Bayesian Inference and Sensitivity Analysis of Dengue Transmission in Sudan

Authors

  • Fathelrhman El Guma Department of Mathematics, Faculty of Science, Al-Baha University, Al-Aqiq 65931, Saudi Arabia

DOI:

https://doi.org/10.6000/1929-6029.2025.14.69

Keywords:

Dengue Fever, Bayesian Inference, Parameter Estimation, Uncertainty Quantification, Sensitivity Analysis, Epidemiological Modeling

Abstract

Background: Dengue fever is a significant public health concern in Sudan as well as tropical regions. Mathematical and statistical methodologies are crucial for comprehending its transmission dynamics and informing effective control tactics.

Methods: We developed a two-population compartmental model to capture dengue transmission between humans (susceptible, infected, recovered and disease- induced mortality) and mosquito vectors (susceptible and infected). Using the next-generation matrix approach, we derive an explicit expression for the basic re- production number (R0). For the assessment of critical epidemiological parameters such as the mosquito biting rate, probability of human to vector transmission, recovery rate, and dengue-induced fatality rate, Bayesian inference was employed. To evaluate the robustness of these findings, a global sensitivity analysis was performed utilizing Latin hypercube sampling and partial rank correlation coefficients.

Results: Posterior estimates indicated R0 1.25 (95% credible interval: 1.11– 1.40), with the model showing strong agreement with case report data (R2 = 0.93). Sensitivity analysis showed that the mosquito biting rate as well as the transmission probability were the main drivers of epidemic potential with recovery and dengue- induced mortality exhibiting inhibiting negative effects on transmission.

Conclusions: The results suggest that transmissible vector factors are an important component for dengue transmission in East Sudan. The preferred method for the control of future outbreaks is expected to concentrate on mosquito bites/human vector transmission.

References

Kularatne SA, Dalugama C. Dengue infection: Global importance, immunopathol- ogy and management. Clinical Medicine 2022; 22(1): 9-13. DOI: https://doi.org/10.7861/clinmed.2021-0791

Jamal MK, Sanaei B, Naderi M, Past V, Abadi SHA, Khazaei R, Esmaeili A, Sadrizadeh S, Moghimi S, Ghiyasi Z. Investigating the recent outbreak of dengue fever in iran: a systematic review. The Egyptian Journal of Internal Medicine 2025; 37(1): 37. DOI: https://doi.org/10.1186/s43162-025-00411-2

Kolimenakis A, Heinz S, Wilson ML, Winkler V, Yakob L, Michaelakis A, Papachristos D, Richardson C, Horstick O. The role of urbanisation in the spread of aedes mosquitoes and the diseases they transmit—a systematic review. PLoS Neglected Tropical Diseases 2021; 15(9): e0009631. DOI: https://doi.org/10.1371/journal.pntd.0009631

Abbasi E. Global expansion of aedes mosquitoes and their role in the transboundary spread of emerging arboviral diseases: a comprehensive review. IJID One Health 2025; 100058. DOI: https://doi.org/10.1016/j.ijidoh.2025.100058

Ebi KL, Nealon J. Dengue in a changing climate. Environmental Research 2016; 151: 115-123. DOI: https://doi.org/10.1016/j.envres.2016.07.026

Zhang H, Zhou Y, Peng H, Zhang X, Zhou F, Liu Z, Chen X. Predictive symp- toms and signs of severe dengue disease for patients with dengue fever: a meta- analysis. BioMed Research International 2014; 1(2014): 359308. DOI: https://doi.org/10.1155/2014/359308

Teixeira MG, Barreto ML. Diagnosis and management of dengue. BMJ 2009; 339. DOI: https://doi.org/10.1136/bmj.b5522

Mohamed NS, Siddig EE, Musa AO, Elduma A, Ahmed A. High seropreva- lence of yellow fever, dengue, and chikungunya viruses in the greater darfur region of sudan: Implications for national health policy and surveillance Unpublished 2024. DOI: https://doi.org/10.21203/rs.3.rs-4908948/v1

Siddig EE, Mohamed NS, Ahmed A. Severe coinfection of dengue and malaria: A case report. Clinical Case Reports 2024; 12(6): e9079. DOI: https://doi.org/10.1002/ccr3.9079

Organization WH, WHO’s response to health emergencies: annual report 2023, World Health Organization 2024.

Bushra HEE, Haroun AA, Alkhidir MA, Banaga AO, Elbushra HA, Osman NAN, Hassan LHA. Retrospective analysis of a large-scale cholera outbreak in sudan. Eastern Mediterranean Health Journal 2024; 30(10). DOI: https://doi.org/10.26719/2024.30.10.698

El Bushra HE, Habtewold BW, Al Gasseer N, Mohamed RE, Mo-hamednour SA, Abshar M, Al Magboul B, Mohamednour S, Abshar M, Al Mag- boul B. Outbreak of chikungunya fever in sudan, 2018-2019. Juniper Online J Public Health 2019; 4: 555644. DOI: https://doi.org/10.19080/JOJPH.2019.04.555644

Hoops S, Hontecillas R, Abedi V, Leber A, Philipson C, Carbo A, Bassaganya-Riera J. Ordinary differential equations (odes) based modeling, in: Computational immunology, Elsevier 2016; pp. 63-78. DOI: https://doi.org/10.1016/B978-0-12-803697-6.00005-9

Gumaa FE, Abdoon MA, Qazza A, Saadeh R, Arishi MA, Degoot AM. Analyzing the impact of control strategies on VisceralLeishmaniasis: a mathematical modeling perspective. European Journal of Pure and Applied Mathematics 2024; 17(2): 1213-1227. DOI: https://doi.org/10.29020/nybg.ejpam.v17i2.5121

Abidemi A, Aziz NAB. Analysis of deterministic models for dengue disease transmission dynamics with vaccination perspective in johor, malaysia. International Journal of Applied and Computational Mathematics 2022; 8(1): 45. DOI: https://doi.org/10.1007/s40819-022-01250-3

Khan MA, et al. Dengue infection modeling and its optimal control analysis in east java. Indonesia, Heliyon 2021; 7(1). DOI: https://doi.org/10.1016/j.heliyon.2021.e06023

Puspita JW, Fakhruddin M, Nuraini N, Fauzi R, Indratno SW, Soewono E, et al. Modeling and descriptive analysis of dengue cases in palu city, Indonesia. Physica A: Statistical Mechanics and its Applications 2023; 625: 129019. DOI: https://doi.org/10.1016/j.physa.2023.129019

Ren H, Xu R. Transmission dynamics of dengue with asymptomatic infection and a case study in bangladesh, Mathematics and Computers in Simulation 2025; 231: 1-18. DOI: https://doi.org/10.1016/j.matcom.2024.12.003

Guma FE, Badawy OM, Berir M, Abdoon MA. Numerical analysis of fractional-order dynamic dengue disease epidemic in sudan, Journal of the Nigerian Society of Physical Sciences 2023; 1464. DOI: https://doi.org/10.46481/jnsps.2023.1464

Zheng T, Luo Y, Nie L, Teng Z. Analysis of transmission dynamics of dengue fever on a partially degenerated weighted network. Communications in Nonlinear Science and Numerical Simulation 2025; 142: 108495. DOI: https://doi.org/10.1016/j.cnsns.2024.108495

Wen T-H, Lin M-H, Teng H-J, Chang N-T. Incorporating the human-aedes mosquito interactions into measuring the spatial risk of urban dengue fever. Applied Geography 2015; 62: 256-266. DOI: https://doi.org/10.1016/j.apgeog.2015.05.003

Alsubaie NA, EL Guma F, Boulehmi K, Al-kuleab N, Abdoon AM. Improving influenza epidemiological models under Caputo fractional-order calculus. Symmetry 2024; 16(7): 929. DOI: https://doi.org/10.3390/sym16070929

Meinrath G, Ekberg C, Landgren A, Liljenzin J. Assessment of uncertainty in parameter evaluation and prediction. Talanta 2000; 51(2): 231-246. DOI: https://doi.org/10.1016/S0039-9140(99)00259-3

Gupta M, Bhattarakosol P. A bayesian regularization intelligent computing scheme for the fractional dengue virus model. Egyptian Informatics Journal 2025; 29: 100606. DOI: https://doi.org/10.1016/j.eij.2024.100606

Charles M, Mfinanga SG, Lyakurwa G, Torres DF, Masanja VG. Parameters estimation and uncertainty assessment in the transmission dynamics of rabies in humans and dogs. Chaos, Solitons & Fractals 2024; 189: 115633. DOI: https://doi.org/10.1016/j.chaos.2024.115633

Gomero B. Latin hypercube sampling and partial rank correlation coefficient anal- ysis applied to an optimal control problem 2012.

Sheikholeslami R, Razavi S. Progressive latin hypercube sampling: An efficient ap- proach for robust sampling-based analysis of environmental models. Environmental Modelling & Software 2017; 93: 109-126. DOI: https://doi.org/10.1016/j.envsoft.2017.03.010

Li C, Wang W, Xiong J, Chen P. Sensitivity analysis for urban drainage modeling using mutual information. Entropy 2014; 16(11): 5738-5752. DOI: https://doi.org/10.3390/e16115738

Manache G, Melching CS. Identification of reliable regression-and correlation- based sensitivity measures for importance ranking of water-quality model parameters. Environmental Modelling & Software 2008; 23(5): 549-562. DOI: https://doi.org/10.1016/j.envsoft.2007.08.001

Marino S, Hogue IB, Ray CJ, Kirschner D E. A methodology for performing global uncertainty and sensitivity analysis in systems biology. Journal of Theoretical Biology 2008; 254(1): 178-196. DOI: https://doi.org/10.1016/j.jtbi.2008.04.011

Stephano MA, Mayengo MM, Irunde JI, Kuznetsov D. Sensitivity analysis and parameters estimation for the transmission of lymphatic filariasis. Heliyon 2023; 9(9). DOI: https://doi.org/10.1016/j.heliyon.2023.e20066

Ali M, Alzahrani SM, Saadeh R, Abdoon MA, Qazza A, Al-kuleab N, Guma FE. Modeling COVID-19 spread and non-pharmaceutical interventions in South Africa: A stochastic approach. Scientific African 2024; 24: e02155. DOI: https://doi.org/10.1016/j.sciaf.2024.e02155

Baroudi M, Sharifi H, Firoozjaee SM, Zarei M. Mathematical modeling and optimal control approaches for dengue. Ferdowsi University of Mashhad Preprint 2025.

de Arau´jo RG, Jorge DC, Dorn RC, Cruz-Pacheco G, Esteva MLM, Pinho ST. Applying a multi-strain dengue model to epidemics data. Mathematical Biosciences 2023; 360: 109013. DOI: https://doi.org/10.1016/j.mbs.2023.109013

Imran MI, Oguntolu FA, Okuonghae DM. Optimal control strategies for dengue and malaria co-infection disease model. Mathematics 2025; 13(1): 25. DOI: https://doi.org/10.3390/math13010043

Elmokadem A, Zhang Y, Knab T, Jordie E, Gillespie WR. Bayesian pbpk modeling using r/stan/torsten and julia/sciml/turing. jl, CPT: Pharmacometrics & Systems Pharmacology 2023; 12(3): 300-310. DOI: https://doi.org/10.1002/psp4.12926

Luengo D, Martino L, Bugallo M, Elvira V, Sa¨rkka¨ S. A survey of monte carlo methods for parameter estimation. EURASIP Journal on Advances in Signal Pro- cessing 2020; 2020: 1-62. DOI: https://doi.org/10.1186/s13634-020-00675-6

Wu H, Stephens DA, Moodie EE. An sir-based bayesian framework for covid-19 infection estimation. Canadian Journal of Statistics 2024; 52(4): e11817. DOI: https://doi.org/10.1002/cjs.11817

Nishio M, Arakawa A. Performance of hamiltonian monte carlo and no-u-turn sam- pler for estimating genetic parameters and breeding values. Genetics Selection Evo- lution 2019; 51: 1-12. DOI: https://doi.org/10.1186/s12711-019-0515-1

Henseler J, Sarstedt M. Goodness-of-fit indices for partial least squares path modeling. Computational Statistics 2013; 28: 565-580. DOI: https://doi.org/10.1007/s00180-012-0317-1

Sorokin A, Goryanin I. Fba-prcc. partial rank correlation coefficient (prcc) global sensitivity analysis (gsa) in application to constraint-based models. Biomolecules 2023; 13(3): 500. DOI: https://doi.org/10.3390/biom13030500

Ali MA, Means S, Ho H, Heffernan J. Global sensitivity analysis of a single-cell hbv model for viral dynamics in the liver, Infectious Disease Modelling 2021; 6: 1220-1235. DOI: https://doi.org/10.1016/j.idm.2021.10.003

Shields MD, Zhang J. The generalization of latin hypercube sampling. Reliability Engineering & System Safety 2016; 148: 96-108. DOI: https://doi.org/10.1016/j.ress.2015.12.002

Iman RL. Latin hypercube sampling, in: John Wiley & Sons, Ltd, 2008.

Siriyasatien P, Phumee A, Ongruk P, Jampachaisri K, Kesorn K. Analysis of significant factors for dengue fever incidence prediction. BMC Bioinformatics 2016; 17(1): 166. DOI: https://doi.org/10.1186/s12859-016-1034-5

Simegn GL, Degu MZ, Gebeyehu WB, Senay AB, Krishnamoorthy J, Tegenaw GS. Spatiotemporal distribution of climate-sensitive disease incidences in ethiopia: a longitudinal retrospective analysis of Malaria, Meningitis, Cholera, Dysentery, Leishmaniasis and Dengue fever between 2010 and 2022/2023. BMC Public Health 2024; 24(1): 697. DOI: https://doi.org/10.1186/s12889-024-18054-3

Yadav AK, Chowdhary R, Siddiqui A, Malhotra AG, Kanwar JR, Kumar A, Goel SK. Emergence of a novel dengue virus serotype-2 genotype IV lineage III strain and displacement of dengue virus serotype-1 in Central India (2019-2023). Viruses 2025; 17(2): 144. DOI: https://doi.org/10.3390/v17020144

Saber S, Mirgani SM. Numerical solutions, stability, and chaos control of atangana-baleanu variable-order derivatives in glucose-insulin dynamics. Journal of Applied Mathematics and Computational Mechanics 2025; 24(1): 44-55. DOI: https://doi.org/10.17512/jamcm.2025.1.04

Pabst R, Sousa CA, Essl F, García-Rodríguez A, Liu D, Lenzner B, Capinha C. Global invasion patterns and dynamics of disease vector mosquitoes. Nature Communications 2025; 16(1): 9127. DOI: https://doi.org/10.1038/s41467-025-64446-3

Nikookar SH, Hoseini S, Dehghan O, Fazelidinan M, Enayati A. Dengue Fever Resurgence in Iran: An Integrative Review of Causative Factors and Control Strategies. Tropical Medicine and Infectious Disease 2025; 10(11): 309. DOI: https://doi.org/10.3390/tropicalmed10110309

Saber S, Solouma E, Althubyani M, Messaoudi M. Statistical Insights into Zoonotic Disease Dynamics: Simulation and Control Strategy Evaluation. Symmetry 2025; 17(5): 733. DOI: https://doi.org/10.3390/sym17050733

Saber S, Alahmari A. Impact of Fractal-Fractional Dynamics on Pneumonia Transmission Modeling. European Journal of Pure and Applied Mathematics 2025; 18(2): 5901-5901. DOI: https://doi.org/10.29020/nybg.ejpam.v18i2.5901

Althubyani M, Adam HD, Alalyani A, Taha NE, Taha KO, Alharbi RA, Saber S. Understanding zoonotic disease spread with a fractional order epidemic model. Scientific Reports 2025; 15(1): 13921. DOI: https://doi.org/10.1038/s41598-025-95943-6

Alharbi SA, Abdoon MA, Degoot AM, Alsemiry RD, Allogmany R, Guma FE, Berir M. Mathematical modeling of influenza dynamics: A novel approach with SVEIHR and fractional calculus. International Journal of Biomathematics 2025; 2450147. DOI: https://doi.org/10.1142/S179352452450147X

Abdulkream Alharbi S, Abdoon A, Saadeh M, Alsemiry R, Allogmany RD, Berir RM, EL Guma F. Modeling and analysis of visceral leishmaniasis dynamics using fractional-order operators: A comparative study. Mathematical Methods in the Applied Sciences 2024; 47(12): 9918-9937. DOI: https://doi.org/10.1002/mma.10101

Ali M, Guma FE, Qazza A, Saadeh R, Alsubaie NE, Althubyani M, Abdoon MA. Stochastic modeling of influenza transmission: Insights into disease dynamics and epidemic management. Partial Differential Equations in Applied Mathematics 2024; 11: 100886. DOI: https://doi.org/10.1016/j.padiff.2024.100886

Saadeh R, Shokeralla AA, Al-Kuleab N, Hamad WS, Ali M, Abdoon MA, El Guma F. Stochastic modelling of seasonal influenza dynamics: Integrating random perturbations and behavioural factors. European Journal of Pure and Applied Mathematics 2025; 18(3): 6379-6379. DOI: https://doi.org/10.29020/nybg.ejpam.v18i3.6379

Downloads

Published

2025-12-08

How to Cite

El Guma, F. . (2025). Bayesian Inference and Sensitivity Analysis of Dengue Transmission in Sudan. International Journal of Statistics in Medical Research, 14, 765–774. https://doi.org/10.6000/1929-6029.2025.14.69

Issue

Section

Specia Issue: New Advances in Multiple Statistical Comparison and Its Applications in Medicine

Most read articles by the same author(s)