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Abstract: Profiling or evaluation of health care providers, including hospitals or dialysis facilities, involves the application 
of hierarchical regression models to compare each provider’s performance with respect to a patient outcome, such as 
unplanned 30-day hospital readmission. This is achieved by comparing a specific provider’s estimate of unplanned 
readmission rate, adjusted for patient case-mix, to a normative standard, typically defined as an “average” national 
readmission rate across all providers. Profiling is of national importance in the United States because the Centers for 
Medicare and Medicaid Services (CMS) policy for payment to providers is dependent on providers’ performance, which 
is part of a national strategy to improve delivery and quality of patient care. Novel high dimensional fixed effects (FE) 
models have been proposed for profiling dialysis facilities and are more focused towards inference on the tail of the 
distribution of provider outcomes, which is well-suited for the objective of identifying sub-standard (“extreme”) 
performance. However, the extent to which estimation and inference procedures for FE profiling models are effective 
when the outcome is sparse and/or when there are relatively few patients within a provider, referred to as the “low 
information” context, have not been examined. This scenario is common in practice when the patient outcome of interest 
is cause-specific 30-day readmissions, such as 30-day readmission due to infections in patients on dialysis, which is only 
about ~ 8% compared to the > 30% for all-cause 30-day readmission. Thus, we examine the feasibility and effectiveness 
of profiling models under the low information context in simulation studies and propose a novel correction method to FE 
profiling models to better handle sparse outcome data. 

Keywords: End-stage renal disease, fixed effects, high-dimensional parameters, logistic regression, infrequent 
events, Firth’s correction. 

1. INTRODUCTION 

Unplanned readmissions following a hospital 
discharge are a major source of morbidity and mortality 
risk for patients on dialysis. The burden of 
hospitalization is particularly high for patients on 
dialysis, where the latest U.S. national data shows that 
the frequency of 30-day readmissions is 31.1%, which 
is more than double the frequency of readmissions 
seen in older Medicare beneficiaries without kidney 
disease (United States Renal Data System/USRDS 
[1]). 

Profiling or evaluation of health care providers, such 
as hospitals, dialysis facilities, and nursing homes 
among others, serves multiple purposes, including (1) 
identifying providers with performance below standard 
by government agencies for regulatory or payment 
purposes and (2) conveying information and feedback 
to stakeholders (e.g., the public, patients, providers) 
regarding the quality of care among providers. The 
main focus of our work is objective (1), specifically with  
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respect to the goal of identifying providers whose 
performances (e.g., 30-day readmission) are 
exceptionally worse (W) and not different (ND) relative 
to a reference, such as a national “average” standard. 
Also related to the inferential process of 
identifying/flagging providers with 30-day readmission 
rates W and ND from the national rate, it is of interest 
to obtain accurate estimates of provider-specific effects 
and associated quality metrics. 

When the outcome, such as 30-day readmission, is 
not frequent and/or when there are relatively few 
patients within a provider, referred to as the “low 
information” context [2], estimation and inference for 
profiling models are understandably more challenging. 
This is the situation when the patient outcome of 
interest is cause-specific 30-day readmissions, such as 
30-day readmission due to infections in patients on 
dialysis, which is only about ~8% compared to greater 
than 30% for all-cause 30-day readmission. Infection-
related hospitalizations are serious adverse events that 
are oftentimes preventable. Hence, it is an important 
performance indicator that is carefully monitored in 
dialysis facilities. 

Respecting the data structure that patients are 
nested within providers, current profiling models for 30-
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day unplanned hospital readmission are hierarchical 
logistic regressions of the form outcome ~ provider 
effects + patient case-mix effects. Thus, patient 
outcomes vary across providers due to variation in 
providers’ quality of care (provider-specific effects) and 
variation in patient-level case-mix effects, which include 
demographics, comorbidities, and the type of index 
admission. Because of the nested data structure and 
the need to stabilize estimation, modeling provider 
effects as random effects (RE) has been used [2-7]. 

A justification for the use of RE models is that they 
provide stable provider effect estimates through 
shrinkage, although several inherent disadvantages 
have been noted. In particular, RE estimates are 
biased toward the overall provider average and biased 
in the presence of confounding between patient risk 
factors and provider effects [8]. Also, although the 
overall average error in estimation of provider effects is 
smaller because mean square error is minimized over 
the full set of provider effects in the RE approach, fixed 
effects (FE) estimates have smaller error for outlier 
‘providers whose effects are exceptionally large or 
small’ [8], which are the providers we wish to identify. 
Our previous works also have shown that the benefit of 
stabilization comes at a severe cost in substantially 
biased provider effects estimation and, perhaps more 
important, at a substantial reduction in the power to 
identify W providers [9, 10]. Our works and others have 
used high-dimensional FE models to identify sub-
standard (“extreme”) performance, especially for 
profiling 30-day readmission for dialysis facilities where 
the outcome is not sparse [3, 8-15]. However, the 
extent to which FE models are useful in the low 
information context has not been studied, which is the 
focus of this work. Thus, we assess the relative 
performance of the FE model proposed by He et al. 
[15], including the stability of provider-specific 
estimates and the ability to identify extreme providers 
in simulation studies. Briefly, the FE model of He et al. 
[15] is a high-dimensional parameter model with a 
unique fixed intercept for each provider and is used in 
assessing the performance of dialysis facilities [3, 8, 
15]; see also Chen et al. [14] and Estes et al. [11, 12] 
for recent dialysis facility profiling applications. 
Furthermore, in this work, we also propose and 
examine the performance of a novel corrected FE 
model estimation approach geared towards estimation 
under low information context, where the (uncorrected) 
FE model estimates of some provider-specific effects 
may be unreliable. 

2. METHODS: HIGH-DIMENSIONAL FE PROFILING 
MODELS 

We introduce the FE profiling model using the 
context of hospital readmission as an illustrative 
example. Let the binary outcome Yij  equal 1 if patient 
index discharge j  in provider i  results in a 
readmission within 30 days, for patient discharge 

 j =1, 2,…,Ni  in provider (dialysis facility)  i =1, 2,…,F . 
The FE profiling model (He et al. [15]) is 

 g(µij ) = ! i + "
T Zij , i =1,…,F,          (1) 

where  ! = (!1,…,!F )  are the provider-specific fixed 
effects, µij ! E(Yij | Zij ) = Pr(Yij =1 | ",# i ,Zij ) = pij  is the 
expected readmission for patient index discharge 

 j =1, 2,…,Ni  in provider  i =1, 2,…,F , and 
g(pij ) = log{pij / (1! pij )}  is the logit function. In profiling 
model (1), the r  patient risk adjustment factors for 
discharge j  in provider i  are denoted by the covariate 
vector  Zij = (Zij1,…,Zijr )

T  corresponding to parameters 

 !
T = (!1,…,!r ) . In practice, the process of risk 

adjustment is complex and depends, in part, on policy 
objectives and the specific patient population (e.g., 
general population, dialysis population). However, we 
point out that it is critical to adequately risk-adjust for 
patient-level factors and avoid inclusion of variables 
(e.g., provider-level or patient-level variables) that 
are/may be related to the process of care (e.g., see [2, 
3, 13]). 

To avoid confusion, we emphasize that the model 
shown in (1) is not a collection of individual models 
(i.e., not a separate model for each provider), but rather 
a single model with high-dimensional parameters and 
requires simultaneous estimation for thousands of 
provider-specific effects/parameters ( {! i}i=1

F  and ! ). 
For example, for profiling dialysis facilities the 
dimension of  ! = (!1,…,!F )

T  is > 6,000 dialysis facilities 
across the U.S., and the dimension of !  is ~ 40. 
Standard estimation (e.g., maximum likelihood) and 
software fails; thus, He et al. (2013) proposed a 
feasible estimation method based on an alternating 
one-step Newton-Raphson that iterates between 
estimation of !  and ! i . 

The summary performance index for each provider 
which incorporates patient-level risk factors ( Z ’s) used 
in practice is the standardized readmission ratio (SRR). 
For FE model (1), given the provider and the patient 
case-mix effect estimates, denoted by !̂ i  and !̂ , 
respectively, the estimated SRR for provider i  is 
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SRRi =
j=1

Ni

!p̂ij

j=1

Ni

! p̂M ,ij

,           (2) 

where p̂ij = g
!1("̂ i + #̂

T Zij )  is the estimated probability of 
readmission for patient j  in provider i  and 

p̂M ,ij = g
!1("̂M + #̂

T Zij ) . The aggregate parameter !̂M  in 
the denominator is taken to be the median of the 
{!̂ i}i=1

F . Thus, the numerator of SRRi  is the expected 
total number of readmissions for provider i  and the 
denominator is the expected total number of 
readmissions for an “average” facility (taken over the 
population of all providers), adjusted for the particular 
case-mix of the same patients in provider i . Note that 
SRRi  estimates the true quantity 

 
SRR
!

i =
j=1

Ni! pij / j=1

Ni! pM ,ij , where pM ,ij = g
!1("M + #

T Zij ) . 

3. ESTIMATION AND INFERENCE PROCEDURES 

In addition to the challenge of high-dimensional 
parameters, compounding difficulties are encountered 
in the low information context where the outcome is 
sparse, resulting in providers with few readmissions or 
even no readmission. For very small providers with few 
patients, there is very low information to assess 
performance. In extreme cases of providers with no or 
very low readmission, the FE estimation method [15] 
leads to unstable estimates for those providers. Thus, 
in the low information context, we propose a correction 
to the FE estimates for provider-specific effects. 

3.1. FE Model Estimation 

To describe our proposed FE corrected estimation 
for provider-specific effects, we first set the notation for 
the likelihood of the FE model (1) and briefly 
summarize the alternating Newton-Raphson algorithm 
proposed by He et al. [15]. For the FE model (1), 
Pr(Yij =1 | Zij ) = pij

yij (1! pij )
1!yij , and the likelihood 

function is given by 

L(!,") =
i=1

F

#
j=1

Ni

#
exp{(! i + "

T Zij )yij}
1+ exp(! i + "

T Zij )
.         (3) 

Because direct maximization of (3) is not feasible 
with standard methods when F  is large (e.g., 
 F ! 6, 000 ), He et al. (2013) proposed an effective 
iterative algorithm that alternates between estimation of 
! i  given !  and estimation of !  given ! i  using one-
step Newton-Raphson updates. More precisely, 
estimation of the high-dimensional parameters ( !," ) 

are feasible since the likelihood (3) can be written as 
L(!,") =

i# Li (! i ,")  where Li (! i ,") = j# exp{(! i + "
T Zij )yij} /  

{1+ exp(! i + "
T Zij )}  for provider i . Thus, given ! , ! i  

can be estimated via a Newton-Raphson procedure 
that depends only on one variable in the maximization 
of Li (! i ,") . Briefly, the estimation procedure proposed 
by He et al. (2013) is as follows.  

(i) Set the initial values ! (0)  and ! i
(0)  of !  and ! i , 

respectively. 

(ii) The (m +1) th maximization step for ! , given 
! i
(m ) , is 

! (m+1) = ! (m ) + I!
(m )"1U!

(m ) ,  

where I!
(m ) = " #2

#!#!T log L($
(m ) ,!) |

!=!(m )
 and 

U!
(m ) = "

"!
log L(# (m ) ,!) |

!=!(m )
. 

(iii) The (m +1) th maximization step for ! i , given 
! (m ) , is  

! i
(m+1) = ! i

(m ) + Ii
(m )"1Ui

(m )  

where Ii
(m ) = ! "2

"# i
2 log L(# i ,$

(m+1) ) |
#i=#i

(m )  and 

Ui
(m ) = !

!" i
log L(" i ,#

(m+1) ) |
"i="i

(m ) . 

(iv) The above steps are repeated until convergence, 
defined by 

i, j
max | pij

(m+1) ! pij
(m ) |< " , where 

pij
(m ) = g!1(" i

(m ) + # (m )
T
Zij )  and !  is some pre-

specified tolerance level. Denote these final 
uncorrected provider-specific estimates as 

 !̂
U = (!̂ i

U ,…, !̂F
U ) . 

Expressions for I!
(m ) , U!

(m ) , Ii
(m ) , and Ui

(m )  are given 
in He et al. (2013) and they are provided here for 
convenience: I!

(m ) =
i=1

F
" j=1

Ni" pij
(m ) (1# pij

(m ) )ZijZij
T , 

U!
(m ) =

i=1

F
" j=1

Ni" (yij # pij
(m ) )Zij , Ii

(m ) =
j=1

Ni! pij
(m ) (1" pij

(m ) ) , 

and Ui
(m ) =

j=1

Ni! (yij " pij
(m ) ) . Programs in R, sample data, 

and tutorial are provided in the online Supplementary 
Materials. In our implementation, we choose ! (0) = 0  
and ! i

(0) = log{ p̂i
* / (1" p̂i

* )}  where 



Fixed Effects High-Dimensional Profiling Models in Low Information International Journal of Statistics in Medical Research, 2021, Vol. 10      121 

p̂i
* = (Ni +1)

!1{0.5 +
j=1

Ni" yij} , the Jeffreys’ prior 

estimated proportion for facility i  (i.e., posterior mean 
of a Beta distribution, 
Beta(0.5 +

j=1

Ni! yij , 0.5.+ Ni " j=1

Ni! yij ) ). 

3.2. Corrected Estimation of Provider Effects 

As described earlier, estimation of provider effects, 

i! , for the FE model can be unstable for some 
providers in the low information context. Thus, we 
consider an approach to “correct” or stabilize FE 
estimates. We adapt the Firth correction in (standard) 
logistic regression [16, 17] to the high-dimensional FE 
model (1). Recall that for the standard (non-hierarchical 
data) logistic regression model with N  independent 
units,  j =1,…,N , 

Pr(Yj =1 |,Z j ,! ) = {1+ exp(" r=1

p
# Z jr!r )}

"1 $ % j , where 

 ! = (!1,…,! p )  are regression coefficients for covariates 

 Z j = (Z j1,…,Z jp ) . Firth’s modified score equations [16] 
for estimation to reduce small sample bias is 
U *(!r ) "U(!r )+ 0.5trace[I(! )

#1{$I(! ) / $!r}] = 0 , for 

 r =1,…, p , where U(!r ) " # log L / #!r , I(! )  is the 
information matrix, and L = L(! )  denotes the likelihood. 
This is equivalent to using a penalized likelihood 
L*(! ) = L(! ) | I(! ) |"1/2  [17], where the penalty term 
| I(! ) |"1/2  is equivalent to Jeffreys’ prior [18]. Applying 
this to logistic regression yields the modified estimation 
equations U(!r )

* =
j=1

N
" {yj # $ j + hj (0.5 # $ j )}Z jr = 0  for 

 r =1,…, p , with hj  as the j th diagonal element of the 

“hat” matrix H =W 1/2Z(ZTWZ )!1ZTW 1/2 , with 

 W =diag{!1(1" !1 ),…,!N (1" !N )}  and Z  denotes the 
N ! p  data matrix. For binary outcome with small 
sample size, Firth’s logistic regression has become a 
standard approach to reduce bias in the estimated 
regression coefficients. 

We adapt this penalized estimation to the high-
dimensional FE model (1) to correct for unstable 
estimation of ! i  for providers with low information. We 
first note that !  can be precisely estimated because it 
is based on data from all providers; therefore, 
penalization on patient-level risk factors is 
unnecessary. Direct application of the Firth’s modified 
score to penalize  ! = (!1,…,!F )  is not feasible for FE 
profiling model (1) due to the challenge of calculating 
the score penalties. These are obtained via the 
diagonals of the N ! N  hat matrix, which in dialysis 
population applications are in the order of  N ! 500, 000  
or larger. The size of N  is many orders of magnitude 
larger for profiling applications in the general 

population. However, estimating !  with Firth’s 
correction, for a fixed ! , is equivalent to sequentially 
estimating ! i  individually, for a fixed ! , using Firth’s 
correction. This is seen as follows. For a fixed ! , the 
hat matrix used in the estimation of !  with Firth’s 
correction is H =W 1/2X(XTWX)!1XTW 1/2 , where 

 W =W1 !!!WF ,  X = X1 !!! XF , 

 
Wi =diag{pi1(1! pi1 ),…, piNi (1! piNi )}  are provider-

specific weight matrices, Xi  are Ni !1  provider-
specific design matrices of ones, and !  denotes the 
matrix direct sum operator, e.g., A! B  is the block 
diagonal matrix [A, 0; 0,B] . As shown in the 
Supplementary Appendix section, H =W 1/2X(XTWX)!1  

 X
TW 1/2 =W1

1/2X1(X1
TW1X1 )

!1X1
TW1

1/2 "!"WF
1/2XF (XF

TWFXF )
!1  

XF
TWF

1/2 . Thus, the diagonal of H  may be obtained 
sequentially via the diagonals of 
Wi

1/2Xi (Xi
TWiXi )

!1Xi
TWi

1/2  for each provider i . 

The i th provider hat matrix reduces to 
Hi =Wi

1/2Xi (Xi
TWiXi )

!1Xi
TWi

1/2 =Wi
1/2Xi{(Wi

1/2Xi )
T  

 
(Wi

1/2Xi )}
!1(Wi

1/2Xi )
T = (wi1

1/2 ,…,wiNi
1/2 )T {(wi1

1/2 ,…,wiNi
1/2 )  

 
(wi1

1/2 ,…,wiNi
1/2 )T }!1(wi1

1/2 ,…,wiNi
1/2 )  where wij = pij (1! pij ) . 

Thus, 
 
diag(Hi ) = ( j=1

Ni! wij )
"1diag{(wi1

1/2 ,…,wiNi

1/2 )T  

 
(wi1

1/2 ,…,wiNi
1/2 )} = (wi1 / j=1

Ni! wij  ,  …  , wiNi
/

j=1

Ni! wij )  and 

for a fixed ! , the estimation of !  using Firth’s 
correction can be reduced to a sequence of estimations 
of a single parameter ! i  by penalizing the score Ui , 

using the weights hij = wij / j=1

Ni! wij . More specifically, 

the provider-specific penalized score equations are 
Ui
* =

j=1

Ni! {yij " pij + hij (0.5 " pij )} = 0 , for  i =1,…,F . 

We propose a simple correction to adjust the 
estimates from Section 3.1 of provider-specific effects, 
! i ’s, using the modified score UI

* . More precisely, first, 
!  is fixed at the estimate resulting from Section 3.1, 

namely !̂U . The provider effects ! i ’s are then re-
estimated using the estimation procedure outlined in 
3.1 with the following modifications. In Step (i), ! (0)  is 

fixed at !̂U  and ! i
(0)  is set to 

log{ p̂i / (1! p̂i )} ! Ni
!1

j=1

Ni" #̂U
T Zij . Note that when ! (0)  is 

set to the zero vector, the initial value of ! (0)  reduces to 
value previously noted in Step (i) in Section 3.1. In Step 
(ii), ! (m+1)  is set equal to ! (m ) . In other words, !  is no 
longer estimated. Finally, the score in Step (iii) is 
modified by replacing Ui  with Ui

* . 
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3.3. Inference: Identifying Extreme Providers 

In profiling, one of the main interests is to 
identify/flag providers that significantly deviate from the 
national norm (e.g., national average). The current 
public policy in the U.S. penalizes providers that 
perform significantly W than the national standard 
(SRR > 1 ). Thus, in practice, the goal is to flag/identify 
providers as W or ND from the national standard (SRR 
not different than 1). Better (B) providers (SRR < 1 ) are 
not penalized nor incentivized. 

First, note that for a provider with an adjusted event 
rate that does not differ from the national norm, 
! i = !M , which implies SRRi =1 . When SRRi > 1  or 
SRRi < 1 , the event rate for provider i  is greater than 
or less than the national norm, respectively. Thus, 
testing the null hypothesis H 0 :! i = !M  is of interest and 

a test statistic is Ti = j=1

Ni! p̂ij  where p̂ij  is an estimate 

of pij .  

Simultaneously testing the null hypothesis for 
thousands of providers is computationally expensive. 
However, one can take advantage of the fact that !  
and !M  can be estimated based on the large data from 
all providers. Hence, these parameters are estimated 
and fixed throughout the proposed algorithm below 
which is based on resampling responses under the null 
hypothesis. Since the global parameters !  and !M  are 
fixed, model fitting to the resampled data only requires 
estimation of provider-level effects ! i . This reduces the 
computational burden substantially since each ! i  is 
estimated using only data from each provider 
separately. The steps of the procedure for each 
provider i  are as follows. 

(1) Draw B  samples  {Yij
b : j =1,…,Ni}b=1

B , where 
each sample and observation is drawn 
independently from a Bernoulli distribution under 
the null:  Yij

b ! Bern(g!1{"̂M + Zij
T #̂}) , for 

 b =1,…,B . (We used B = 500 .) 

(2) Calculate the test statistics for datasets 
generated/simulated under the null: 
Ti

b =
j=1

Ni! p̂ij
b  where, p̂ij

b = g!1("̂ i
b + Zij

T #̂)  and 

estimation of !̂ i
b  only involves steps (iii)-(iv) in 

Section 3.1 for the uncorrected FE model since 
!  is fixed. For the correction method, the 
estimation proceeds as described earlier in 
Section 3.2; that is, the corrected estimation 
algorithm is applied to the b th dataset to obtain 
p̂ij
b . 

(3) A nominal two-sided p -value for the i th 
provider, Pi , is calculated as 

Pi = 2 !min
B"1

b=1

B

#{0.5I(Tib = TiO )+ I(Tib > TiO )},

B"1

b=1

B

#{0.5I(Tib = TiO )+ I(Tib < TiO )}

$

%

&
&
&
&
&

'

(

)
)
)
)
)

,  

where Ti
O  is calculated based on the original/observed 

data and I(A) denotes the indicator function for event A. 

4. SIMULATION STUDY DESIGN 

We designed simulation studies to assess the 
performance of the uncorrected and corrected FE 
model estimation methods, mainly with respect to (A) 
estimation of provider-specific effects, ! i ’s and SRRi ’s; 
and (B) identification of extreme providers relative to a 
reference. Data were generated from the model 

 g(µij ) = !0 + ! i + "1Zij1 +!"15Zij15          (4) 

with  i =1,…,F = 5, 000  providers and 
! = (.25, .25,".25,".25, .5, .25, .25, .25, .25,".25,  
!.25,!.25, .5, .5, .5)T . For the patient case-mix vector, 
Zij , the dependence/correlation structure among 
variables were based on the observed correlations 
among patient-level variables in real USRDS data. 
More specifically, Z *  is generated from a multivariate 
normal distribution with means zero and covariance 
Cov(Z * ) =V 1/2RV 1/2 , where  V

1/2 =diag{ Var(Z1
* ),…,  

Var(Z15
* )}  and R  is the correlation matrix. The first 5 

covariates were taken to be continuous: 

 Z1 ! Z1
*,…,Z5 ! Z5

* . The remaining 10 covariates, 

 Z6 ,…,Z15  are binary variables, generated by 
thresholding corresponding Zr

*  so that 
Pr(Zr =1) = E(Zr ) ’s are equally spaced between 0.2 
and 0.8 (for  r = 6,…,15 ). The correlation matrix and 
standard deviations of the 15 variables are provided in 
the Supplementary Appendix. 

For the provider effects, {! i}i=1
F , 2.5% were under-

performers (W: “worse”) and 2.5% were over-
performers (B: “better”) whose effects, ! i ’s, were 
equally spaced in the intervals [0.4,1.0]  and 
[!1.0,!0.4] , respectively. The remaining 95% of 
providers, with effects not different (ND) from the 
reference, were generated from a N(0,! 2 )  distribution 
with ! 2 = 0.22 . Note that a constant !0  has been 
added to simulation model (4) to conveniently control 
the baseline rate of readmission (outcome data 
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sparsity), where baseline rates of readmission 
considered were 20%, 10%, 5%, and 3% 
corresponding to !0 = log(1 /13.5) , log(1 / 33) , 
log(1 / 73) , and log(1 /126) , respectively. This setup 
conveniently regulates the level of outcome data 
sparsity. For each baseline readmission rate setting, 
200 datasets were generated and the estimation 
(Section 3) and inference procedure (Section 3.3) was 
applied to each simulated dataset. 

The provider volume of each generated dataset 
range from a minimum of 48 to a maximum of 195 
patients on average, similar to real USRDS data in 
applications (e.g., see [14]). More specifically, the 
number of patients were generated from a truncated 
Poisson distribution following He et al. (2013), where 
the number of patients was taken to be 

Ni = h=1

1000
! mih1{mih " 7}  with  mih ! Poisson(15) . This 

process mimics the sparse data structure of dialysis 
facility (provider) i  in practice. 

5. RESULTS 

5.1. Estimation of Provider-Specific Effects and 
SRRs 

The results for provider-specific estimates of ! i ’s for 
the 125 (2.5%) under-performers ( ! i > 0 ) and 125 
over-performers ( ! i < 0 ) for the case of 3% overall 
event rate (most sparse) are provided in Figure 1A 
where averages of ! i  estimates over 200 simulated 
data sets are plotted. As expected, under this 
extremely low information context, provider effect 
estimates are unstable for the uncorrected FE method. 

However, note that these providers are mainly the 
over-performers ( ! i < 0 ) with low or zero events 

(
j! yij ’s are small) leading to “explosion” of the 

estimates (Figure 1A). It is important to note that these 
unstable estimates are in the direction of the true effect 
(negative direction for negative ! i ’s, where !̂ i "#$ ). 
Also as expected, estimates for under-performers 
( ! i > 0 ) are less unstable and more on target for the 
uncorrected FE method. The corrected estimation 
approach, which adapts the Firth’s modified score 
equation for the FE model, largely eliminates the 
instability and estimates are on more target for the true 
! i ’s (Figure 1B). 

Figure 2 (left column) shows estimates of ! i ’s for 
increasing percentage of overall events, from 3% to 
20% for the uncorrected FE method. Clearly, the 
frequency of unstable estimates for ! i < 0  decreased 
with increasing overall events, although unstable 
estimates are apparent even at a 10% event rate. 
However, the magnitude of the unstable estimates 
declined quickly ( !̂ i < 0 ) as the overall event rate 
increased (e.g., at 20%). 

Next, we summarize results for estimation of the 
provider-specific SRRs. As describe in Section 2, SRR 
is the summary performance index for each provider 
used in practice which incorporates patient-level risk 
factors Zij  and their estimated effects, !̂ . More 
specifically, given the provider and the patient case-mix 
effect estimates for each approach, denoted by !̂ i

*  and 

!̂ , respectively, the estimated SRR for provider i  is 

 
Figure 1: Estimates of provider-specific effects, ! i < 0  (over-performers) and ! i > 0  (under-performers) (A) for the uncorrected 
high-dimensional fixed effects (FE) model and (B) for the corrected method at high-level of outcome data sparsity of 3%. 
Displayed is average for each ! i  estimate, averaged over 200 simulated data sets. 
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Figure 2: Uncorrected (left column) and corrected (right column) estimation of provider-specific effects, ! i ’s, for 3%, 5%, 10%, 
and 20% overall outcome event rate. Displayed is average for each ! i  estimate, averaged over 200 simulated data sets. 

SRRi
* = j=1

Ni

! p̂ij
*

j=1

Ni

! p̂M ,ij
*

,           (5) 

where p̂ij
* = g!1("̂ i

* + #̂T Zij ), p̂M ,ij
* = g!1("̂M

* + #̂T Zij ) , * and  
denotes the uncorrected and corrected approach, 

namely U  and C . Figure 3 (left column) summarizes 
the uncorrected FE model estimates of SRR for 3% to 
20% overall outcome event. We note that even though 
specific ! i < 0  were unstable for highly sparse data 
(e.g., at 3% - 10%; Figure 2), corresponding estimates 
of SRR’s are stable overall and targets the true SRR, 
because SRR incorporates patients characteristics, 
their effects, as well as provider-specific effects as 
shown in (5); see Figure 3 (left column). Average SRR 
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Figure 3: Uncorrected (left column) and corrected (right column) estimates of standardized readmission ratios (SRRs) for 3%, 
5%, 10%, and 20% overall outcome event rate. Displayed is average for each SRRi  estimate, averaged over 200 simulated data 
sets. 

estimates for the corrected estimation performed well 
and are summarized in Figure 3 (right column). 
However, we note that for extremely sparse data (e.g., 
at 3%), the uncorrected approach slightly overestimate 
SRRs while the corrected approach slightly 
underestimate SRR for truly worse providers (true SRR 
> 1 ; Figure 4 - top). For truly better providers (true 
SRR < 1 ), both methods slightly over estimate the true 
SRRs, although more so with the corrected method. 
Differences in SRR estimates between the two 

methods are neglible as the overall percent of events 
increases (e.g., at 20%; Figure 4 - bottom). 

5.2. Flagging Extreme Providers/Facilities 

The overall performance of the uncorrected and 
corrected FE methods to identify extreme providers are 
assessed in terms of sensitivity (SEN) to correctly 
identify providers that under-perform (W: “worse”), 
over-perform (B: “better”) relative to the reference 
standard (e.g., national reference), and specificity. 
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Figure 4: Estimation of standardized readmission ratios (SRRs) for 3% and 20% overall outcome event rate for corrected and 
uncorrected methods among the 125 better (B) and 125 worse (W) providers. Displayed is average for each SRRi  estimate, 
averaged over 200 simulated data sets. 

Specificity (SPEC) refers to the correct 
identification/flagging of providers whose performances 
are not different from the reference standard (ND: “not 
different”). We note that provider assessment policies 
in practice focus on identifying under-performing 
providers (W providers) as those are tied to payment 
policy or regulatory goals. Figure 5 summarizes the 
distribution of SEN-W, SEN-B, and SPEC for varying 
levels of outcome sparsity, ranging from 3% to 20% 
overall outcome rate. For extremely sparse data of 3% 
and 5%, the uncorrected method has highest sensitivity 
to detect under-performing providers (higher SEN-W; 
left column). This is expected since the for truly worse 
providers, there are more outcome events (

j! yij ); see 

Figure 5 (left column). SEN-W rates were similar 
between uncorrected and corrected methods at 20% 
overall overall outcome rate. 

Because the event counts are zero or low for truly 
better providers in the context of sparse outcome data, 
the unstable/poor estimation of provider effects from 
the uncorrected method results in lower sensitivity to 
detect over-performing providers (lower SEN-B) 
compared to the corrected method (Figure 5 - middle 
column). However, note that the nominal SEN-B rates 
are low overall, as expected, compared to nominal 
SEN-W rates. This is expected in the low information 
context since B providers would have fewer 
readmissions, making it difficult to correctly identify B 
providers when the outcome is sparse. SPEC rates 
were high and similar between uncorrected and 
corrected methods (Figure 5 - right column). 

As mentioned earlier, the main current objective of 
flagging “extreme” providers in profiling analysis 
focuses on identifying W providers and ND providers. 
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Figure 5: Overall performance of the uncorrected and corrected estimation methods to identify truly worse (sensitivity - worse), 
truly better (sensitivity - better), and specificity (providers not different from the reference) across data sparsity of 3%, 5%, 10%, 
and 20% overall outcome event rate. Displayed is average for each SRRi  estimate, averaged over 200 simulated data sets. 

Providers that over-perform (B providers) are not 
relevant to current payment policy or regulatory 
objectives. Therefore, under this regime, it is of interest 
to ensure that there are no (or low rate of) false 
negatives that misclassify/flag B provider as W provider 
( FNB!W ). Indeed, there are none, i.e., FNB!W = 0  
across all levels of data sparsity (Figure 6), which is not 
surprising since W and B providers are on the opposite 
tails of the distribution of providers. This is true with the 
uncorrected FE model (as well as the corrected 

estimation method) since the direction of unstable 
estimates of ! i ’s are in the same (negative) direction of 
true ! i  (as pointed out earlier), despite the unstable 
provider-specific estimates. However, it is not 
uncommon for false negative classification of a B 
provider as a ND provider ( FNB!ND ). Although FNB!ND  
deceases with increasing percentage of overall 
outcome events as expected, FNB!ND  is common for 
the extremely low information context (e.g., 3%, 5% 
overall event rate; Figure 6). We emphasize that high 
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FNB!ND  does not affect current public policy because 
over-performers are not incentivized and are consider 
“ND” providers anyway. Therefore, the FE profiling 
model, even uncorrected, is still useful in the low 
information context with respect to the current public 
policy goal of identifying W and ND providers. 
However, if the public policy goal evolves to also 
incentivize for better performance, then novel methods 
able to correctly identify B providers with high 
sensitivity are needed. 

6. DISCUSSION 

Seminal works by Kalbfleisch and Wolfe [8] and He 
et al. [15] show that FE model estimates have smaller 
error for outlier providers whose effects are 
exceptionally large or small, and these extreme 
providers are precisely the ones we wish to identify in 
profiling analysis. The high-dimensional FE models 
were then used to assess the performance of dialysis 
facilities (providers) with respect to all-cause hospital 
readmissions which are frequent outcomes in dialysis 
patients. Subsequently, our own works have elucidated 
several operating characteristics [9, 10] of the FE 
profiling models and have been applied to assess the 
performance of dialysis facilities with respect to all-
cause 30-day readmissions [11, 12, 14]. However, to 
date there is no work that examines the performance of 
FE models in the low information context where the 
outcome is sparse. The current study starts to fill this 
gap in knowledge. Several findings from this study 
have important practical impact in the low information 
context. First, even though the provider-specific 
estimates with true ! i < 0  (truly B providers) are 
unstable, they are in the same direction as the true 
effects and the instability has moderated effects on the 

estimation of SRRs; i.e., SRRs are reasonably well-
estimated and are the relevant quantities used in 
practice as they incorporate patient case-mix. 
However, if the provider-specific estimates, !̂ i ’s, are 
themselves of interest, then our proposed correction 
method can be used to provide better estimates, 
especially corresponding to uncorrected !̂ i  that are 
substantially less than zero. Second, the consequence 
of sparse outcome data impacts more directly inference 
for B providers because true over-performers are the 
ones that contribute no or few events (readmissions); 
however, this “deficit” in estimation does not greatly 
impact the identification of W providers/under-
performers and ND providers, which is the current 
focus of profiling in practice. Development of novel 
methods that have better sensitivity for flagging B 
providers would be useful when public policies or 
regulatory goals incorporate an incentive for over-
performers. 
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FE = Fixed effects 
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Figure 6: Rate of false negative (FN) for incorrectly flagging better (B) providers as worse (W) providers ( FNB!W ) and 
incorrectly flagging B providers as providers not different (ND) from the reference ( FNB!ND ) for the uncorrected and corrected 
estimation methods across data sparsity of 3%, 5%, 10%, and 20% overall outcome event rate. Displayed is average rates, 
averaged over 200 simulated data sets. 
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USRDS = United States Renal Data System  

RE = Random effects 

SRR = Standardized readmission ratio  

W = Worse 

ND = Not different 

B = Better 

SEN = Sensitivity  

SPEC = Specificity 

APPENDIX 

Provider-Specific Modified Score Equation Penalties 

We describe details of calculating the penalties for the Firth’s modified score equations, adapted for the high-
dimensional FE profiling model in Section 3.2. For a fixed ! , the hat matrix used in the estimation of !  with Firth’s 
correction is H =W 1/2X(XTWX)!1XTW 1/2  where  W =W1 !!!WF ,  X = X1 !!! XF , 

 
Wi =diag{pi1(1! pi1 ),…, piNi (1! piNi )}  are provider-specific weight matrices (see Section 3.2). Direct calculation yields 

H =W 1/2X(XTWX)!1XTW 1/2  

 =W
1/2X{(X1 !!! XF )

T (W1 !!!WF )(X1 !!! XF )}
"1XTW 1/2  

 =W
1/2X(X1

TW1X1 !!! XF
TWFXF )

"1XTW 1/2  

 =W
1/2X{(X1

TW1X1 )
!1 "!" (XF

TWFXF )
!1}XTW 1/2  

 = (W1
1/2X1 !!!WF

1/2XF ){(X1
TW1X1 )

"1 !!! (XF
TWFXF )

"1}XTW 1/2  

 = {W1
1/2X1(X1

TW1X1 )
!1 "!"WF

1/2XF (XF
TWFXF )

!1}XTW 1/2  

 = {W1
1/2X1(X1

TW1X1 )
!1 "!"WF

1/2XF (XF
TWFXF )

!1}(X1
TW 1/2 "!" XF

TW 1/2 )  

 =W1
1/2X1(X1

TW1X1 )
!1X1

TW1
1/2 "!"WF

1/2XF (XF
TWFXF )

!1XF
TWF

1/2 .  

Thus, diag(H ) = [diag{W1
1/2X1(X1

TW1X1 )
!1X1

TW1
1/2}, ...,diag{WF

1/2XF (XF
TWFXF )

!1XF
TWF

1/2}] . 

Dependence Structure of Covariates in Simulation Model 

The correlation matrix and the standard deviation of the patient case-mix variables,  Zij1,…,Zij15 , are summarized 
in Table 1. 

Table 1: Correlation Matrix of  Z1,…,Z15  and their Standard Deviations 

 Correlation 

Z1    Z2    Z3    Z4    Z5    Z6    Z7    Z8    Z9    Z10    Z11    Z12    Z13    Z14    Z15   

  -0.06   -0.01   -0.31   0.04   0.08   -0.12   -0.05   0.28   -0.04   -0.13   -0.22   -0.06   0.02   -0.01  

  1   0.03   -0.16   0.20   0.33   -0.05   0.08   0.07   0.01   -0.04   -0.05   -0.04   -0.05   0.00  

    1   0.00   0.03   0.03   0.00   0.10   0.00   0.07   0.08   0.01   0.02   0.02   0.10  

      1   -0.01   -0.67   0.00   0.09   -0.03   0.11   0.17   0.04   0.01   0.04   0.04  

        1   0.06   0.00   -0.10   0.02   0.05   0.02   -0.06   -0.09   0.02   0.01  

          1   -0.07   0.21   -0.03   -0.01   -0.12   -0.04   -0.02   -0.06   0.01  

            1   -0.02   -0.03   0.00   0.07   0.06   0.25   0.02   -0.02  
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              1   0.06   0.13   0.09   0.06   0.02   -0.01   0.08  

                1   0.48   0.15   0.11   0.06   0.18   0.06  

                  1   0.33   0.17   0.07   0.19   0.14  

                    1   0.21   0.29   0.10   0.10  

                      1   0.34   0.03   0.03  

                        1   0.02   0.01  

                          1   0.01  

                            1  

 

 Standard Deviation 

1.59   1.03   0.87   1.43   0.50   0.49   0.10   0.24   0.41   0.36   0.32   0.20   0.19   0.16   0.19  

 

 

Online Supplementary Materials: Analysis Example and R Codes 

Example dataset, R codes, and tutorial for fitting the uncorrected and corrected models are publicly available at 
https://sites.google.com/view/usrds-modeling/software. 
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