !"#   ! =    !(!!!!  !!)
!

!!!!
 + !!(!!!!  !!)

!

!!!!
   (20) 

Therefore, an approximate (1 − !)100% 
confidencein the ratio of means is given by: 

!±!!/! !"#   !  

In general, the estimated ratio of two means is 
biased. The magnitude of bias can be obtained again 
by using the Delta method and is given to the first order 
of approximation as: 

Table 3: Table of Empirical Power of the Overdispersion Test 

! ! = !" ! = !"" ! = !"" 

! ! 

.001 .01 .02 .05 .001 .01 .02 .05 .001 .01 .02 .05 

1 .052 .063 .077 .13 .052 .068 .088 .168 .052 .073 .101 .22 

2 .053 .075 .110 .23 .053 .086 .133 .325 .054 .099 .169 .452 

3 .054 .089 .14 .33 .055 .110 .188 .492 .056 .130 .253 .672 

4 .055 .103 .18 .44 .056 .130 .250 .639 .058 .166 .349 .824 

5 .056 .120 .22 .53 .058 .160 .318 .751 .060 .210 .450 .912 
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Bias ! =
1
2!

Var !!
!!!
!!!!

+ Var !!
!!!
!!!!

 

We simplify the above expression to get: 

Bias !  =!(!!!!  !!)
!

!!!!
 

In Table 4, we compare the empirical coverage 
probabilities of Feiller’s to those of the delta method, for 
selected values of the population parameters, and 
nominal level of significance 5%. To simplify the table, 
we assume the homogeneity of the dispersion 
parameters of the two populations. As can be seen, for 
small values of the ratio and small values of the 
common dispersion parameter, the Fieller’s theorem 
gives better coverage. However, for larger values of the 
dispersion parameter, both methods seem to have 
similar coverage probabilities.  

5. APPLICATIONS (RNA-SEQ DATA) 

Gene expression is the process by which 
information from a gene is used in the synthesis of a 
the functional gene product, which may be proteins. A 
gene is declared differentially expressed if an observed 
difference or change in reading counts or expression 
levels between two experimental conditions is 
statistically significant. To identify differentially 
expressed genes between two conditions, it is 
important to find the statistical distributional property of 
the data to approximate the nature of differential genes. 
As we have already indicated, the Poisson distribution 
is ubiquitous in the analysis of count data. It is usually 
assumed that the position-level read count follows a 
Poisson distribution with a rate !. But evidence from a 
large body of data do not support the Poisson 
assumption of the equality of mean and variance 
[22,23]. Robinson and Smythe [24] used the negative 
binomial distribution to analyze tag abundance to 
account for overdispersion in this type of data.  

In the present study, the focus is mainly is on 
investigating the differential gene expression analysis 
for sequence data based on MGPD. This approach 
was applied in RNA-seq read count data [12] where the 
authors used the original form the model given in 
equation (1). Thus, fitting of appropriate distribution to 
gene expression data provides statistically sound cutoff 
values for identifying differentially expressed genes. 
One of the basic questions while analyzing genomic 
data is related to the identification of the appropriate 
distribution of the position level read counts. This 
distribution if proven appropriate allows: 

i. Better estimation of gene expressions 

ii. Improving the identification of differentially 
expressed genes 

The proposed MGPD will be used to re-analyze the 
data (Sudeep & Chen [12]) for some highly expressed 
genes. The published data were downloaded from 
http://www.ncbi.nlm.nih.gov/sra/ as the fastq files: 
SRA010153 for the MAQC data, SRP000727 for the 
human data (the two low-coverage MAQC samples 
were excluded), SRX000559-SRX000564 for the yeast 
data.  

We analyzed the read count of the Mice-Brain 
tissue data under two experimental conditions named 
(Chrom1, and Chrom9) using the MGPD. 

Figures 2 and 3 show the histograms of the read 
counts for the Chrom1 and Chrom9 respectively. 

As can be seen from Figures 1 and 2, the data are 
heavily skewed due to the presence of outliers. This 
may be one of the reasons for overdispersion in the 
data. In Tables 5 and 6 we present the summary 
statistics under the two experimental conditions. 

Table 4: Coverage Percentage of the Delta and Fieller’s Methods. Nominal Coverage is 95% 

n ! !! ! Delta  Fieller 

10 
10 
10 
10 

.1  

.1  

.1  

.1  

1 
2	  

3	  

5	  

.01  

.01  

.01  

.01  

16  
11  
9  
7  

21 
13 
10 
8 

20 
20 
20 
20 

2  
2  
2  
2  

1	  

2	  

3	  

5 

.05  

.05  

.05  

.05  

20  
13  
10  
8  

13 
10 
8 
7 

100 
100 
100 
100 
100 

1  
1  
1  
1  
1  

5	  

5	  

5	  

5	  

5	  

.00  

.05  

.06  

.10  

.90  

6  
7  
8  
9  

33  

6 
7 
8 
9 

30 
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Figure 2: Histogram of the read count for the first sample (Chrom 1) from Mice-Brain tissues.  

 

Table 5: Summary Statistics for the Chrom1 Sample 

Moments 

N 36823 Sum Weights 36823 

Mean 7.94 Sum Observations 292689 

Std Deviation 8.90 Variance 79.31 

Skewness 2.10 Kurtosis 5.41 

Coeff Variation 112.04 Std Error Mean 0.046 

 

 
Figure 3: Histogram of the read counts for the second sample from Mice-brain tissues. 
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Table 6: Summary Statistics for the Chrom9 Samples 

Moments 

N 698 Sum Weights 698 

Mean 3.03 Sum Observations 2115 

Std Deviation 2.36 Variance 5.61 

Skewness 1.38 Kurtosis 1.64 

Coeff Variation 78.17 Std Error Mean 0.090 

 

Table 7: Results of the Data Analyses using the Maximum Likelihood for Point Estimation 

Data Sample size Sample mean SE ! 

Chrom1 
Chrom9 

36823 
698 

7.94 
3.03 

!= 2.62 

0.046 
0.090 

0.519±0.0024 
0.270±0.0013  

 

The likelihood estimators of the dispersion parameters 
and their standard errors are given in Table 7. 

The construction of the 95% confidence intervals on 
the ratio of means based on the delta method and 
Fieller’s theorems show that:  

Delta method: {2.411 ˂ !   < 2.829} & Fieller’s 
method {2.473 ˂ !  < 2.785} 

Because the sample sizes are large the two 
methods give almost the upper and lower limits for the 
same 95 % confidence level. Moreover, the Fieller’s 
limits show the non-equivalence of the two population 
means as indicated in Figure 1. 

6. DISCUSSION 

In this paper, we demonstrated the applicability of 
the modified form of the generalized Poisson 
distribution. The modification is, in fact, a double 
transformation on the original model parameters. We 
used the score testing to assess the departure of the 
model from the Poisson distribution, and provided 
sample size justifications, and evaluated the power of 
this test. The inference procedure on the ratio of two 
means was evaluated by estimating the coverage 
probabilities using simulations. 

There are situations however when data may be 
available from multiple samples. The two questions of 
interest are: 

i. how to test the homogeneity of the dispersion 
parameters in two or more MGPD models, and 

ii. how to test the homogeneity of several MGPD 
means in the presence of covariates. This is 
equivalent to the ANCOVA model 

Both questions are under investigation by the 
authors of this paper. 
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