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Abstract: Two treatment regimens for malaria are compared in their abilities to cure and combat reinfection. Bayesian 
analysis techniques are used to compare two typical treatment therapies for uncomplicated malaria in children under five 
years, not only in their power to resist recrudescence, but also how long they can postpone recrudescence or reinfection 
in case of failure. We present a new way of analysing this type of data using Markov Chain Monte Carlo techniques. This 
is done using data from clinical trials at two different centres. The results which give the full posterior distributions show 
that artemisinin-based combination therapy is more efficacious than sulfadoxine-pyrimethamine. It both reduced the risk 
of recrudescence and delayed the time until recrudescence. 
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1. INTRODUCTION 

In practice, the choice of a model to represent a 

natural phenomenon is not made solely on 

mathematical grounds but by knowing something about 

biology, medicine and other disciplines. Survival 

models are usually triggered by observations from 

clinical trials or data resulting from other forms of 

experiments. Clinical trials often lead to time-to-event 

(survival) data leading to time-to-event analysis known 

as survival analysis. 

Bayesian methods have become quite popular in 

modelling survival data. The attractiveness of this 

technique is the easy interpretation of results and 

drawing of conclusions. Information from previous 

studies can easily be incorporated through an 

informative prior distribution. In the absence of tangible 

prior information, Bayesian techniques are applied 

using vague priors that often yield results similar to 

classical maximum likelihood methods. The 

advantages of Bayesian techniques in clinical trials and 

in epidemiology are discussed in [1-4].  

Malaria is a vector-borne killer disease that is taking 

the lives of many who live in the infested zones.  
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Treatment failure due to parasite resistance is a major 

concern. Research is on the increase towards getting 

the best combination therapy that will cure and reduce 

resistance. Antimalarial drug efficacy clinical trials are 

galvanized. One of such trials was conducted in 

Tanzania in 2004 to compare the efficacy of two 

malaria treatments. These treatments were artesunate 

plus sulfadoxine-pyrimethamine (ASP) and 

sulfadoxine-pyrimethamine (SP) as an alternative. The 

ASP is an example of artemisinin-based combination 

therapy (ACT) and their use is encouraged by the 

World Health Organization. The concept of ACTs is 

well discussed in the works of [5-9] 

We will exemplify our method using the data from 

the Tanzania study, where children suffering from 

malaria were randomly assigned to one of the two 

treatments which both were supposed to remove all 

parasites in the blood. All children were then monitored 

for 84 days. During follow-up dates and at emergency 

times in-between follow-ups [8], some patients were 

found to be carriers of malaria parasites. Other aspects 

of this study have been analysed in [10]. These 

parasites could have been due to recrudescence or 

reinfection. In a reinfection, the human host picks up an 

infectious agent again and experiences a new infection. 

Meanwhile a recrudescence is the recurrence of an 

infection which has been treated but only temporarily 

been suppressed to subpatent level. 
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Distinguishing between a new infection and a 

recrudescence is relatively easier to be made in 

antimalarial trials in areas of low intensity than areas of 

high intensity [11]. There is always a probability, 

especially in malaria endemic areas, of misclassifying a 

reinfection as a recrudescence. Moreover, inhabitants 

of these areas are host to many different parasite 

genotypes. 

Many studies have concluded that ACTs are better 

treatment therapies in terms of efficacy, but in exactly 

how long the therapies delay reinfection or 

recrudescence in case of failure has not been given the 

desired attention in modelling. Some related works in 

this direction for example [12] and [13], only based their 

studies on measuring parasitaemia over predefined 

periods to measure the duration for parasite clearance 

in the host's system.  

In this paper we propose a method to determine 

which of the two treatments is more efficacious, and 

present a new methodology that can be used to 

estimate how long a treatment can postpone the 

recurrence of the disease in case of failure. We do not 

assume any distribution in determining the difference in 

mean survival times between the two treatments. The 

prophylactic effect after treatment terminology is used 

here, to capture results from the cure rate model and 

delay time to a first recurrence of disease model. We 

consider the first recurrence of malaria during follow-up 

periods as a heuristic justification of treatment failure in 

our analysis. Throughout this paper, to avoid the 

ambiguity in differentiating between malaria due to 

reinfection and recrudescence, all first appearance of 

malaria within the study period are known simply as a 

first recurrence of malaria. The mean survival time for 

patients receiving each of the two regimens before a 

first recurrence of malaria is considered as the mean 

survival time for each of these two therapies. 

In the delay time model before a first recurrence of 

malaria, we only look at first recurrences of the disease 

before the last day of the study. After that day all 

recurrences are due to reinfections (new inoculations). 

All differences in recrudescence rates will thus be 

found as differences between the recurrence rates 

before day 84. This supposition is important in order 

that our estimated posterior mean (difference) in 

survival times should not be biased as a consequence 

of the survival plots terminating prematurely due to 

censoring. A discussion on this can be found in [14, 

15]. By survival mean time, we mean the truncated 

survival mean time defined by the period of the clinical 

trial and this is given by the area under the survival 

plot. Some authors, [16, 17] propose the method of 

extrapolation, but this procedure produces less 

accurate estimates. Moreover, this allusion was made 

when determining the mean survival time involving one 

function, and not the difference between two survival 

functions as in our case.  

In our data, the participants were followed for 84 

days after treatment. Our analyses do not focus on only 

the 84 days period but also on the first 42 days. 

Gbotosho [18] defined recrudescence as the 

reappearance of parasitaemia before day 42 and 

confirmed by polymerase chain reaction (PCR). After 

some time, reinfection cases start appearing but it is 

not clear when recrudescence no longer can appear. 

As a result, we repeat our analyses assuming Day 42 

as the period of the trials in order to see the difference. 

In our approach, it is quite possible to estimate the 

distribution of the time until reinfection for both 

treatments and then look at the difference. But in order 

to be able to decide whether the distributions differ, we 

focus on the change in delay time. We use the 

truncated survival analysis procedure to obtain 

posterior distributions and posterior mean estimates for 

the delay time to a first recurrence of malaria at the 

chosen periods. As a bonus, it turns out that these 

posterior distributions look fairly normal even though 

the expected times till first recurrence does not. 

Applying models to malaria data, we computed 

posterior survival probabilities of the success of each 

treatment therapy within 42 days and 84 days. We 

obtained delay time estimates for ASP and SP together 

with their full posterior densities for treatment 

efficacies. Also we obtained estimates and posterior 

densities for overall efficacy of treatment, infection rate 

per follow-up and delay time to a first recurrence of the 

disease. The results confirmed the results of previous 

studies that the efficacy of artemisinin-based 

combination therapy is better than non-combination 

therapies. With our new methodology, we obtained 

posterior estimates and full posterior densities for delay 

times before a malaria recurrence for the combination 

therapy. 

The rest of the paper is organized as follows. We 

formulate the statistical models in Section 2. In Section 

3, we apply our methodology to data sets. Section 4 

contains our results and the paper ends with a 

discussion in Section 5. 
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2. THE STATISTICAL MODELS 

2.1. Cure Rate Model 

Let ni  be the number at the start receiving 

treatment i and let Xi  be the random variable 

describing the number of cured patients (without 

malaria before time tmax ,  the end of the follow-up). 

Then our model is Xi ~ Bin(ni , pi ) , where i = ASP or SP 

and pi  is the probability to be cured by treatment i . 

Assuming that the prior for pi  is the conjugate 

distribution Beta( , ) , the posterior distribution for pi  

is  

Beta( + Xi , + ni Xi ) for i = ASP or SP .         (1) 

In the application we will assume that there is no prior 

information on the probabilities and thus use two 

independent Jeffreys priors with = =1/2. With 

independent priors, the posteriors will also be 

independent. It is quite common to use a Jeffreys prior 

in this situation.  

Since we do not want to assume any knowledge 

before the study, a prior distribution with minimal 

information is chosen. The uniform prior 

Beta( = 0, = 0)  and the Jeffreys prior are good 

examples. Discussions on prior distributions can be 

found in [19-23]. 

In the following subsections, we describe and 

develop a model that can be used in determining the 

difference in delay time between two treatments, before 

a first recurrence of a disease in a study. The disease 

we consider is malaria where the first recurrence may 

be due to a recrudescence or a reinfection. 

2.2. Recurrence Rate Model at Each Follow-Up 

Suppose that rescreening to determine the 

presence or absence of the disease is done at fixed 

time points,  
t0 = 0, t1,…, tk = tmax . We make an important 

assumption that these time points are the same for the 

two treatments.  

Let Rj , i  and Yj , i  denote the number of children who 

had been free from malaria up to time point t j 1  and 

those who get malaria between time points t j 1  and t j  

(i = ASP or SP), respectively. In particular we have that 

Rj , i +Yj , i = Rj 1, i . Then for each of these intervals, the 

children Yj , i  witnessing the event of interest can be 

modelled as Bin(Rj , i , j i )  where j i  stands for the 

conditional probability of becoming sick in this interval 
for those who have not had any recurrence at or before 

t j 1 . Immediately a child witnesses a first recurrence of 

malaria at any time point, she is censored and no 
longer considered to be at risk of recurrence for the 
rest of the time. 

In the same way as in equation (1), the posterior 

distribution of j i  is 

Beta( ji +Yj , i , ji + Rj 1, i Yj , i ) ,          (2) 

if the prior is Beta distribution with hyperparameters ji  

and ji . We will also assume that all binomial 

distributions and priors are independent for different 

intervals and treatments. Here, we equally use the 

Jeffreys prior, = =1/2 for all intervals and all 

treatments. 

The next step towards our goal of obtaining a 

posterior distribution for the difference in delay time for 

one of the treatments, is to get the posterior survival 

estimates at follow-ups. 

2.3. Survival Rate Model at Each Follow-Up 

The posterior distribution of ji  is given by model 

(2). Thus we have the posterior for the survival 

functions at all follow-up time instances for each 

treatment given by 

S(t j ) = (1 ki )
k=1

j

 

To obtain the full distribution, we assume that it is a 
piecewise linear function which is linear between the 

follow-up times 
 
t0 = 0, t1,…, tk = tmax , where there are no 

observations to aid us. Thus we assume that those 

who get a recurrence between t j 1  and t j  at the 

average get a recurrence at the time midpoint 

(t j 1 + t j ) / 2 . 

We could also have assumed a constant hazard 
rate which would correspond to a slightly shorter mean 

time, t j 1 t j t j 1( )
1 ji

ji

+
1

In(1 ji )
 but since our 

values are fairly small the difference is negligible. 

2.4. Difference in Delay Time to First Recurrence 

Let the random variable T  represents the survival 

time until first recurrence of the disease. Assuming that 

T  is continuous with density f (s) , then the probability 

of surviving the event of interest till time t  is given by 

the survival function  
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S(t) = 1 F(t) = f (s)ds.
t

 

The mean survival time for T  with probability 

density function f (s)  is defined as  

E(T ) = tf (s)ds = S(s)ds.
00

         (3) 

This mean time is given by the area under the 

survival function. If the distribution is bounded, the 

survival function tends to zero at that time. If this is not 

the case, other methods such as the extrapolation 

technique can be used but will lead to less accurate 

measures, [17].  

Complete survival curves are not usually observed 

during studies due to time constraints and costs. The 

methodology we develop imposes the condition that 

the event of a first recurrence must be observed before 

time tmax . However, the formula we present still takes 

into account both observed and unobserved parts of 

the survival curve. Thus for a given time tk = tmax < , 

the complete area under the curve (for each treatment 

i ), which corresponds to the mean time is given by  

E(T ) = [(t j t j 1 )S(t j )+ (S(t j 1 ) S(t j ))(t j t j 1 ) / 2]
j

 

          +E(max(T Tmax ,0))          (4) 

      
= [(t j t j 1 )(S(t j )+ S(t j 1 )) / 2]

j

+ E(max(T Tmax ,0))
 

The last term in the sum in equation (4) is the healthy 

time in the period for those who get sick within the 

same period. The last term outside the sum 

corresponds to the excess time of those who are 

healthy at the end of the follow-up.  

For t j < tmax , the conditional survival function of 

those that have a first recurrence (recrudescence or 

reinfection) is given by  

S *(t j T < tmax ) =
(1 ki )

k=1

j

1 S(tmax )
.           (5) 

The expected delay time conditional on a recurrence 

before time tmax  is thus given by,  

E(T T < tmax ) =
1

2
(t j t j 1 )[

j

S *(t j T < tmax )

+S *(t j 1 T < tmax )]

        (6) 

Now, suppose that T1  and T2  represent survival 

times until the reccurrence of the event of interest in 

treatment groups 1(=ASP) and 2(=SP), respectively. 

We want to know how much longer T1  is expected 

compared with T2 . The expected difference between 

the two survival times is 

E[T1 T2 ] = E S1(t1 )dt1 S2 (t2 )dt200  

This equation defines the area between the two 

survival curves S1  and S2 , if T1  is stochastically larger 

than T2 . 

Given that T1 < Tmax  and T2 < Tmax  the observed 

expected difference can then be estimated by  

E[T1 T2 ] = E[T1 T1 < tmax ] E[T
2
T2 < tmax ],  

where E[Ti Ti < tmax ]  is as defined in equation (6). We 

note that the prior for ji  induces corresponding priors 

for all other measures of interest. Hence, the posterior 

expected delay time for the two treatments is given by  

(tj - tj-1) [(S1 (tj T) + S1 (tj-1 T)) - (S2 (tj T) + S2 (tj-1 T))].1
2 j

~ ~
* *

~
*

~
*

 

This can further be simplified to  

[(tj + tj-1) (S1 (tj T) - S2 (tj T))],1
2 j

~
*

~
*E[T1 - T2 T] =

~

     (7) 

where T
~

= T < Tmax , We note that E(max(T Tmax ,0)) = 0  

since tk = tmax  must not be an event time in the model 

assumption.  

2.5. Monte Carlo Implementation 

We use the MCMC Gibbs sampler in the Bayesian 

setup. For the efficacy posterior estimates and 

densities, we draw random samples from their posterior 

distributions defined in Section 2.1. 

The model given by expression (7), involves a 

complex posterior distribution we call G that links  

(2  (k-1)) Beta distributions corresponding to the two 

treatments and k follow-up times. The procedure is as 

follows: 

Sample ji
(1)  from Beta(Yj , i + ,Rj , i Yj , i + ) , then 

compute Sji
*(1)  and G (1) , … , Sample ji

(N )
 from 

Beta(Yj , i + ,Rj , i Yj , i + )  compute Sji
*(N )

 and G (N )
. The 

resulting sequence  
{G (1) ,G (2) ,…,G (N )}  constitutes N 

independent samples from G. A histogram is plotted for 
these simulations to obtain the posterior distribution for 

G = E[T1 T2 (.)] . 
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3. APPLICATION TO MALARIA 

3.1. Description of Data 

Our data came from a clinical trial conducted in 

2004 in Tanzania to compare the efficacy of artesunate 

plus sulfadoxine-pyrimethamine and sulfadoxine-

pyrimethamine alone in treating children under five 

years that were infected with Plasmodium falciparum 

malaria parasites. The study was done in two villages, 

Konde and Uzini, with a total of 178 and 206 patients, 

respectively. Children enrolled in these trials were 

randomly assigned to receive either of these therapies. 

The children had to meet certain entry requirements; 

the most important was having malaria with no other 

complications, and being willing to partake in the study. 

The children were tested again for malaria at days 7, 

21, 28, 42, 56 and 84 after treatment. 

Table 1 presents our data on the number of patients 

having a first recurrence of malaria at the specified 

dates or intervals. There were two missing 

observations in each of the two data sets. We could not 

distinguish between malaria due to recrudescence or 

reinfection (new infection). Our focus is on the number 

of patients who were diagnosed as sick again. There 

are probably a few new infections but almost all cases 

are most likely due to recrudescence. We consider only 

the first recurrence of malaria. 

We applied the models described in Section 2, to 
the given data. We considered two study periods; a 
period that starts from Day 0 to Day 42 and another 
period that starts from Day 0 to Day 84. The choice of 
these periods was motivated by the fact that some 
clinical trials do last for 42 days, while others last for 84 
days. The explanation given by some medics is that 
within 42 days, the effect of the most long lasting drugs 
(long elimination half-life) must have become negligible 
so that most suppressed recrudescences should have 
had the opportunity to reappear. Meanwhile the 84 
days period is to explore if or ensure that the foregoing 
assumption was correct. The total rate of recurrences 

per week was 28/207  2 = 7% between days 42 and 

56, and 11/179  4 = 2% in the last period. This 

indicates that most of the cases in-between days 42 

and 56 must have been recrudescence, since the rate 
of cases due to reinfection should be rather stable 

between the periods. We take tmax  = 42 days, since 

other authors have used that, and 84 days, since there 
seems to be many cases of recrudescence also after 
day 42. For consistency, we maintain the terminology 
of a first recurrence over a first recrudescence or first 
reinfection. The next subsections explain the 
application procedure. 

3.2. Treatment Efficacy 

Some patients never experienced a recurrence of 

malaria throughout the two study periods. This is the 

category we considered as having been successfully 

treated by the therapies they received. The simple 

model described in Section 2.1 is applicable here. 

3.3. First Recurrence and Survival Rates at 
Follow-Ups 

As shown in Table 1, there were six designated 
intervals to monitor malaria symptomatic patients 
during the whole period of trials. A quick observation 
here is that the interval lengths between follow-ups are 
not of equal length. Notwithstanding, this is usually the 
case in practice. Moreover, intervals between follow-
ups and the duration of trials depend on the nature of 
the disease studied [24]: 112, and should last as long 
as the duration of the treatment requires. The 
methodology presented here takes care of this by 
assuming that such equidistant points lie on lines 
joining two adjacent known recurrence rate points. 

Knowing the recurrence rates at each time point, 
provide us with the necessary information for obtaining 
the conditional survival probability estimates for 
surviving upto the given time points. The delay time 
model is conditioned on no first recurrence beyond time 

tmax . By implication, this means S(t j t j tmax ) = 0  as 

shown in equation (5).  

3.4. Delay Time Before First Recurrence by Each 
Treatment 

The escape (survival) of patients from a first 

instance of malaria largely depends on the treatment 

regimen taken. There is a general consensus based on 

Table 1: Number with First Recurrence of Malaria and those at Risk (in parentheses) 

Location Drug (0 – 7) (7 – 21) (21 – 28) (28 – 42) (42 – 56) (56 – 84) 

ASP 3 (90) 8 (87) 21 (79) 16 (58) 7 (42) 3 (35) 
KONDE 

SP 7 (86) 17 (79) 10 (62) 9 (52) 10 (43) 4 (33) 

ASP 4 (94) 13 (90) 9 (77) 8 (68) 9 (60) 1 (51) 
UZINI 

SP 15 (110) 14 (95) 13 (81) 6 (68) 2 (62) 3 (60) 
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earlier studies that ACTs are better than alternative 

therapies used for the treatment of uncomplicated 

malaria. It will be interesting to know for how long ASP 

can postpone a recurrence when it cannot effectively 

treat patients. Model given by equation (7) is suited for 

this purpose. 

3.5. Estimation Procedure 

The MCMC procedure described earlier were 

applied, using N = 1000 000 independent samples. The 

required posterior estimates, plots and densities were 

obtained. 

4. RESULTS OF SIMULATIONS 

The results from simulations are presented in 

Tables 2, 3 and 4. Figures 1 to 8, present posterior 

probability distributions for the cure rates, survival plots 

and the expected difference in delay times. In each 

case, we have two periods: (0 – 42) days and (0 –84) 

days. 

4.1. Efficacy Estimates and Posterior 
Distributions 

Table 2 shows the posterior estimates for the 

performance (efficacy) of each treatment within 42 and 

84 days, respectively. The estimates are for the 

parameters PASP  and PSP  which represent the posterior 

probabilities of successful cure with the treatments 

ASP and SP, respectively. We observe that in each 

treatment centre and for each trial period, the mean of 

effective cure with ASP is higher. Accompanying 

measures are the standard errors and the endpoints of 

the 95% credible interval. Table 3 lay out the posterior 

estimates for the probability of ASP performing better 

than SP (PASP > PSP )  from our simulations, for each 

study location and period. The probability is above 70% 

except for the Konde 42 days duration. 

Table 3: Posterior Estimates: P(ASP > SP) 

Period KONDE UZINI 

(0 – 42] 0.55 0.94 

(0 – 84] 0.71 0.87 

 

The corresponding full posterior distributions for 

treatment efficacy of the two treatments are given in 

Figures 1 and 2. The posteriors for ASP lie to the right 

of that of SP. This means there are higher chances of 

getting a cure using ASP than SP. However, the Konde 

42 days duration shows a small shift in favour of ASP 

but the difference between the two therapies here is 

negligible.  

4.2. Posterior Survival Plots 

We now consider plots found in Figures 3 to 6. 

Figures 3 and 5 present the observed posterior survival 

time plots before the event of a first recurrence at both 

Konde and Uzini. At the start of the trial, the treatments 

had equal survival probability 1, of escaping the event 

of first recurrence of malaria. These plots show a 

steady decrease in survival probabilities through the 

length of each study period. We observe that more 

often, the plot for artesunate plus sulfadoxine-

pyrimethamine is above that of sulfadoxine-

pyrimethamine, which is indicative of their abilities to 

resist a recurrence of the disease. 

On the other hand, Figures 4 and 6 show the 

truncated posterior plots with S *(tmax ) = 0 . These are 

the resulting plots obtained when we impose the 

condition that if a first recurrence is to occur, this must 

take place within a specified time before the end of 

Table 2: Posterior Estimates for Overall Treatment Efficacy 

Location Period Parameter Estimate SE 2.5% 50% 97.5% 

PASP 0.51 0.05 0.41 0.51 0.61 
KONDE (0 – 42] 

PSP 0.50 0.05 0.40 0.50 0.60 

PASP 0.67 0.05 0.57 0.67 0.76 
UZINI (0 – 42] 

PSP 0.56 0.05 0.47 0.56 0.65 

PASP 0.38 0.05 0.28 0.38 0.48 
KONDE (0 – 84] 

PSP 0.34 0.05 0.24 0.34 0.44 

PASP 0.59 0.05 0.49 0.60 0.69 
UZINI (0 – 84] 

PSP 0.52 0.05 0.43 0.52 0.61 
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Figure 1: Treatment Efficacy after 42 days Posterior Distribution. 

 

Figure 2: Treatment Efficacy after 84 days Posterior Distribution. 
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Figure 3: Observed 42 days posterior survival plots. 

 

 

Figure 4: Truncated 42 days posterior survival plots. 

each trial period. In this paper we chose within 42 days 

and within 84 days. The truncated survival plots are 

important if we are to correctly estimate the posterior 

distribution of the difference in survival times. 

Moreover, it is usually difficult to keep track of events 

after the trials. 
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Figure 5: Observed 84 days posterior survival plots. 

 

 

Figure 6: Truncated 84 days posterior survival plots. 

4.3. Delay Time to First Recurrence of Malaria 

The area between the truncated survival curves is a 

measure of the expected difference in adjourn times 

before the event of a first recurrence for ASP. The 

estimates at the two study sites within 42 and 84 days 

are given in Table 4. The mean estimates for the 42 
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days running period are 6.38 in Konde and 6.11 in 

Uzini, respectively are quite closed. Meanwhile, there is 

a disparity in estimates for the 84 days trial period. The 

mean delay times were 2.98 in Konde and 7.28 in 

Uzini, respectively. 

To have an overall picture of the delay times, we 

obtained the posterior distributions for the chosen two 

periods at both centres. The distributions are displayed 

in Figures 7 and 8. The posterior histograms obtained, 

are fairly Gaussian with great overlapping within the 42 

days period at both centres. Though there is a 

horizontal shift when it comes to within 84 days period 

densities, the overlapping is still within 2 standard 

deviations. 

We therefore assumed normality in delay time to the 
event of a first recurrence and used the Bayesian joint 
posterior for the mean, to have a single (combined) 
estimate for the mean delay time and its variance for 

the two centres. Thus μ̂ku =
(μ̂k

ˆ
k
2
+ μ̂u

ˆ
u
2 )

( ˆ k
2
+ ˆ u

2 )
 where 

ˆ
μ̂ku
2
= ( ˆ k

2
+ ˆ u

2 ) 1  are the combined mean and 

variance estimates for the two study sites. These mean 
estimates are 6.24 days and 5.41 days with variances 
1.10 and 3.68 for trials lasting within 42 and 84 days, 
respectively. These results are on the last two rows in 
Table 4.  

5. DISCUSSION 

We proposed a new methodology that can be used 

in the estimation of how long one of two therapies can 

postpone or delay the first recurrence of a disease 

using a Bayesian approach through MCMC techniques. 

We demonstrated the performance of the methodology 

by applying it to data on efficacy of two malaria 

treatments in a clinical trial. Although we used the 

malaria data with two treatments, the methodology can 

be extended to other similar studies. 

Table 4: Posterior Estimates for Mean Delay by ASP 

Location Period Parameter Estimate SE 2.5% 50% 97.5% 

0 – 42 k1 6.38 1.50 3.36 6.40 9.23 
KONDE 

0 – 84 k2 2.98 2.73 -2.43 3.00 8.28 

0 – 42 u1 6.11 1.46 3.18 6.14 8.90 
UZINI 

0 – 84 u2 7.78 2.70 2.34 7.83 12.96 

0 – 42 ku 6.24 1.05 4.20 6.24 8.29 
KONDE UZINI 

0 – 84 ku 5.41 1.92 1.64 5.41 9.17 

 

Figure 7: Treament Efficacy after 42 days Posterior Distribution. 
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A significant profit of the Bayesian approach is that 

it provides a complete distribution for parameters of 

interest. We had parameters on overall cure rate or 

treatment efficacy, first recurrence and survival rates 

per follow-up and the expected difference in delay 

before a recurrence of malaria. We made a key 

assumption that all recrudescences take place before 

the last day of study. This assumption was necessary 

to circumvent the intractability of the event of interest 

beyond the study periods. 

The results on the efficacy of treatment showed that 

artesunate plus sulfadoxine-pyrimethamine was a 

better treatment confirming the reasons behind the 

advocacy of artemisinin-based combination therapy for 

the treatment of malaria. However, we observed some 

discrepancies in the results from the two treatment 

centres considered. This might have been due the 

scarcity of observations towards the end of trials, the 

immune system of children may also contribute prolong 

time to first recurrence, the amount of mosquitoes and 

exposure of children. Despite this shortcoming, the 

artemisinin-based combination therapy performed well 

in both Konde and Uzini. For the 42 days period, ASP 

had a 55% probability of successfully treating patients 

and 71% success probability, if followed for 84 days. 

Similarly in Uzini, the probability was 94% for a 42 days 

treatment period and 87%, if patients were treated for 

84 days. 

Our methodology produced estimates and posterior 

distributions for the duration in days ASP could 

postpone a recurrence of malaria. In case of treatment 

failure recipients of ASP, will stay asymptomatic for 6.2 

days if treatment was followed for 42 days. Meanwhile, 

the malaria free duration will be 5.4 days if treatment 

was provided for 84 days. This is a benefit and a major 

contribution to existing knowledge on the efficacy of 

malaria treatment studies. 

We assumed uniform distributions for everyone 

within intervals before follow-up dates, which is a 

limitation. However, in practice we can only know an 

outcome on the screening date and nothing in 

between. A more comprehensive and generalized 

methodology is possible with the inclusion of other 

background variables such as age and weight of 

patients. 
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