Inference Procedures on the Ratio of Modified Generalized Poisson Distribution Means: Applications to RNA_SEQ Data

Authors

  • M.M. Shoukri Department of Epidemiology and Biostatistics, Schulich of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
  • Maha Al-Eid Department of Biostatistics, Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia

DOI:

https://doi.org/10.6000/1929-6029.2020.09.05

Keywords:

Overdispersion, Parameter orthogonality, Fieller’s theorem, Mixed estimator, Delta method, Coverage probabilities

Abstract

The Poisson and the Negative Binomial distributions are commonly used as analytic tools to model count data. The Poisson is characterized by the equality of mean and variance whereas the Negative Binomial has a variance larger than the mean and therefore is appropriate to model over-dispersed count data. The Generalized Poisson Distribution is becoming a popular alternative to the Negative Binomial. We have considered inference procedures on a modified form of this distribution when two samples are available from two independent populations and the target effect size of interest is the ratio of the two population means. The statistical objective is to construct confidence limits on the ratio. We first test the presence of over dispersion and derive several estimators in the single sample situation. When two samples are available, our interest is focused on the estimation of an effect size measured by the ratio of the respective population means. We have compared two methods; namely the Fieller’s and the delta methods in terms of coverage probabilities. We have illustrated the methodologies on published genomic datasets.

References

Cox DR. Some remarks on overdispersion. Biometrika 1983; 70: 269-274. https://doi.org/10.1093/biomet/70.1.269 DOI: https://doi.org/10.1093/biomet/70.1.269

Hinde J, Demetrio CGB. Overdispersion: Models and estimation. Computational statistics and Data Analysis 1998; 27: 151-170. https://doi.org/10.1016/S0167-9473(98)00007-3 DOI: https://doi.org/10.1016/S0167-9473(98)00007-3

Hayat MJ, Higgins M. Understanding Poisson regression. Journal of Nursing Education 2014; 53: 207-215. https://doi.org/10.3928/01484834-20140325-04 DOI: https://doi.org/10.3928/01484834-20140325-04

Hinde JM. Negative binomial regression. Cambridge University Press 2007; P2011.

Joe H, Zhu R. Generalized Poisson distribution: The property of mixture of Poisson and comparison with the negative binomial distribution. Biometrical Journal 2005; 47:219-229. https://doi.org/10.1002/bimj.200410102 DOI: https://doi.org/10.1002/bimj.200410102

Consul PC, Jain GC. Ona generalization of Poisson distribution. ABSTRACT, Annals of Mathematical Statistics 1970; 41: 1387.

Consul PC. Generalized Poisson Distribution. Marcel Dekker Inc., New York1989.

JanardanKG, SchaefferDJ. Models for the analysis of chromosomal aberrations in human leukocytes. Biometrical J 1977; 19: 599-612. https://doi.org/10.1002/bimj.4710190804 DOI: https://doi.org/10.1002/bimj.4710190804

Shoukri MM, Mian IUH. Some aspects of statistical inference on the Lagrange (generalized) Poisson distribution. Communication in Statistics: Computations and Simulations1991; 20(4): 1115-1137. https://doi.org/10.1080/03610919108812999 DOI: https://doi.org/10.1080/03610919108812999

Tanner JC. A derivation of Borel distribution. Biometrika1961; 40: 222-224. https://doi.org/10.1093/biomet/48.1-2.222 DOI: https://doi.org/10.1093/biomet/48.1-2.222

Consul PC, Shoukri MM. Some Chance Mechanisms Related to a Generalized Poisson Probability Model. American Journal of Mathematical and Management Sciences 1988; 8. https://doi.org/10.1080/01966324.1988.10737237 DOI: https://doi.org/10.1080/01966324.1988.10737237

Srivastava S,Chen L. A two-parameter generalized Poisson model to improve the analysis of RNA-seq data. Nucleic Acids Research 2010; 38(17): e170. https://doi.org/10.1093/nar/gkq670 DOI: https://doi.org/10.1093/nar/gkq670

Cox DR, Reid N. Parameter Orthogonality and Approximate Conditional Inference Journal of the Royal Statistical Society. Series B (Methodological) 1987; 49(1): 1-39. https://doi.org/10.1111/j.2517-6161.1987.tb01422.x DOI: https://doi.org/10.1111/j.2517-6161.1987.tb01422.x

McCullagh P, Nelder JA. Generalized Linear Models. Chapman and Hall. London 1989. https://doi.org/10.1007/978-1-4899-3242-6 DOI: https://doi.org/10.1007/978-1-4899-3242-6

Consul PC, Shoukri MM. Maximum likelihood estimation of the generalized Poisson distribution. Communications in Statistics, Theory and Methods 1984; 13(2): 1533-1547. https://doi.org/10.1080/03610928408828776 DOI: https://doi.org/10.1080/03610928408828776

Cox DR, Hinkley D. Theoretical Statistics. Chapman and Hall, London, UK 1974. https://doi.org/10.1007/978-1-4899-2887-0 DOI: https://doi.org/10.1007/978-1-4899-2887-0

Fieller EC. A fundamental formula in the statistics of biological assays and some applications. Quarterly Journal of Pharmacy and Pharmacology1944; 17: 117-123.

Fieller EC. Some problems in interval estimation. Journal of the Royal Statistical Society (B) 1954; 16(2): 175-185. https://doi.org/10.1111/j.2517-6161.1954.tb00159.x DOI: https://doi.org/10.1111/j.2517-6161.1954.tb00159.x

Wu J, Jiang G. Small sample likelihood inference for the ratio of means. Computational Statistics & Data Analysis2001; 38: 181-190. https://doi.org/10.1016/S0167-9473(01)00025-1 DOI: https://doi.org/10.1016/S0167-9473(01)00025-1

Sheiner LB. Bioequivalence revisited. Statistics in Medicine 1992; 11: 1777-1788. https://doi.org/10.1002/sim.4780111311 DOI: https://doi.org/10.1002/sim.4780111311

Wu J, Wong ACM, Ng KW. Likelihood-based confidence interval for the ratio of scale parameters of two independent Weibull distributions. Journal of Statistical Planning and Inference2005; 135: 487-497. https://doi.org/10.1016/j.jspi.2004.05.012 DOI: https://doi.org/10.1016/j.jspi.2004.05.012

Kendall M, Ord K. The Advanced Theory of Statistics, Sixth edition, 2009; Vol.1.

JiangH, WongWH. Statistical inferences for isoform expression in RNA-Seq. Bioinformatics2009; 25: 1026-1032. https://doi.org/10.1093/bioinformatics/btp113 DOI: https://doi.org/10.1093/bioinformatics/btp113

BullardJH, Purdom E, HansenKD, DudoitS. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 2010; 11: 94. https://doi.org/10.1186/1471-2105-11-94 DOI: https://doi.org/10.1186/1471-2105-11-94

RobinsonMD, SmythGK. Moderated statistical tests for assessing differences in tag abundance. Bioinformatics 2007; 23: 2881-2887. https://doi.org/10.1093/bioinformatics/btm453 DOI: https://doi.org/10.1093/bioinformatics/btm453

Downloads

Published

2020-06-04

How to Cite

Shoukri, M. ., & Al-Eid, M. . (2020). Inference Procedures on the Ratio of Modified Generalized Poisson Distribution Means: Applications to RNA_SEQ Data. International Journal of Statistics in Medical Research, 9, 41–49. https://doi.org/10.6000/1929-6029.2020.09.05

Issue

Section

General Articles