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Abstract: In this paper, the time dependent carrier-borne epidemic model defined by Weiss in 1965 has been adopted 
into a Bayesian framework for the estimation of its parameters. A complete methodological structure has been proposed 
for estimating the relative infection rate and probability of survival of k out of m susceptibles after time t from the start of 
the epidemic. The methodology has been proposed assuming a single carrier to simplify the study of the behavioral 
validity of the fitted Bayesian model with respect to time and relative infection rate. Further, the proposed model has 
been implemented on two real data sets- the typhoid epidemic data from Zermatt in Switzerland and the Covid-19 
epidemic data from Kerala in India. Results show that the proposed methodology produces reliable predictions which are 
consistent with those of the maximum likelihood estimates and with expected epidemiological patterns.  
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1. INTRODUCTION 

Prediction of progression of an epidemic is of 
paramount importance in developing strategies to fight 
the spread of infection. Carrier-borne epidemic models 
are among the earliest mathematical and statistical 
models developed for studying the progression 
dynamics of epidemics. Carrier- borne diseases are 
contagious diseases caused by pathogens, like viruses, 
protozoa and bacteria, which are communicated by 
human, or animal agents known as carriers. Basically, 
carriers are individuals with inapparent infection who 
are capable of spreading the infection to others. For 
example, pathogens such as hepatitis B virus, herpes 
simplex virus, and HIV are frequently transmitted by 
asymptomatic human carriers. 

Currently, deterministic and stochastic 
compartmental models, like Susceptible, Infectious, or 
Recovered (SIR), are being popularly used to study the 
progression dynamics and epidemiological parameters 
of epidemics. Extensive use of such models is 
apparent in a huge volume of research done in the 
context of the current pandemic, COVID-19. However, 
when it comes to studying epidemics caused by 
carrier-borne infections, carrier-borne epidemic models 
can serve a better purpose, especially if the objective is 
to predict the probabilities of survival of susceptibles 
given the number of carriers in the population. Although 
few authors published their work on stochastic 
epidemic models as early as in the years 1926, 1949 [1, 
2], G.H. Weiss is credited with laying the foundations of 
carrier-borne  epidemic  models through his pioneer  
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work published in the year 1965 [3]. He developed the 
overall deterministic formulation of the carrier-borne 
epidemic model and presented a stochastic framework 
for estimating the ultimate size of a carrier-borne 
epidemic using the concept of Markov process. Weiss 
formulated his model under the assumption that all 
carriers can be identified and removed from the 
population at some rate (removal rate) using the 
available public health measures. Further, he assumed 
a closed population where infections are spread by 
initially introduced carriers and no new carriers in the 
form of infectives are introduced in the population. This 
model of Weiss has been extended further by many 
authors, under different assumptions regarding the 
carriers and the types of population [4-20].  

In summary, there are various methods available for 
estimating the infection rate of susceptible and 
recovery rate of a carrier for Weiss's stochastic model 
for carrier-borne epidemics. However, such methods 
are not available for complete time dependent model. 
Grover et al. (2021) [27] have proposed a maximum 
likelihood estimation method for estimating the 
probability of susceptible not being infected but it does 
not consider time varying infection and recovery rates. 
In such a case, the usual maximum likelihood 
estimation method does not provide reliable estimate 
for the probability of susceptible not being infected at 
different time points during the epidemic.  

In this paper, our primary objective is to propose a 
more robust and computationally rich methodology for 
estimating the parameters of the classic carrier-borne 
epidemic model of Weiss. For this purpose, Weiss’s 
carrier-borne model has been adopted in a Bayesian 
framework, and the parameters have been estimated 
from their posterior distributions using Gibbs sampling 
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MCMC technique. Although Bayesian Hierarchical 
formulation of compartmental epidemic models (SIR 
and its variants) have been introduced by some 
authors in recent times [21-26], Bayesian approach has 
not been explored for the carrier-borne epidemic 
models. Since the Bayesian formulation allows to 
combine past information about epidemic parameters, 
like infection rate, recovery rate etc., with the likelihood 
from the sample through prior distributions, it provides 
more flexibility to account for errors at multiple levels in 
the models. The methodology proposed in this paper 
can be further applied to the more generalized 
extensions of the carrier-borne epidemic models.  

2. METHODOLOGY 

2.1. Bayesian Framework for the Carrier-Borne 
Epidemic Model 

Suppose that an epidemic is initiated by n=1 carrier 
in the presence of m susceptibles. It is assumed that 
the epidemic can terminate in one of the two ways- 
either carrier is eliminated or the entire population gets 
infected from the disease.  

We define   !!|!,! !, 1  to be the probability that the 
population of m susceptibles is reduced to k in time 
period t with infection rate !, when the epidemic was 
initiated with m susceptibles and one carrier [3]. 

!!|! !, 1 = !
! . (!!!")!    ·   (1   − !!!")!!!   ⋯      (1) 

Where k= 0, 1, 2, ⋯ ,!  ;  

 For computational conveniences, we define !  = βt, 
and rewrite the expression as follows. 

  !!|!,! !, 1 = !
! . !!!" ! · (1   − !!!")!!!   ⋯     (2) 

Where, k = 0, 1, 2, ⋯ ,!, and ! = !
!
 is the relative 

infection rate (!  is the infection rate and β is the 
recovery/removal rate).  

Let ! = !!!"  be the probability of a susceptible not 
being infected in time period ! , when the relative 
infection rate is !. Now, using this in equation (2), we 
get the following expression. 

  !!|! !, 1 = !
! . (!)!    ·   (1   − !)!!! ⋯          (3) 

Where, k = 0, 1, 2, ⋯ ,!  ; 

Let us assume that the prior distribution of ! = !!!" is 
Beta with parameter σ (initial infection rate) i.e. 

!  ~  !"#$(1, σ) with pdf ! ! ; where 0 < ! < 1  ;   σ   > 0  .   (4) 

The likelihood function for estimating ! will be 

L(! |k ) = 
!
! . (!)!    ·   (1   − !)!!! ⋯      (5) 

Now the posterior distribution of ! is given as 

! !|!"#"   ∝   ! !   . L(!  |k  ) 

∝    {  
! 1 + σ
! σ

}. {(1 − !)!!!}. !! . (!)!    ·   (1   − !)!!! 

∝    {  ! !!!
! !

}. !! (!)!    ·   (1   − !)!!!!!  !! ⋯     (6) 

From equation (6) it is clear that the posterior 
distribution of ! is Beta distribution with parameters 
! + 1  and σ +! − !  . 

!. !.! !|!"#"   ~  !"#$(  ! + 1, σ +! − !) ⋯     (7) 

Therefore, the posterior mean and variance of ! are 
given as follows: 

!"#$%&'"&  !"#$  (!(!)) =    !!!
!!!!!  

 ⋯      (8) 

!"#$%&'"&  !"#$"%&'  (!(!)) =    (!!!).(!!!!!)
(!!!!!  ).(!!!!!  )!  

  ⋯   (9) 

2.2. Bayesian Estimate of ! 

By assuming squared error loss function, the 
posterior mean of !  qualifies to be the Bayesian 
estimate of !. That is, 

  !!= !!!
!!!!!  

 (from equation (8) ) ⋯    (10) 

2.3. Maximum Likelihood Estimate of ! 

Let K be the observed value of the number of 
susceptibles remaining in the population during time 
period !  since the start of the epidemic. Then, the 
maximum likelihood estimate of ! [27] is  

  !!"# = !
!

 ⋯       (11) 

3. APPROXIMATE ESTIMATION OF THE PARAM- 
ETER OF THE CARRIER BORNE EPIDEMIC MODEL  

The probability of susceptible not being infected, 
when the no. of susceptible in a population is 
sufficiently large, can also be estimated by using the 
following approximations. 

3.1. Using Poisson Approximation 

As we know that the Binomial distribution converges 
to Poisson distribution when number of trials goes to 
infinity and np(mean) converges to a finite limit. 
Therefore, Binomial (m, θ), when m (no. of susceptible) 
is sufficiently large and θ (the probability of not being 
infected) is very small, converges to Poisson 
distribution for reduced no. of susceptible K with 
parameter λ=mθ. 

i.e.  !!|! !, 1 = !!!" . (!")
!

!!
 ; k=0,1, 2, ….    (12) 
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Then, the likelihood function for estimating ! can 
be defined as 

!!(!| k ) = !!!" . (!")
!

!!
 ⋯     (13) 

With the prior distribution  

!  ~  ! ! ≡ !"#$(1, σ); where 0 < ! < 1  ;   σ   > 0  .  

The posterior distribution of ! is obtained as 

!(!|!"#")   ∝   !(!)  . !!(!  |k  ) 

∝    {  
! 1 + σ
! σ

}. {(1 − !)!!!}. !!!" .
(!")!

!!
 

∝    {  ! !!!
! !

}. { 1 − ! !!!.!−!". (!")
!

!!   } ⋯   (14) 

3.2. Using Normal Approximation  

The Binomial (m, θ), when m (no. of susceptible) is 
sufficiently large and θ (the probability of not being 
infected) is not very small, converges to Normal 
distribution for reduced no. of susceptible K with 
mean= mθ and variance= mθ(1-θ).  

i.e.   !!|! !, 1 = !
2!.!" 1−!

. exp  {− !
!

!!!"
  !" 1−!   

!
}  ; 

k>0 ⋯        (15) 

The likelihood function for estimating !  can be 
defined as 

!!(!|k ) = 
!

2!.!" 1−!
. exp  {− !

!
!!!"

  !" !!!
  
!
} ⋯   (16) 

With the prior distribution  

!  ~  ! ! ≡ !"#$(1, σ); where 0 < ! < 1  ;   σ   > 0  .  

And the posterior distribution of ! is obtained as 

! ! !"#" ∝   ! ! ×  !! !   k    

∝    {  ! !!!
! !

}. {(1 − !)!!!}× !
!!.!" !!!

  
exp  {− !

!
!!!"

  !" !!!
  
!
}      (17) 

Note: In both the above cases, the posterior 
estimation of the probability of susceptible not being 
infected can be obtained by using MCMC methods or 
Open Bugs of any software. 

4. APPLICATION 

 This section aims to evaluate the performance of 
the Bayesian estimator of relative infection rate of 
carrier-borne epidemic model. Two data sets are 
considered viz. Typhoid epidemic in Zermatt and 
COVID19 epidemic in Kerala, India. 

4.1. Typhoid Epidemic in Zermatt 

For the data of typhoid epidemic in Zermatt out of 
1500 susceptibles approximately 100 cases of typhoid 
were reported [3].  

Table 1: Estimate of !  for m=1500, k=1400, σ= 1/15 
=0.067  

Likelihood function   !!"#$  !"#$%   !! 

 Binomial  0.935507  0.933377  
(With M.S.E.=0.000047) 

 Normal  0.935507 0.9333 
(With M.S.E.=0.0000063) 

 Poisson   0.935507 0.954  
(With M.S.E.=0.001303) 

with  !!"# = 0.933333. 
 

From Table 1 it can be observed that we get 
minimum standard error with respect to Normal 
distribution as compared to Binomial and Poisson 
distribution. 

4.2. Covid19 Epidemic in Kerala, India 

 We have taken this data from the Kerala 
Government’s official website (https: 
dashboard.kerala.gov.in; Kerala: COVID-19 Battle). 
Kerala population in 2022 is estimated to be 35 million 
(3.5 Crores), according to Unique Identification Aadhar 
India. Here, we have used the data updated till 
December 18, 2021 with the following details 

Total Population of Kerala estimated 35 million  
No. of Susceptibles (m) 35 million 

Active cases 33098 

Relative infection rate (σ)  0.00095 

 

Table 2: Estimate of ! for m=35.0 million, k=34966902 
million, σ= 0.00095  

Likelihood function   !!"#$  !"#$%   !! 

 Binomial  0.9990505  0.9857157  
(With M.S.E.=0.0027) 

 Normal  0.9990505 0.986 
(With M.S.E.=0.00017) 

 Poisson   0.9990505 0.986  
(With M.S.E.=0.00017) 

with  !!"# =0.9857143 (with S.E.=0.00002). 

 

From Table 2 it can be observed that we get same 
standard error with respect to Normal and Poisson 
distribution which is smaller than that for the Binomial 
distribution. 
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4.3 Visual Interpretation  

 
Figure 1: Effect of relative infection rate on the probability of 
not being infected for Typhoid in Zermatt. 

 
Figure 2: Effect of relative infection rate on the probability of 
not being infected for Covid19 in Kerala, India. 

 
Figure 3: Effect of infection rate on the probability of not 
being infected for Typhoid in Zermatt. 

 
Figure 4: Effect of removal rate of carrier on the probability of 
not being infected for Typhoid in Zermatt. 

 
Figure 5: Effect of infection rate on the probability of not 
being infected for Covid19 in Kerala, India. 

 
Figure 6: Effect of removal rate of carrier on the probability of 
not being infected for Covid19 in Kerala, India. 
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5. DISCUSSION 

The whole idea behind this study is to introduce a 
computationally rigorous methodology for the 
estimation of parameters of carrier-borne epidemic 
model. From section 4, it can be observed that the 
posterior estimates of the parameter of the 
carrier-borne model, obtained for both datasets are 
consistent, and are very close to the true value of the 
parameter. It can be observed from Figures 1 and 2 
that m.l.e. does not depict the change in the probability 
of not being infected with change in the relative 
infection rate whereas Bayes estimator is capable of 
capturing the change in the probability not being 
infected with change in the relative infected rate. We 
can conclude that the posterior estimate is more 
reliable than the m.l.e. That is, the Bayesian 
methodology provides a better estimator than 
maximum likelihood method. This provides us with a 
strong ground to believe that in a more complex set-up 
where time-dependent parameters are introduced in 
the model and where finding closed-form solutions of 
maximum likelihood estimates may become difficult, 
the proposed Bayesian methodology, or an extension 
of the proposed Bayesian methodology can be used for 
reliable estimation and prediction. 

6. CONCLUSION 

This paper provides a new method based on the 
Bayesian approach to estimate the parameters of the 
carrier-borne epidemic model as well as the 
approximation form of the carrier-borne epidemic 
model in the presence of a single carrier for the 
specified infection period. In the carrier-borne epidemic 
model, we assume all infectives are isolated from the 
population. But the disease is still spreading, which 
means the carrier is present in the population. By this 
method, we can estimate the probability of susceptibles 
to be infected by the carrier in case of increasing or 
decreasing infection rate of susceptible and recovery/ 
removal rate of the carrier. Moreover, we have shown 
that the Bayes estimation method is more reliable than 
the maximum likelihood method.  

This study adopted the Beta conjugate prior for 
Binomial distribution for the Bayesian analysis. Priors 
with other distributions may also be considered.  

Further, this method can also be employed for more 
complex and realistic carrier-borne epidemic models 
with completely time-dependent parameters.  
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