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Abstract: Survival analysis concerns the analysis of time-to-event data and it is essential to study in fields such as 
oncology, the survival function, S(t), calculation is usually used, but in the presence of competing risks (presence of 
competing events), is necessary introduce other statistical concepts and methods, as is the Cumulative incidence 
function CI(t). This is defined as the proportion of subjects with an event time less than or equal to. The present study 
describe a methodology that enables to obtain numerically a shape of CI(t) curves and estimate the benefit time points 
(BTP) as the time (t) when a 90, 95 or 99% is reached for the maximum value of CI(t). Once you get the numerical 
function of CI(t), it can be projected for an infinite time, with all the limitations that it entails. To do this task the R function 
Weibull.cumulative.incidence() is proposed. In a first step these function transforms the survival function (S(t)) obtained 
using the Kaplan–Meier method to CI(t). In a second step the best fit function of CI(t) is calculated in order to estimate 
BTP using two procedures, 1) Parametric function: estimates a Weibull growth curve of 4 parameters by means a non-
linear regression (nls) procedure or 2) Non parametric method: using Local Polynomial Regression (LPR) or LOESS 
fitting. Two examples are presented and developed using Weibull.cumulative.incidence() function in order to present the 
method. The methodology presented will be useful for performing better tracking of the evolution of the diseases 
(especially in the case of the presence of competitive risks), project time to infinity and it is possible that this 
methodology can help identify the causes of current trends in diseases like cancer. We think that BTP points can be 
important in large diseases like cardiac illness or cancer to seek the inflection point of the disease, treatment associate 
or speculate how is the course of the disease and change the treatments at those points. These points can be important 
to take medical decisions furthermore. 

Keywords: Survival function, projection, Weibull growth curve, non linear regression.  

1. INTRODUCTION 

A branch of statistics that deals with analysis of time 
duration until one or more events happen, such as 
death in biological organisms and failure in mechanical 
systems [1] is known as survival analysis [2]. Survival 
analysis concerns the analysis of time-to-event data 
and it is essential to study in fields such as oncology, 
the survival function, S(t) , calculation is usually used. 

In survival data, subjects experience only one type 
of event over follow-up, such as death from a disease 
(e.g. cancer). Unfortunately, life is very complex, and 
sometimes, subjects can potentially experience more 
than one type of a certain event (e.g. senior patients at 
an oncology department, could possibly die from heart 
attack or breast cancer, or even traffic accident). When 
only one of these different types of event can occur, we 
refer to these events as “competing events” [3]. In this 
case, one competing event compete with each other to 
deliver the event of interest (e.g. death due to illness), 
and the occurrence of one type of event will prevent the 
occurrence of the others. As a result, we call the 
probability of these events as “competing risks” [4, 5], 
in a sense that the probability of each competing event 
is somehow regulated by the other competing events, 
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which has an interpretation suitable to describe the 
survival process determined by multiple types of event 
[3]. 

In the presence of competing risks (presence of 
competing events), is necessary introduce statistical 
concepts and methods for the analysis of survival data. 
Cumulative incidence CI(t)  is defined as the 
proportion of subjects with an event time less than or 
equal to t  [4].  

In this field the Cumulative incidence function, 
CI(t) , is defined as the probability that a particular 
event related with time, such as occurrence of a 
particular disease, has occurred before a given time. It 
is equivalent to the incidence, calculated using a period 
of time during which all of the individuals in the 
population are considered to be at risk for the outcome. 
It is sometimes also referred to as the incidence 
proportion, but in function of the evolution of the 
disease [6] not all the events occur at the same 
moment or with the same speed, so it would be of 
interest assess a possible benefit time points (BTP) 
when the disease could be stable or change. 

1.1. Survival Analysis 

The survival function S(t)  analyses the "time to 
event outcome variable". 
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A time to event variable, t , reflects the time until a 
participant has an event of interest (e.g., heart attack, 
goes into cancer remission, death, curation, etc). 
Statistical analysis of time to event variables requires 
special techniques [1] than those described thus far for 
other types of outcomes because of the unique 
features of time to event variables. Statistical analysis 
of these variables is called time to event analysis or 
survival analysis [6] even though the outcome is not 
always death. What we mean by "survival" in this 
context is remaining free of a particular outcome over 
time. 

The survival function, S(t) , of an individual is the 
probability that they survive until at least time t. 

S(t) = Pr(T > t)    (1) 

where t  is a time of interest and T  is the time of 
event. 

The survival curve of S(t)  is non-increasing (the 
event may not reoccur for an individual) and is limited 
within [0,1]. Note that the event might not happen 
within our period of study and we call this right-
censoring (See Figure 1). 

 
Figure 1: Survival function S(t)  for the first example (Tongue 
cancer using Kaplan–Meier). 

The questions of interest in survival analysis are 
questions like: What is the probability that a participant 
survives 10 or 20 years? Are there differences in 
survival between groups (e.g., between those assigned 
to a new versus a standard drug in a clinical trial)? How 
do certain personal, behavioural or clinical charac-
teristics affect participants’ chances of survival? [1] 

1.2. Survival Time t  as a Random Variable 

The survival analysis of a random variable of time 
study the T  variables "time until an event or event" is 

known as survival analysis. This analysis contemplates 
a specific methodology since T  measurements occur 
frequently before the event and patients do not enter 
the study at the same time [7].  

The event considered is not whether or not death 
occurs, for example, but death related to the disease. If 
a death unrelated to the disease is considered, an 
information bias occurs, so the patient died for a cause 
that is not related to the event of interest should be 
considered as censored and compute their follow-up 
time as incomplete or lost. 

The event or event studied must also be perfectly 
defined in order to determine exactly the date of the 
event. This event is almost always associated with the 
death of the patient but it does not have to be so, since 
it can also refer to the discharge date, the date of 
remission of the disease, the date a clinical event 
occurs (example: Cardiovascular), [6] the date of 
relapse, the date of relapse or failure, etc. 

From the clinical point of view, survival can be 
defined as: 

• Disease-free survival: Time during which the 
patient is free of any evidence of illness. It is 
applicable to patients who undergo radical root 
treatment and disappear the moment a relapse 
occurs. If the patient presents advanced disease, 
the concept of disease-free survival is not 
applicable, but the duration of the response. 
Event-free survival:  

• Global survival: Life time from the start of study 
treatment to death or to the last known data, in 
case of abandonment or loss of follow-up. 

One of the objectives of these techniques is to infer 
the relationship between T  and the explanatory 
variables of the model X  that are known and controlled 
by the researcher in the study. The variable T  does 
not belong to a normal population and can be 
distributed according to exponential function, Weibull, 
log-normal or log-logistic. 

The differences between the factors studied by the 
survival analysis can be performed using parametric 
and non-parametric techniques. A summary is: 

• Parametric: 

- Exponential Distribution.  

- Weibull Distribution.  

- Log-Normal Distribution.  
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• Non-parametric: 

- Kaplan-Meier.  

- Log-rank.  

- Cox Regression (Semi-Parametric method) 

We’re measuring time-to-event in the real world and 
so there’s practical constraints on the period of study 
and how to treat individuals that fall outside that period. 
Censoring is when the event of interest (death, relapse, 
curing, failure, etc) occurs outside the study period, and 
truncation is due to the study design. 

It is sometimes unknown if the patient has 
presented the event studied (death, relapse, etc.) or 
not. These data are known as the censored data [7, 8]. 
There are several types of censorship such as:  

• Censorship type I: is the most common. The 
study has a limited time. If the time until the 
event occurs in the patient is less than the time 
set, the time obtained is taken, otherwise the 
time until the end of the study.  

• Type II Censorship: The study ends when the 
event has occurred in a given number of 
individuals.  

• Random censorship: The time until the event is 
observed less than or equal to a constant in 
censorship I. In this case it is not a constant but 
a random variable d, which takes into account 
the causes not considered in the experiment and 
that cause the censorship. The failure time is 
observed when T < d .  

The survival function S(t)  (Figure 1) is defined as 
the probability of a patient surviving a time t , if T  is 
the survival time variable. It is a decreasing function 
that satisfies:  

S(t) ! 0,S(0) = 1,S(+") = 0   (2) 

1.3. Kaplan-Meier Method 

It is a non-parametric method widely used to 
estimate survival function [9, 10] (it does not assume 
any probability function) that uses maximum likelihood, 
maximising the sample likelihood function. We allow for 
right-censoring (but not truncation). We start with a 
random sample of size n , drawn from a population, it 
will be formed by k(k ! n)  times t1 < t2 < ... < tk  in 
which events are observed. At each time, there are no 
"individuals at risk" and di  events are observed [1]  

This model gives us a maximum-likelihood estimate 
of the survival function S(t)  with Kaplan-Meier product-
limit [10] estimator defined as, 

 

S
!
(t) =

ti<t
!(1" di

ni
)   (3) 

where d  is the frequency of interest events (e.g. 
deaths, curing, etc) and n  the individuals at risk at time 
t . The cumulative product (equation 3) gives us a non-
increasing curve of survival S(t) , at any times t  during 
the study, the estimated probability of survival from the 
start to that time t . A good survival estimator is the 
median of survival time (half-life), used frequently. 

Kaplan-Meier method calculates survival every time 
t  and an event of interest is presented: 

  (4) 

Where t1 < t2 < ... < tk  is defined at times where the 
event of interest occurs and nj  is the number of 
survivors before t j  and dj  is the number of individuals 
presenting the event at time t j . 

This function S(t)  is usually represented on a graph 
as such as the example in Figure 1. 

Survival table [8] is another possibility to compute 
S(t) , in it you can present the values of proportion of 
survivors, time, number of individuals, cumulative 
survival rate, probability density, and risk ratio, number 
of abandonment, number of individuals exposed to risk, 
number of terminal events, proportion of individuals 
who have completed, etc. 

In a general sense, S(t)  is the survival density 
function, which indicates the time of the greatest 
number of events T . H (t)  is the instantaneous failure 
rate or risk function and represents the probability that 
an individual remains alive between the moment t  and 
the T +!t , previously knowing that it has arrived alive 
at time t. 

There are many methods associated with survival 
curves, used to compare survival when different levels 
of a factor associated with an experimental design are 
available. The log-rank test is used to compare the 
survival functions according to the assigned treatments 
or some relevant factor. 
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In order to be able to construct an explanatory 
model of the survival function and to explain the 
relationship between the survival time and the 
independent variables of the model (sex, age, 
treatment, stage of disease, tumour marker, etc.), we 
can use the Cox regression . This methodology [1, 7] 
allows us to more accurately estimate the survival 
function S(t)  and to determine which variables best 
explain patients’ survival. The Cox regression is 
represented by a risk function:  

H (t, x1, ..., xn ) = ho (t)e
!1X1+...+!nXn   (5) 

Where ho (t)  is the baseline risk and e!1X1+...+!nXn  
depends on the independent or explanatory variables 
(weight, age, treatment, concomitant factors, etc.). 

In the Cox model, the coefficients !  are determined 
first and by the Wald test or by the logarithm of 
maximum likelihood it will be determined whether or not 
they are significant for the model. Subsequently it is 
estimated ho (t) . 

1.4. A First Example of Survival Analysis with R 

The first working example is the study of survival 
time of a set of patients affected by two variants of the 
tongue cancer and its survival function is going to be 
estimated using the Kaplan–Meier method previously 
exposed, this example will be used later for the 
purpose of this article. This data set comes from the R 
package KMsurv. See R Documentation [11] for more 
information. 

The tongue data frame has 80 rows and 3 columns 
and this data frame contains the following columns: 

• Tumor DNA profile (1=Aneuploid Tumor, 
2=Diploid Tumor)  

• Time to death or on-study time, weeks  

• Death indicator (0=alive, 1=dead) 

Source was obtained from Klein and Moeschberger 
(1997) [8]. 

The survival data estimated was presented in Table 
1 and in Figure 1.  

The life table with the survival function estimation 
and CI95 was represented at Table 2.  

Figure 1, represents S(t)  with survival decreasing 
from 100% to 20% over 400 weeks is shown with lines 
above and below that indicate the 95% confidence 
limits for the survival estimates. 

1.5. Cumulative Incidence Curves CI(t)  and 
Competitive Risk (CR) 

Competing risks (CR) are present in many medical 
articles dealing with survival analysis: about half of the 
Kaplan-Meier analyses in medical journals are 
susceptible to CR. The issue may become even more 
relevant in the future, e.g. for elderly patients who are 
more likely to experience several potential disease 
endpoints, i.e. the occurrence of competing events 
increases [12]. The Kaplan-Meier method is applied to 
estimate the cumulative incidence of an event, using 
Cumulative Incidence Curves CI(t) , computed as 1-
(Kaplan-Meier) estimator. This method is appropriate 
for endpoints such as overall survival, but also for 
composite endpoints such as progression-free survival 
[12].  

So, complementary to the estimate of S(t)  and 
frequently, the researchers prefer to generate CI(t)  
(See Figure 2), as opposed to survival curves S(t)  
which show the cumulative probabilities of experiencing 

Table 1: Survial Data in Tongue Cancer Data-Set 

1 3 3 4 10 13 13 16 16 24 26 27 28 30 

30 32 41 51 65 67 70 72 73 77 91 93 96 100 

104 157 167 61+ 74+ 79+ 80+ 81+ 87+ 87+ 88+ 89+ 93+ 97+ 

101+ 104+ 108+ 109+ 120+ 131+ 150+ 231+ 240+ 400+ 1 3 4 5 

5 8 12 13 18 23 26 27 30 42 56 62 69 104 

104 112 129 181 8+ 67+ 76+ 104+ 176+ 231+     

The median survival is 93 (67 and NA) weeks is 

 n events median 0.95LCL 0.95UCL 

52 31 93 67 NA  
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the event of interest. Cumulative incidence, or 
cumulative failure probability, is computed as 1-S(t), 
and can be computed easily from the life table using 
the Kaplan-Meier approach. The cumulative incidence 
function, also referred to as the cause-specific failure 
probability [12], can be interpreted as the cumulative 
probability that a failure of type k  occurs on or before 
time t  [13]. The cumulative incidence function helps to 
determine patterns of failure and to assess the extent 
to which each component contributes to overall failure. 
For competing risks data one often wishes to estimate 
the cumulative incidence probability of failure of a 
specific cause, k , at time t , that is [9]: 

Pt (k) = P(Tj ! t," j = k) = 0

1
# $k (s)S(s)du  (6) 

where ! j  indicates the cause of type of failure, S(s)  is 
the overall survival probability, and !k (s)  is the cause-
specific hazards for cause k  [14]. For more information 
about calculation cumulative incidence curve CI(t)  see 
[9]. The cumulative incidence estimator can be 
expressed in terms of the Kaplan–Meier estimator as, 

CI(t) =
ti<t
! di
ni
K(ti )   (7) 

where, ti  is the distinct ordered observed times, ni  is 
the number of patients who at risk beyond ti , di  is the 
number of events of interest at ti , K(ti )  is the Kaplan–
Meier estimate of the probability of the free of all events 
at the time ti . 

Table 2: Life Table with the Survival Function Estimation and CI95 using Kaplan-Meier  

Time n.risk n.event survival std.err lower 95% CI upper 95%CI 

1 52 1 0.981 0.0190 0.944 1.000 

3 51 2 0.942 0.0323 0.881 1.000 

4 49 1 0.923 0.0370 0.853 0.998 

10 48 1 0.904 0.0409 0.827 0.988 

13 47 2 0.865 0.0473 0.777 0.963 

16 45 2 0.827 0.0525 0.730 0.936 

24 43 1 0.808 0.0547 0.707 0.922 

26 42 1 0.788 0.0566 0.685 0.908 

27 41 1 0.769 0.0584 0.663 0.893 

28 40 1 0.750 0.0600 0.641 0.877 

30 39 2 0.712 0.0628 0.598 0.846 

32 37 1 0.692 0.0640 0.578 0.830 

41 36 1 0.673 0.0651 0.557 0.813 

51 35 1 0.654 0.0660 0.537 0.797 

65 33 1 0.634 0.0669 0.516 0.780 

67 32 1 0.614 0.0677 0.495 0.762 

70 31 1 0.594 0.0683 0.475 0.745 

72 30 1 0.575 0.0689 0.454 0.727 

73 29 1 0.555 0.0693 0.434 0.709 

77 27 1 0.534 0.0697 0.414 0.690 

91 19 1 0.506 0.0715 0.384 0.667 

93 18 1 0.478 0.0728 0.355 0.644 

96 16 1 0.448 0.0741 0.324 0.620 

100 14 1 0.416 0.0754 0.292 0.594 

104 12 1 0.381 0.0767 0.257 0.566 

157 5 1 0.305 0.0918 0.169 0.550 

167 4 1 0.229 0.0954 0.101 0.518 
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Furthermore competing risks are events that occur 
instead of the failure event of interest, and we cannot 
treat these as censored [15]. When you have 
competing events, you want to focus on cause-specific 
hazards rather than standard hazards. When we have 
competing events, we want to focus on the cumulative 
incidence function (CI(t) ) rather than the survival 
function S(t) , Cox regression is fine for cause-specific 
hazards, but for CI(t)  you need to go through a lot of 
work competing-risks regression by the method of [16] 
is a possibility. 

2. METHOD PROPOSED TO PROJECT 
CUMULATIVE INCIDENCE CURVE 

Byung Mook Weona and Jung Ho Jeb [17] describe 
a methodology that enables us to obtain separate 
measurements of scale and shape variances in survival 
curves and these authors demonstrated that they will 
be useful for performing better tracking of ageing 
statistics and it is possible that this methodology can 
help identify the causes of current trends in human 
ageing. Also, in this work it is desired to find a method 
that generalizes this process to diseases where 
objectives such as survival analysis, such as cancer 
and heart disease, are used. 

2.1. The Cumulative Incidence Curve and its 
Shaping 

We propose the use of a parametric method based 
on the Weibull growth function or Weibull sigmoid 
model inspired in a previous research model [18]. We 
think this method can estimate 90, 95 and 99 maximum 
percent of (CI(t) ), X-axis (time) points of great clinical 
interest known as benefit time points (BTP). 

The Weibull distribution of four parameters is an 
asymptotic growth function and can be expressed as, 

W x( ) = a ! be!cx
m

  (8) 

where W (x)  represents an approximation to (CI(t) ) 
being expressed at each time (x). a , b , c  and m  are 
parameters to be estimated and e  is the base of the 
natural logarithms. 

Parameter a  is the upper asymptote of limiting 
value of the response variable (W): 

x!"
limW x( ) = a    (9) 

which represents the maximum cumulative survival 
modelled 1! S(t) . b  is the lower asymptote, c  is the 

parameter governing the rate at which the response 
variable approaches its potential maximum a  or 
growth rate. Finally, m  is a parameter that controls the 
x-ordinate (time) for the point of inflection (allometric 
constant). The four parameter Weibull growth model 
can be easily transformed in a 3, 2 and 1 parameter 
Weibull model to adapt the relation between dependent 
(CI(t) ) at each time "x". 

When m =1  the Weibull model is a simple 
exponential growth curve. 

Finally, once a good estimate of the function 
parameters ( a , b , c  and m ) is obtained, it is possible 
to calculate the desired points on the X axis using the 
inverse function (CI(t)!1 ). If the Weibull curve correctly 
represents the function, it has the advantage that it can 
be projected over time and its immediate application is 
to know whether or not the curve (CI(t) ) has reached 
saturation and when it will reach this maximum limit. 

2.2. Representing CI(t)  using the Proposed Weibull 
Model and its Calculation 

 Here, we present the calculation of survival 
cumulative incidence CI(t)  from S(t) using Kaplan-Meir 
method. To do this task we have create the function 
Cumulative.Incidence.Curves() , see Appendix I. 

Cumulative.Incidence.Curves() function 
transforms the function S(t)  into CI(t) : 1-S(t), the 
results for the case study is presented on Table 3 and 
drawn in Figure 2.  

In order to detect some relevant clinical points over 
CI(t)  we propose fit it using a Weibull growth model 
(W (x) ) of 4 parameters, before commented: 

W x( ) = a ! be!cx
m

  (10) 

where a  is the upper asymptote of limiting value of the 
response variable (W) , b  is the lower asymptote, c  is 
the growth rate and m  is the point of inflection. We will 
estimate these in order to characterise the function 
CI(t)  and trying to determine a benefit time points 
(BTP). 

The specific function Weibull.cumulative. 
incidence() has been developed to be able to estimate 
the parameters of this model by non-linear regression 
using the R function, nls2(). Fundamentally this 
function adjust a weibull grown model with 4 
parameters (equation 10) using a non-linear regression 
procedure. 
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Table 3: Cumulative Indicedence Curve (CI(t) ) Calculate from the Survival Table  

 myFit.time myFit.surv myFit.std.err myFit.lower myFit.upper 

1 1 0.9807692 0.01941839 0.9441432 1.0000000 

2 3 0.9423077 0.03431318 0.8810191 1.0000000 

3 4 0.9230769 0.04003204 0.8534195 0.9984199 

4 10 0.9038462 0.04523081 0.8271685 0.9876318 

5 13 0.8653846 0.05469418 0.7774159 0.9633075 

6 16 0.8269231 0.06344324 0.7302341 0.9364144 

7 24 0.8076923 0.06766650 0.7073724 0.9222396 

8 26 0.7884615 0.07182948 0.6849189 0.9076572 

9 27 0.7692308 0.07595545 0.6628317 0.8927093 

10 28 0.7500000 0.08006408 0.6410776 0.8774289 

11 30 0.7115385 0.08829642 0.5984672 0.8459729 

12 32 0.6923077 0.09245003 0.5775712 0.8298369 

13 41 0.6730769 0.09664709 0.5569274 0.8134500 

14 51 0.6538462 0.10090092 0.5365233 0.7968243 

15 61 0.6538462 0.10090092 0.5365233 0.7968243 

16 65 0.6340326 0.10548917 0.5156073 0.7796580 

17 67 0.6142191 0.11016365 0.4949392 0.7622454 

18 70 0.5944056 0.11494041 0.4745101 0.7445954 

19 72 0.5745921 0.11983624 0.4543127 0.7267155 

20 73 0.5547786 0.12486893 0.4343412 0.7086117 

21 74 0.5547786 0.12486893 0.4343412 0.7086117 

22 77 0.5342312 0.13044827 0.4137057 0.6898696 

23 79 0.5342312 0.13044827 0.4137057 0.6898696 

24 80 0.5342312 0.13044827 0.4137057 0.6898696 

25 81 0.5342312 0.13044827 0.4137057 0.6898696 

26 87 0.5342312 0.13044827 0.4137057 0.6898696 

27 88 0.5342312 0.13044827 0.4137057 0.6898696 

28 89 0.5342312 0.13044827 0.4137057 0.6898696 

29 91 0.5061138 0.14121165 0.3837502 0.6674945 

30 93 0.4779963 0.15234403 0.3546085 0.6443177 

31 96 0.4481216 0.16545504 0.3240114 0.6197713 

32 97 0.4481216 0.16545504 0.3240114 0.6197713 

33 100 0.4161129 0.18130051 0.2916674 0.5936554 

34 101 0.4161129 0.18130051 0.2916674 0.5936554 

35 104 0.3814368 0.20111100 0.2571797 0.5657292 

36 108 0.3814368 0.20111100 0.2571797 0.5657292 

37 109 0.3814368 0.20111100 0.2571797 0.5657292 

38 120 0.3814368 0.20111100 0.2571797 0.5657292 

39 131 0.3814368 0.20111100 0.2571797 0.5657292 

40 150 0.3814368 0.20111100 0.2571797 0.5657292 

41 157 0.3051494 0.30074180 0.1692469 0.5501796 

42 167 0.2288621 0.41686804 0.1010963 0.5180988 

43 231 0.2288621 0.41686804 0.1010963 0.5180988 

44 240 0.2288621 0.41686804 0.1010963 0.5180988 

45 400 0.2288621 0.41686804 0.1010963 0.5180988 
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Figure 2: Cumulative survival function CI(t) . 

Weibull.cumulative.incidence() has been 
encapsulated within the library BDSbiost3 [Machine 
learning and advanced statistical methods for omic, 
categorical analysis and others] [19] that has been 
developed by the author and is located in Github 
https://github.com/amonleong/BDSbiost3. The model 
accuracy (goodness of fit) was tested using Efron’s 
pseudo R2, Min.max.accuracy (for minimum, maximum 
accuracy, more substantial indicates a better fit, and a 
perfect fit is equal to 1) and root mean square error 
(RMSE) which has the same units as the predicted 
values. The Weibull sigmoid model obtained best 
scores and was selected as a good function that fits 
and extrapolates curve. 

The Weibull.cumulative.incidence() function also 
allows to represent the estimated function, its CI95% of 
prediction and the BTP points of interest of 90, 95 and 
99% of the asymptote. 

In Table 4 is shown the parameters obtained in the 
estimation of the Weibull curve using: 
Weibull.cumulative.incidence().  

The value of the estimation of the parameters of our 
case of use is: 

• a  = 0.81314 (upper asymptote or Asym)  

• b  = 0.75735 (lower asymptote or Drop)  

• c  = -5.18548 (growth rate or lrc)  

• m  = 1.13684 (point of inflection or pwr) 

The goodness of test computed for the model is:  

• Efron’s pseudo r-squared = 0.974  

• Min.max.accuracy = 0.923  

• RMSE = 0.032  

In Figure 3 is presented the curve fitted for CI(t) , 
and the Weibull model estimation is shown (red line 
with the CI95%). 

Also we can calculate in Figure 3 where are the 
possible benefit time points (BTP) as the time to reach 
the 90%, 95% and 99% of the upper asymptote, a , 
using the inverse of the Weibull growth function 
W (x)!1 . So, we can obtain the value of time to reach 
some value of the upper asymptote, we will consider 
this a possible benefit time points (BTP). 

Finally as a result of the function 
Weibull.cumulative.incidence() we have estimated 
the presumable BTP: 

183.9 time units to reach the 90% of maximum 
value of CI(t)  246.0 time units to reach the 95% of 
maximum value of CI(t)  361.6 time units to reach the 
99% of maximum value of CI(t)  

2.3. Local Polynomial Regression (LPR) 

Another possibility to make a projection of the CI  
curve is to use a non-parametric method. After trying 
several it has been chosen Local Polynomial 
Regression (LPR) fitting. 

LPR is a family of flexible and robust non-
parametric regression methods that allow fitting smooth 
curves between two or more independent variables. 
This type of methods combine multiple regression 
models in a k-nearest-neighbor neighbour-based meta-

Table 4: Estimation of the 4 Parameters Model Weibull for the Cumulative.Survival.Data.Frame  
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model. The method used in the study was LOESS 
(locally scatter-plot smoothing) as the generalization of 
LOWESS (locally weighted scatterplot smoothing). The 
mathematical description of LPR and LOESS can be 
found at [20].  

 
Figure 3: Cumulative survival function CI(t) (grey line) and 
the Weibull growth curve W(x) estimate (red line with CI95% 
in blue) with the 3 benefit time points obtained. 

This method will be used for the following example 
and it has also been incorporated into the function 
Weibull.cumulative.incidence(). 

Is possible to get an R-squared for a LOESS fit 
using:  

pseudo ! R2 = 1! SS.resid / SS.variable       (11) 

where SS.resid is the sum of square for the residuals 
and SS.variable is the sum of square of the variable of 
interest (Y). 

3. AN ALTERNATIVE CASE OF USE FOR 
WEIBULL.CUMULATIVE.INCIDENCE()  

Here, We present other examples of the use of the 
function Weibull.cumulative.incidence(), now using 
LPR. 

The second example (Figures 4, 5 and 6) studied 
belong to the baboon data-set of the package KMSurv. 
This dataset contains the survival time of few patients 
during 2000 days of clinical treatment (Cancer) [8] 

Figure 4 shows the survival function for the data in 
this example. 

Figure 5 shows the CI(t)  function for the data in 
this example and the estimation of the 4-parameter 
Weibull function, along with the estimated BTPs. 

Figure 6 presents the function CI(t)  for the data in 
this example and the estimation of the non-parametric 
function LOESS (), together with the estimated BTP. 

 
Figure 4: S(I) for the example of baboon data-set (Klein and 
Moeschberger (1997) [8]. 

 

 
Figure 5: Cumulative survival function CI(t) (grey line) and 
the Weibull growth curve W(x) estimate (red line with CI95% 
in blue) with the 3 benefit time points obtained in the case of 
cardiovascular events. 

 

 
Figure 6: Cumulative survival function CI(t) (grey line) and 
the LOESS() growth curve L(x) estimate (red line with CI95% 
in blue) with the 3 benefit time points obtained in the case of 
cardiovascular events. 

The goodness of test computed for the Weibull 
model (parametric) is:  

• Efron’s pseudo r-squared = 0.882  

• Min.max.accuracy = 0.998  

• RMSE = 0.0215  
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The goodness of test computed for the LOESS 
method (non parametric) is:  

• Pseudo r-squared = 0.981704  

4. CONCLUSIONS 

In this work we present the use of the cumulative 
survival function, 1! S(t) , as a form to calculate a 
benefit time points (BTP) as a time when a 90, 95 or 
99% is reach for the maximum 1! S(t) . To do this task 
we propose the use of the R function: 
Weibull.cumulative.incidence() 

These function transforms the cumulative survival 
curve 1! S(t)  (CI(t) ) obtained using the Kaplan–Meier 
method and transform S(t)  to 1! S(t)  . 

In a second step, Weibull.cumulative.incidence() 
estimates a Weibull growth curve of 4 parameters to 

characterise the best fit function for the CI(t) and its 
inverse CI(t )!1 to estimate the BCP is a best way. 

Alternativelly, Weibull.cumulative.incidence() can 
also estimate BTP using a non parametric LOESS() 
growth curve. 

BTP can be important in diseases like cardiac 
illness or cancer to seek the inflection point of the 
disease, treatment associate or speculate how is the 
course of the disease and change the treatments at 
those points. 

Finally, this model has many possibilities and 
applications for those situations in which there is great 
uncertainty and it is necessary to make temporal 
projections, such as microbiological growth models, or 
epidemiological models, as in the world of coronavirus 
pandemic. 

APPENDIX: FUNCTION TO COMPUTE CUMULATIVE INCIDENCE FUNCTION CI(t)  

This function allows calculate Cumulative incidence function CI(t)  using estimations of S(t) . Is written in R 
language: 

#Example in R  

#function  

Cumulative.Incidence.Curves <- function(survival.data.frame) {#1-S(t)  

survival.data.frame$surv_1 <- 1- survival.data.frame$surv 

survival.data.frame$lower_1 <- 1- survival.data.frame$lower 

survival.data.frame$upper_1 <- 1- survival.data.frame$upper 

survival.data.frame$upper_1 

survival.data.frame$lower_1 

survival.data.frame$surv_1 

plot(survival.data.frame$time, survival.data.frame$surv_1,  

ylim=c(0,1), ylab="1-S(t)", xlab="Time", lty=1, type="l")  

lines(survival.data.frame$time, survival.data.frame$lower_1,  

ylim=c(0,1), ylab="1-S(t)", xlab="Time", lty=3, type="l") 

lines(survival.data.frame$time, survival.data.frame$upper_1,  

ylim=c(0,1), ylab="1-S(t)", xlab="Time", lty=3, type="l")  

#return the new data-frame with the 1-S(t)  
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return(survival.data.frame)  

} 

#Example of use  

#' #Example with a tongue cancer of the survival package from library KMsurv (Time to death or on-study time, 
weeks) 

#=====> 1. Load libraries: survival and KMsurv <=====# 

#Esample with the data-set tongue.  

# R packages : survival & KMsurv  

library(survival)  

library(KMsurv) 

#=====> 2. Data-set tongue from KMsurv <=====#  

data(tongue) 

attach(tongue) 

#see the events done in the data-frame (see +)  

mySurvObject <- Surv(time, delta)  

mySurvObject  

detach(tongue)  

#=====> 3. Kaplan-Meier estimate and pointwise bounds <=====#  

data(tongue)  

attach(tongue)  

mySurv <- Surv(time[type==1], delta[type==1])  

#Estimate the survival mean and CI95  

(myFit <- survfit(mySurv ~ 1))  

#the life table with the survival funtion estimation and CI95 summary(myFit) 

#outputs of the Kaplan-Meier estimate:  

myFit$surv # outputs the Kaplan-Meier estimate at each t_i  

myFit$time # t_i  

myFit$n.risk # Y_i  

myFit$n.event # d_i  

myFit$std.err # standard error of the K-M estimate at t_i  
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myFit$lower # lower pointwise estimates (alternatively, $upper)  

# plot Kaplan-Meier estimate 

plot(myFit, main="Kaplan-Meier estimate with 95 xlab="time", ylab="survival function")  

#use the new function  

#1.First:store the life table in a new data-frame attach(myFit)  

myfit.data.frame <- data.frame(time,surv,std.err, lower, upper)  

myfit.data.frame  

#2.Second: Calculate 1-S(t) and plot a graph 

res <- Cumulative.Incidence.Curves(myfit.data.frame)  

# funtion to transform Survival Cumulative Incidence Curves  

#example of use the function Weibull.cumulative.incidence() 

#use the new function Weibull.cumulative.incidence()  

#1.First:store the life table in a new data-frame attach(myFit)  

myfit.data.frame <- data.frame(time,surv,std.err, lower, upper) 

myfit.data.frame  

#2.Second: Calculate 1-S(t) and plot a graph 

res1 <- Cumulative.Incidence.Curves(myfit.data.frame)  

res1  

#download and install in R the library(BDSbiost) in: https://github.com/amonleong/BDSbiost3 

#3.Calculate a Weibull function and analyse 1-S(t) curve and its parameters 

a<-Weibull.cumulative.incidence(res1,type = F) #WEIBULL 4 PARAMETERS METHOD 

#plot the lines obtained before (90,95 and 99% of maximum survival) 

abline(v=c(193.9024, 245.9908, 361.7547),lwd=0.5,lty=2,col="green")  

#4.Calculate a Weibull function and analyse 1-S(t) curve and its parameters 

a<-Weibull.cumulative.incidence(res1,type = T) #USING A loess METHOD 

#plot the lines obtained before (90,95 and 99% of maximum survival) 

abline(v=c(158.1066, 176.8298, 193.1702),lwd=0.5,lty=2,col="pink")  
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