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Abstract: Objective: Accelerated Failure Time (AFT) models are an useful alternative of Cox- PH model to determine 
the significant predictors affecting the survival of the patients. This article aims to determine the significant prognostic 
factors of hospitalized Gall Bladder Cancer patients in Rajiv Gandhi Cancer Institute and Research Center, New Delhi, 
India by applying AFT Models. To the best of our knowledge, this is the first study to be carried out in India identifying the 
factors of Gall bladder patients using AFTM. 

Materials and Methods: The data are taken from original proformae of 652 hospital admitted Gall Bladder patients from a 
tertiary care hospital from Delhi from the period January 2012 to December 2016. These models take the logarithm of 
survival time, S(t) as dependent variable and prognostic factors as independent variables. Thereby, effect of these 
prognostic factors is multiplicative and therefore these models can be easily interpreted. AFTM demonstrates the 
predictor’s effect in terms of time ratio (TR). Analysis was implemented on R software version 3.5.1. 

Results and Conclusions: In the Gall Bladder data considered in this article, shape of hazard function, H(t) and the 
exploratory data analysis falls in line with the Lognormal AFT model. AFT models give an estimate of Time Ratio which 
helps doctors, clinicians, epidemiologists etc. to determine the effect of treatment in terms of an increasing/decreasing 
survival time.  
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1. INTRODUCTION 

Survival Analysis is defined as statistical method for 
data analysis where the outcome variable of is defined 
as the time till the occurrence of an event. The event 
may be death, disease incidence, recovery or any 
designated experience of interest that may happen to 
an individual in clinical trials [1-12]. Survival analysis is 
used in a number of fields for analyzing data involving 
the duration between two events. It is also known as 
event history analysis, lifetime data analysis, reliability 
analysis or life to event analysis [13]. 

Some examples of Survival analysis’ problems 
include “the study of leukemia patients in remission 
over several weeks to see how long they stay in 
remission” or “how long patients survive after receiving 
a hair transplant” [14]. So, survival analysis deals with 
statistical methods for analyzing survival data derived 
from laboratory studies of animals, clinical and 
epidemiologic studies of humans and other appropriate 
applications, medicine, public health, social science, 
engineering etc. [15]. 

A very popular model in survival analysis which 
works well with these problems is the Cox- PH model. 
The Cox- PH model is used for the analysis of data in 
the presence of covariates or prognostic factors. The 
most specific feature of this model is that it does not 
depend on  any  assumption about the distribution of  
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survival data but it assumes that the hazard function of 
the data is a function of the independent covariates 
[16]. 

Though, proportional hazard models are quite 
popular in analyzing and estimating the survival data, 
the proportionality assumption for these models is 
seldom met. There are very few regression models for 
which the parametric forms of PH models are defined 
such as exponential, Gompertz and Weibull distribution. 
Also, hazard functions of some distributions are very 
difficult to obtain as compared to survival function. So, 
Cox- proportional hazard models can be used with 
relatively few probability distributions [17]. 

In such situations, the AFT models can be used as 
a substitute of the PH model to analyze the survival 
data. Under this model, the effect of the explanatory 
variables is measured on the survival time instead of 
that of hazard function in the Cox Proportional hazard 
model. This allows to easily interpret the results as the 
effect of the corresponding prognostic factors on the 
mean survival time is measured [18]. Unlike, 
proportional hazard models, AFT models lies on the 
assumption that greater hazard rates are observed due 
to acceleration in the survival time whereas 
deceleration in the survival time is due to low hazard 
rates. Parametric AFT models can be defined for many 
distributions such as Exponential, Weibull, Log- 
Logistic, Log- normal, generalized gamma models etc. 
Some models such as Log-Logistic models, Lognormal 
and Generalized Gamma are the models which are 
defined only in AFT framework [19]  
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The formulation of the AFTM permits the derivation 
of the acceleration factor which is also known as time 
ratio (T.R), which is easy to interpret as compared to a 
hazard rate [20, 21]. In this article, different parametric 
AFT models are fitted and best fitted model is chosen 
by performing two exploratory analysis, one using AIC 
and other by plotting Cox- Snell residual plots for Gall 
Bladder cancer. In our knowledge, no such study 
focusing on the determining significant risk factors of 
Gall Bladder cancer using Accelerated Failure Models 
has been conducted in India. 

2. MATERIALS AND METHODS 

The data of 652 hospital Gall Bladder patients 
admitted to Rajiv Gandhi Cancer Institute and 
Research Center from the period January 2012 to 
December 2016 are taken. Overall survival is defined 
as the duration from the date of diagnosis to the death 
of death/last contact and last follows up. Alive patients 
and lost to follow up patients are considered censored. 
Different AFT models are then applied and the model 
with least AIC is chosen as the best fitted model. Time 
ratios (T.R) and 95% confidence interval are presented 
for each predictor. P-value less than 0.05 are 
considered significant. Analysis was implemented on R 
software version 3.5.1. 

3. SELECTION OF APPROPRIATE SURVIVAL 
MODEL 

To determine the suitable survival AFT model, two 
highly used exploratory data analysis methods are 
used. The first method makes the use of baseline 
hazard function for the identification of the appropriate 
survival model. It is observed that the plotted baseline 
hazard function initially increases and then decreases 
(Figure 1) of Gall Bladder data which is identical with 
the shape of H(t) of Log-Normal survival model. Thus, it 
can be considered that Gall Bladder data is best 
modeled by Lognormal Survival distribution.  

 
Figure 1: Baseline hazard function. 

Second exploratory technique to determine the 
appropriate survival model is by plotting the adequately 
transformed survival function, S(t) with log S(t) as 
discussed below. Suppose, T is a random variable 
representing survival time following Log-Logistic 
distribution with scale parameter θ, shape parameter k. 
Then, PDF will be given by: 
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The fitting of Log-normal survival model is 
furthermore investigated by making the survival 
function linear using the transformation as follows: 

Φ!! 1 − !(!) =
log ! − !

!
= −!!!! + !!! log !   

Where, ! ! = 1 − Φ !"# !!!
!

,  and Φ(. )  is the 
Standard Normal distribution. 

Log-Normal survival model will be considered 
appropriate if a straight line is obtained by plotting the 
log-odds of S(t) against loge(t).  

Thus, Gall bladder survival time can be best fitted 
using Log Normal survival distribution as the baseline 
hazard plot is identical to the shape of hazard plot of 
Log-normal survival model. However, final choice is 
dependent on the goodness of fit using residual plots, 
AIC [22], R2 statistic, log-likelihood etc. 

4. THE AFT MODEL 

AFT model determines the impact of different risk 
factors on deceleration or acceleration of survival time.  

The survival function, S(t) for a class of patients with 
predictors (x!, x!, x!,……… x!) can be written in the form 
of baseline survival function, S!(t) as :- S t = S!(Φt) 

Where, 

Φ = exp  { β!x!" + β!x!" + β!x!"+.……… β!x!" } 

is defined as the acceleration factor. 

In order for better explanation of this concept, let us 
consider an example. Assume, a data set with one 
prognostic factor at two levels, “0” signifies the absence 
of predictor and “1” signifies the presence of predictor. 
The proportion of individuals who survived in the group 
with this predictor at the time point t! is equal to the 
proportion of individuals surviving in the group without 
the predictor at any time t! = Φt!  ,i.e, t! t!  is 
constant. Φ is called acceleration factor. 

In regression framework, this acceleration factor Φ 
can be parameterized as exp  (α) , where α  is a 
variable to be established from the data. 
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The relation between the log of S(t) and the set of 
prognostic factors is given by the log- linear form of the 
Accelerated Failure Time model as follows:-  

  log T! =   β! + β!x!" + β!x!" + β!x!"+.……… β!x!" + σε!  

where, 

β! is the intercept of the model 

β!′s are the coefficients of “p” explainatory variables 
for i!" individual. 

Scale parameter is represented by σ 

ε!  is a random variable modelling the deviation of 
log!(T!) from the linear part of model.  

For simplification and easy interpretation, exp  (β!) 
known as time ratio (T.R) should be reported on the 
same lines as hazard ratio is reported in the Cox P.H 
model. Time Ratio greater than 1 indicates that the 

prognostic factor increases the survival time whereas 
TR<1 represents that the presence of prognostic factor 
may cause early occurrence of event.  

Two most commonly used method to fit the AFT 
model are MLE method and Newton- Raphson 
procedure [23, 24]. 

The distribution of ε!  and the corresponding 
distributions of T! can be summarized as:- 

Distribution of ε Distribution of T 

Extreme value (1 parameter) Exponential 

Extreme value (2 parameter) Weibull 

Logistic Log- Logistic 

Normal Log- Normal 

Log- Gamma Gamma 

 
[13, 23, 25] further explained the application of AFT 
models with practical examples. 

Table 1: Multivariate Analysis using Lognormal AFT Model 

Variable TR  95% CI SE 

Age 
<30 1   

>=30 0.878 1.104-1.256 0.03 

Sex 
Male 1   

Female 1.345 0.931-1.049 0.08 

Comorbidity 

Nil 1   

DM 0.745 0.455-1.346 0.05 

HT 0.954 0.515-1.441 0.02 

TB 0.873   

Marital Status 
Unmarried 1   

Married 1.126 0.831-1.215 0.06 

Stage 

I 1   

II 0.761 1.052-1.244 0.09 

III 0.639 0.639-0.942 0.05 

IV 0.542 0.472-2.698 0.02 

Treatment 

CT 0.824 1.009-1.432 0.11 

RT 1   

Surgery 0.776 0.605-0.940 0.04 

T Category 

T1 1   

T2 0.932 1.676-2.148 0.06 

T3-T4 0.821 0.447-2.675 0.02 

N Category 

N0 1   

N1-N2 0.678 0.567-3.199 0.1 

Unknown 0.821 0.965-1.239 0.07 

M Category 

M0 1   

M1 0.783 0.792-1.035 0.05 

Unknown 0.641 0.080-4.233 0.03 
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4.1. Multivariate Analysis 

Survival time was determined from the date of 
diagnosis to the date of death/last follow up/ Alive. 
Alive and lost to follow up patients were considered as 
censored. Different prognostic factors, viz., Age, Sex, 
Co-morbidities, Marital Status, Stage of the cancer, 
Treatment give and TNM stages are recorded. 
Multivariate analysis was conducted using R software. 
Table 1 shows the Time Ratio (TR) along with the 
standard errors and 95% confidence intervals of each 
of the prognostic factors. 

4.2. Goodness of Fit of the Model 

Cox- Snell residual plot is used to determine the 
goodness of fit of the AFT model (1). These residuals 
are determined by using cumulative hazard function 
and standardized residual as: 

!!! =
!"#!! − (!! + !!!!)

!
   

Where !!,!! and ! are the MLE’s of !!  ,! and σ 
respectively. 

Cox-Snell residuals for Log-Normal AFT models 
(25) is given by:- 

!!! = !"# 1 + Φ(!!!)    

Where Φ(. ) is the CDF of the SND, i.e, Standard 
Normal Distribution.  

Figure 2 represents the plot of Cox-Snell residuals 
for Lognormal AFT model. It can be seen that the 
plotted points follow a referent line. On the basis of the 
plot, it can be interpreted that Lognormal AFT model is 
a good fit to the Gall Bladder data. 

 
Figure 2: Plot representing the Cox Snell Residuals for 
Lognormal AFT model (Original). 

Other methods to assess the goodness of fit of this 
AFT model comprise of Akaike’s information criterion 
(AIC) and R2 type statistic.  

R2 type statistic is determined as: 

R!! = 1 − exp
2
n
L! − L!    

Where 

L! = log likelihood for the fitted model in presence of 
covariates, 

L!  =log likelihood for model without covariates. 

The value of R2 for Lognormal AFT model is 0.39. 

Two survival models can be compared using their 
AIC values where AIC value is given by :-  

AIC   =   −2L   +   2 x   +   z     

where L  represents the Log-likelihood value of the 
chosen model, x represents the No. of parameters of 
the fitted probability distribution & !  are the No. of 
coefficients excluding constant in final model. Lesser 
the AIC, better the fitted model in comparison to other 
AFT models under consideration [22]. The AIC value 
for fitted Lognormal AFT model of the data under 
consideration is 2133.09.  

5. DISCUSSION 

In the fields of medical research, Cox-PH model is 
the foremost choice among different regression models 
for the estimation of survival data due to its 
convenience and familiarity [3, 26]. AFT models are 
traditionally used in reliability theory. Proportional 
hazards (PH) model is not necessarily a priori choice to 
AFT models [27]. AFT models are an useful alternate 
to Cox-PH model option when the primary interest is 
either the estimation of survival time or relative time to 
event are the interested association measures [28]. 
Clinicians may also benefit by the easy interpretation of 
acceleration factor. Furthermore, AFT models are of 
avid regard as they can specify a relation between 
logarithm of survival time S(t) and the prognostic 
factors which is in line to a multiple linear regression 
[29]. However, these models are estimated by 
assuming the survival time distribution. If the survival 
distribution of time is not known, then estimating these 
AFT models becomes questionable.  

In our Gall Bladder data set, baseline hazard 
function plot and the exploratory analysis matches with 
the plot of Lognormal AFT model.  

AFT models give the estimation of time ratio which 
helps clinicians/medical researchers to determine the 
benefit of treatment in terms of the effect survival time.  
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If the impact of predictors on S(t) is the primary 
objective of the study, AFT models is the best 
alternative if the user is able to recognize the 
distribution of S(t), survival time. To apply Accelerated 
Failure model, it exploration of Cox PH model is not 
necessary. Only thing one need to keep in mind is the 
identification of appropriate survival distribution to 
avoid miss classification. After determining AIC and !! 
statistics and Cox- Snell Residual plot, it can be 
concluded that the data is best fitted by Lognormal AFT 
survival model. 

Therefore, the results from AFT models can be 
easily interpreted than Cox-PH model not only by 
clinicians but also by other hepatologists as it provides 
more appropriate justification and explanation of time 
to event or survival data. We hope that this study would 
motivate the use of AFT models among medical 
statisticians. 
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