Relationship between the rs333 Polymorphism in the CC Chemokine Receptor Type Five (CCR5) Gene and Immunological Disorders: Data from a Meta-Analysis

Authors

  • Felipe Rodolfo Pereira da Silva Post Graduation Program in Basic and Applied Immunology, Federal University of Amazonas, Manaus, Amazonas, Brazil and Laboratory of Histological Analysis and Preparation (LAPHis), Parnaiba Delta Federal University (UFDPar), Parnaiba, PI, Brazil
  • Alessandro Luiz Araújo Bentes Leal Laboratory of Biology of Microorganisms, Parnaiba Delta Federal University (UFDPar), Parnaiba, Piaui, Brazil
  • Reyce Santos Koga Post Graduation Program in Public Health, University of São Paulo, São Paulo, Brazil
  • Even Herlany Pereira Alves Laboratory of Histological Analysis and Preparation (LAPHis), Parnaiba Delta Federal University (UFDPar), Parnaiba, PI, Brazil
  • John Arlley Sousa Pinho de Lira Laboratory of Histological Analysis and Preparation (LAPHis), Parnaiba Delta Federal University (UFDPar), Parnaiba, PI, Brazil
  • Humbelina Alves da Silva Laboratory of Histological Analysis and Preparation (LAPHis), Parnaiba Delta Federal University (UFDPar), Parnaiba, PI, Brazil
  • Karen Neisman Rodríguez Ayala Laboratory of Histological Analysis and Preparation (LAPHis), Parnaiba Delta Federal University (UFDPar), Parnaiba, PI, Brazil
  • Paulo Roberto Carneiro Gomes Laboratory of Histological Analysis and Preparation (LAPHis), Parnaiba Delta Federal University (UFDPar), Parnaiba, PI, Brazil
  • Anna Carolina Toledo da Cunha Pereira Laboratory of Biology of Microorganisms, Parnaiba Delta Federal University (UFDPar), Parnaiba, Piaui, Brazil
  • Daniel Fernando Pereira Vasconcelos Laboratory of Histological Analysis and Preparation (LAPHis), Parnaiba Delta Federal University (UFDPar), Parnaiba, PI, Brazil

DOI:

https://doi.org/10.6000/1929-6029.2021.10.08

Keywords:

Cytokine, inflammation, autoimmune disease, genetic variation

Abstract

Introduction: Inflammatory Bowel Disease (IBD), periodontitis and Systemic Lupus Erythematous (SLE) are multifactorial diseases, one of the factors in the course of these diseases is the rs333 polymorphism in the CC chemokine receptor type five (CCR5) gene. However, the results remain contradictory. Therefore, we aimed to perform a meta-analysis evaluating the relation between this polymorphism and the aforementioned conditions.

Material and Methods: A search in the literature was performed in diverse scientific and medical databases for studies published before June 22, 2020. The data were extracted from the studies and the statistical evaluation was performed by the calculations of statistical heterogeneity (I²), Odds Ratio (OR) with 95% of Confidence Intervals (CI) and publication bias. The values of P<0.05 were considered as significant for all calculations.

Results: 19 articles with 21 case/control studies in 4,304 case patients and 3,492 controls were included. The meta-analysis showed a non-significant association among the rs333 polymorphism and IBD (OR = 1.05, 95% CI: 0.91-1.20, P = 0.51), periodontitis (OR = 0.86, 95% CI: 0.64-1.17, P = 0.34) or SLE (OR = 1.00, 95% CI: 0.56-1.80, P = 1.00) under the allelic model or for any other performed calculation. There were no obvious publication bias in the analyses.

Conclusion: In conclusion, this current meta-analysis evidenced the non-significant relation among the rs333 polymorphism and the risk of IBD, periodontitis or SLE. Further studies are required to validate our data.

References

Loos BG, Van Dyke TE. The role of inflammation and genetics in periodontal disease. Periodontol 2000 2020; 83(1): 26-39. https://doi.org/10.1111/prd.12297 DOI: https://doi.org/10.1111/prd.12297

Bianco AM, Girardelli M, Tommasini A. Genetics of inflammatory bowel disease from multifactorial to monogenic forms. World J Gastroenterol 2015; 21: 12296-310. https://doi.org/10.3748/wjg.v21.i43.12296 DOI: https://doi.org/10.3748/wjg.v21.i43.12296

Deng Y, Tsao BP. Updates in lupus genetics. Curr Rheumatol Rep 2017; 19: 68. https://doi.org/10.1007/s11926-017-0695-z DOI: https://doi.org/10.1007/s11926-017-0695-z

Zuo T, Kamm MA, Colombel JF, et al. Urbanization and the gut microbiota in health and inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2018; 15: 440-52. https://doi.org/10.1038/s41575-018-0003-z DOI: https://doi.org/10.1038/s41575-018-0003-z

Eppinga H, Poortinga S, Thio HB, et al. Prevalence and phenotype of concurrent psoriasis and inflammatory bowel disease. Inflamm Bowel Dis 2017; 23: 1783-89. https://doi.org/10.1097/MIB.0000000000001169 DOI: https://doi.org/10.1097/MIB.0000000000001169

Jones GR, Lyons M, Plevris N, et al. IBD prevalence in Lothian, Scotland, derived by capture–recapture methodology. Gut 2019; 68: 1953-60. https://doi.org/10.1136/gutjnl-2019-318936 DOI: https://doi.org/10.1136/gutjnl-2019-318936

Chang S, Shen B. Classification and Reclassification of Inflammatory Bowel Diseases: From Clinical Perspective. In: Interventional Inflammatory Bowel Disease: Endoscopic Management and Treatment of Complications. Academic Press 2018; 17-34. https://doi.org/10.1016/B978-0-12-811388-2.00002-6 DOI: https://doi.org/10.1016/B978-0-12-811388-2.00002-6

Younis N, Zarif R, Mahfouz R. Inflammatory bowel disease: between genetics and microbiota. Mol Biol Rep 2020; 1-11. https://doi.org/10.1007/s11033-020-05318-5 DOI: https://doi.org/10.1007/s11033-020-05318-5

Kinane DF, Stathoupoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers 2017; 3: 17038. https://doi.org/10.1038/nrdp.2017.38 DOI: https://doi.org/10.1038/nrdp.2017.38

Silva N, Abusleme L, Bravo D, et al. Host response mechanisms in periodontal diseases. J Appl Oral Sci 2015; 23: 329-55. https://doi.org/10.1590/1678-775720140259 DOI: https://doi.org/10.1590/1678-775720140259

López R, Baelum V. Periodontal disease classifications revisited. Eur J Oral Sci 2015; 123: 385-9. https://doi.org/10.1111/eos.12227 DOI: https://doi.org/10.1111/eos.12227

Albandar JM. Aggressive periodontitis: case definition and diagnostic criteria. Periodontol 2000 2014; 65: 13-26. https://doi.org/10.1111/prd.12014 DOI: https://doi.org/10.1111/prd.12014

Eke PI, Borgnakke WS, Genco RJ. Recent epidemiologic trends in periodontitis in the USA. Periodontol 2000; 82: 257-67. https://doi.org/10.1111/prd.12323 DOI: https://doi.org/10.1111/prd.12323

Catunda RQ, Levin L, Kornerup I, et al. Prevalence of Periodontitis in Young Populations: A Systematic Review. Oral Health Preventive Dent 2019; 17: 195-202. DOI: https://doi.org/10.1111/ddg.14001

Bae, EH, Lim SY, Han KD, et al. Trend of prevalence and incidence of systemic lupus erythematosus in South Korea, 2005 to 2015: a nationwide population-based study. Korean J Intern Med 2020; 35: 652-61. https://doi.org/10.3904/kjim.2018.303 DOI: https://doi.org/10.3904/kjim.2018.303

Li S, Gong T, Peng Y, et al. Prevalence and incidence of sys-temic lupus erythematosus and associated outcomes in the 2009–2016 US Medicare population. Lupus 2020; 29: 15-26. https://doi.org/10.1177/0961203319888691 DOI: https://doi.org/10.1177/0961203319888691

Ellwanger JH, Kulmann LB, Lima KV, et al. Beyond HIV infection: neglected and varied impacts of CCR5 and CCR5Δ32 on viral diseases. Virus Res 2020; 286: 198040. https://doi.org/10.1016/j.virusres.2020.198040 DOI: https://doi.org/10.1016/j.virusres.2020.198040

Raport CJ, Gosling J, Schweickart VL, Gray PW, Charo IF. Molecular cloning and functional characterization of a novel human CC chemokine receptor (CCR5) for RANTES, MIP-1β, and MIP-1α. J Biol Chem 1996; 271: 17161-6. https://doi.org/10.1074/jbc.271.29.17161 DOI: https://doi.org/10.1074/jbc.271.29.17161

Rautenbach A, Williams AA. Metabolomics as an Approach to Characterise the Contrasting Roles of CCR5 in the Pre-sence and Absence of Disease. Int J Mol Sci 2020; 21: 1472. https://doi.org/10.3390/ijms21041472 DOI: https://doi.org/10.3390/ijms21041472

Verma MK, Shakya S. Genetic variation in the chemokine receptor 5 gene and course of HIV infection; review on genetics and immunological aspect. Genes Dis 2020; 8: 475-83. https://doi.org/10.1016/j.gendis.2020.04.007 DOI: https://doi.org/10.1016/j.gendis.2020.04.007

Ellwanger JH, Kulmann LB, Wolf JM, et al. Role of the genetic variant CCR5Δ32 in HBV infection and HBV/HIV co-infection. Virus res 2020; 277: 197838. https://doi.org/10.1016/j.virusres.2019.197838 DOI: https://doi.org/10.1016/j.virusres.2019.197838

Ellwanger JH, Leal BK, Valverde VJM, et al. CCR5Δ32 in HCV infection, HCV/HIV co-infection, and HCV-related diseases. Infect Genet Evol 2018; 59: 163-6. https://doi.org/10.1016/j.meegid.2018.02.002 DOI: https://doi.org/10.1016/j.meegid.2018.02.002

Słomiński B, Ławrynowicz U, Myśliwska J, et al. CCR5-Δ32 gene polymorphism is related to celiac disease and autoimmune thyroiditis coincidence in patients with type 1 diabetes. J Diabetes Complications 2017; 31: 615-8. https://doi.org/10.1016/j.jdiacomp.2016.10.031 DOI: https://doi.org/10.1016/j.jdiacomp.2016.10.031

Fatima F, Saleem S, Hameed A, et al. Association analysis and allelic distribution of deletion in CC chemokine receptor 5 gene (CCR5Δ32) among breast cancer patients of Pakistan. Mol Biol Rep 2018; 46: 2387-94. https://doi.org/10.1007/s11033-019-04699-6 DOI: https://doi.org/10.1007/s11033-019-04699-6

Solloch UV, Lang K, Lange V, Böhme I, Schmidt AH, Sauter J. Frequencies of gene variant CCR5-Δ32 in 87 countries based on next-generation sequencing of 1.3 million individuals sampled from 3 national DKMS donor centers. Human Immunol 2017; 78: 710-7. https://doi.org/10.1016/j.humimm.2017.10.001 DOI: https://doi.org/10.1016/j.humimm.2017.10.001

Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement (Chinese edition). Chin J Integr Med 2009; 07: 889-96. https://doi.org/10.3736/jcim20090918 DOI: https://doi.org/10.3736/jcim20090918

Levine A, Koletzko S, Turner D, et al. ESPGHAN revised porto criteria for the diagnosis of inflammatory bowel disease in children and adolescents. J Pediatr Gastroenterol Nutr 2014; 58: 795-806. https://doi.org/10.1097/MPG.0000000000000239 DOI: https://doi.org/10.1097/MPG.0000000000000239

Page RC, Eke PI. Case definitions for use in population‐based surveillance of periodontitis. J Periodontol 2007; 78: 1387-99. https://doi.org/10.1902/jop.2007.060264 DOI: https://doi.org/10.1902/jop.2007.060264

Yu C, Gershwin ME, Chang C. Diagnostic criteria for systemic lupus erythematosus: a critical review. J Autoimmun 2014; 48: 10-3. https://doi.org/10.1016/j.jaut.2014.01.004 DOI: https://doi.org/10.1016/j.jaut.2014.01.004

Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 1959; 22: 719-48.

Dersimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177-88. https://doi.org/10.1016/0197-2456(86)90046-2 DOI: https://doi.org/10.1016/0197-2456(86)90046-2

Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994; 1088-101. https://doi.org/10.2307/2533446 DOI: https://doi.org/10.2307/2533446

Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Bmj 1997; 315: 629-34. https://doi.org/10.1136/bmj.315.7109.629 DOI: https://doi.org/10.1136/bmj.315.7109.629

Craggs A, Welfare M, Donaldson PT, Mansfield JC. The CC chemokine receptor 5 Δ32 mutation is not associated with inflammatory bowel disease (IBD) in NE England. Genes Immun 2001; 2: 114-6. https://doi.org/10.1038/sj.gene.6363735 DOI: https://doi.org/10.1038/sj.gene.6363735

Eri R, Jonsson JR, Pandeya N, et al. CCR5-Δ32 mutation is strongly associated with primary sclerosing cholangitis. Genes Immun 2004; 5: 444-50. https://doi.org/10.1038/sj.gene.6364113 DOI: https://doi.org/10.1038/sj.gene.6364113

Henckaerts L, Fevery J, Van SW, et al. CC-Type chemokine receptor 5-Δ32 mutation protects against primary sclerosing cholangitis. Inflamm Bowel Dis 2006; 12: 272-7. https://doi.org/10.1097/01.MIB.0000209790.21737.28 DOI: https://doi.org/10.1097/01.MIB.0000209790.21737.28

Herfarth H, Pollok KB, Göke M, Press A, Oppermann M. Polymorphism of CC chemokine receptors CCR2 and CCR5 in Crohn's disease. Immunol Lett 2001; 77: 113-7. https://doi.org/10.1016/S0165-2478(01)00199-7 DOI: https://doi.org/10.1016/S0165-2478(01)00199-7

Hosek J, Bartosova L, Gregor P, et al. Frequency of representative single nucleotide polymorphisms associated with inflammatory bowel disease in the Czech Republic and Slovak Republic. Folia Biol (Praha) 2008; 54: 88-96.

Martin K, Heinzlmann M, Borchers R, et al. Δ32 mutation of the chemokine-receptor 5 gene in inflammatory bowel disease. Clin Immunol 2001; 98: 18-22. https://doi.org/10.1006/clim.2000.4943 DOI: https://doi.org/10.1006/clim.2000.4943

Paavola P, HelioÈ T, Kiuru M, et al. Genetic analysis in Finnish families with inflammatory bowel disease supports linkage to chromosome 3p21. Eur J Hum Genet 2001; 9: 328-34. https://doi.org/10.1038/sj.ejhg.5200626 DOI: https://doi.org/10.1038/sj.ejhg.5200626

Rector A, Vermeire S, Thoelen I, et al. Analysis of the CC chemokine receptor 5 (CCR5) delta-32 polymorphism in inflammatory bowel disease. Hum Genet 2001; 108: 190-3. https://doi.org/10.1007/s004390100462 DOI: https://doi.org/10.1007/s004390100462

Satsangi J, Vermeire S, Thoelen I, et al. CCR5Δ32 polymorphism in inflammatory bowel disease: further association with ulcerative colitis and with primary sclerosing cholangitis. Gastroenterol 2000; 4: A337. https://doi.org/10.1016/S0016-5085(00)83443-5 DOI: https://doi.org/10.1016/S0016-5085(00)83443-5

Cavalla F, Biguetti CC, Dionisio TJ, et al. CCR5Δ32 (rs333) polymorphism is associated with decreased risk of chronic and aggressive periodontitis: a case-control analysis based in disease resistance and susceptibility phenotypes. Cytokin 2018; 103: 142-9. https://doi.org/10.1016/j.cyto.2017.09.022 DOI: https://doi.org/10.1016/j.cyto.2017.09.022

Folwaczny M, Glas J, Török HP, Fricke K, Folwaczny C. Pre-valence of the chemokine receptor CCR5-Δ32 gene mutation in periodontal disease. Clin Immunol 2003; 109: 325-9. https://doi.org/10.1016/j.clim.2003.08.001 DOI: https://doi.org/10.1016/j.clim.2003.08.001

Savarrio L, Donati M, Carr C, Kinane DF, Berglundh T. Interleukin‐24, RANTES and CCR5 gene polymorphisms are not associated with chronic adult periodontitis. J Periodontal Res 2007; 42: 152-8. https://doi.org/10.1111/j.1600-0765.2006.00928.x DOI: https://doi.org/10.1111/j.1600-0765.2006.00928.x

Shih YS, Fu E, Fu MM, et al. Association of CCL5 and CCR5 gene polymorphisms with periodontitis in Taiwanese. J Periodontal 2014; 85: 1596-602. https://doi.org/10.1902/jop.2014.130651 DOI: https://doi.org/10.1902/jop.2014.130651

Aguilar F, Núñez RA, Torres B, Wichmann I, Sánchez-Román, González-Escribano MF. Chemokine receptor CCR2/CCR5 polymorphism in Spanish patients with systemic lupus erythematosus. J Rheumatology 2003; 30: 1770-774.

Baltus THL, Kallaur AP, Lozovoy MAB, et al. CCR5Δ32 (rs333) polymorphism is associated with the susceptibility to systemic lupus erythematosus in female Brazilian patients. Rheumatol int 2016; 36: 7-15. https://doi.org/10.1007/s00296-015-3308-z DOI: https://doi.org/10.1007/s00296-015-3308-z

Carvalho C, Calvisi SL, Leal B, et al. CCR5‐Delta32: implications in SLE development. Int J Immunogenet 2014; 41: 236-41. https://doi.org/10.1111/iji.12094 DOI: https://doi.org/10.1111/iji.12094

Martens HA, Gross S, van der Steege G, et al. Lack of association of CC chemokine receptor 5 Δ32 deletion status with rheumatoid arthritis, systemic lupus erythematosus, lupus nephritis, and disease severity. J Rheumatol 2010; 37: 2226-31. https://doi.org/10.3899/jrheum.091468 DOI: https://doi.org/10.3899/jrheum.091468

Schauren JS, Marasca JA, Veit TD, et al. CCR5delta32 in systemic lupus erythematosus: implications for disease susceptibility and outcome in a Brazilian population. Lupus 2013; 22: 802-9. https://doi.org/10.1177/0961203313491848 DOI: https://doi.org/10.1177/0961203313491848

Yang S, Ye D, Li X. The SNPs of chemokine RANTES promoter and the mutation of its' receptor CCR5 in SLE and controls in Han indigenous in Chinese. Chinese J Microbiol Immunol 2003; 23: 723-7.

Barmania F, Pepper SM. CC chemokine receptor type five (CCR5): an emerging target for the control of HIV infection. Appl Transl Genom 2013; 2: 3-16. https://doi.org/10.1016/j.atg.2013.05.004 DOI: https://doi.org/10.1016/j.atg.2013.05.004

Contento RL, Molon B, Boularan C, et al. CXCR4–CCR5: a couple modulating T cell functions. Proc Natl Acad Sci 2008; 105: 10101-6. https://doi.org/10.1073/pnas.0804286105 DOI: https://doi.org/10.1073/pnas.0804286105

Kaufmann A, Salentin R, Gemsa D, Sprenger H. Increase of CCR1 and CCR5 expression and enhanced functional response to MIP‐1α during differentiation of human monocytes to macrophages. J Leukoc Biol 2001; 69: 248-52. DOI: https://doi.org/10.1189/jlb.69.2.248

Tyner JW, Uchida O, Kajiwara N, et al. CCL5-CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection. Nat Med 2005; 11: 1180-7. https://doi.org/10.1038/nm1303 DOI: https://doi.org/10.1038/nm1303

Steinbach EC, Plevy SE. The role of macrophages and dendritic cells in the initiation of inflammation in IBD. Inflamm Bowel Dis 2014; 20: 166-75. https://doi.org/10.1097/MIB.0b013e3182a69dca DOI: https://doi.org/10.1097/MIB.0b013e3182a69dca

Zhang P, Fan Y, Li Q, et al. Macrophage activating factor: A potential biomarker of periodontal health status. Arch Oral Biol 2016; 70: 94-9. https://doi.org/10.1016/j.archoralbio.2016.06.010 DOI: https://doi.org/10.1016/j.archoralbio.2016.06.010

Katsiari CG, Liossis SNC, Sfikakis PP. The pathophysiologic role of monocytes and macrophages in systemic lupus erythematosus: a reappraisal. Semin Arthritis Rheum 2010; 39: 491-503. https://doi.org/10.1016/j.semarthrit.2008.11.002 DOI: https://doi.org/10.1016/j.semarthrit.2008.11.002

Zhang CY, Wei JF, He SH. Local base order influences the origin of ccr5 deletions mediated by DNA slip replication. Biochem Genet 2005; 43: 229-37. https://doi.org/10.1007/s10528-005-5214-7 DOI: https://doi.org/10.1007/s10528-005-5214-7

Thomas JC. Characterization of the CCR5 chemokine receptor gene. Biochem Mol Biol Educ 2004; 32: 191-5. https://doi.org/10.1002/bmb.2004.494032030357 DOI: https://doi.org/10.1002/bmb.2004.494032030357

Donyavi T, Bokharaei SF, Nahand JS, et al. Evaluation of CCR5‐Δ32 Mutation among Individuals with High Risk Behaviours, Neonates Born to HIV‐1 Infected Mothers, HIV‐1 Infected Individuals, and Healthy People in an Iranian Population. J Med Virol 2020; 92: 1158-64. https://doi.org/10.1002/jmv.25658 DOI: https://doi.org/10.1002/jmv.25658

Estrada-Aguirre JA, Cázarez-Salazar SG, Ochoa-Ramírez LA, et al. Protective effect of CCR5 Delta-32 allele against HIV-1 in Mexican women. Curr HIV Res 2013; 11: 506-10. https://doi.org/10.2174/1570162X11666140101120225 DOI: https://doi.org/10.2174/1570162X11666140101120225

Trecarichi EM, Tumbarello M, Donati GK, et al. Partial protective effect of CCR5-Delta 32 heterozygosity in a cohort of heterosexual Italian HIV-1 exposed uninfected individuals. AIDS Res Ther 2006; 3: 22. https://doi.org/10.1186/1742-6405-3-22 DOI: https://doi.org/10.1186/1742-6405-3-22

Abdolmohammadi R, Azar SS, Khosravi A, Shahbazi M. CCR5 polymorphism as a protective factor for hepatocellular carcinoma in hepatitis B virus-infected Iranian patients. Asian Pac J Cancer Prev 2016; 17: 4643-6.

Drozd DM, Gańczak M, Karpińska E. Concerns related to CCR5 gene delta 32 mutation role in hepatitis B virus infection. Przegl Epidemiol 2017; 71: 571-81.

Rodríguez-Rodríguez L, González-Juanatey C, García-Bermúdez M, et al. CCR5Δ32 variant and cardiovascular disease in patients with rheumatoid arthritis: a cohort study. Arthritis Res Ther 2011; 13: R133. https://doi.org/10.1186/ar3444 DOI: https://doi.org/10.1186/ar3444

Török N, Molnár K, Füvesi J, et al. Chemokine receptor V Δ32 deletion in multiple sclerosis patients in Csongrád County in Hungary and the North-Bácska region in Serbia. Hum Immunol 2015; 76: 59-64. https://doi.org/10.1016/j.humimm.2014.11.001 DOI: https://doi.org/10.1016/j.humimm.2014.11.001

Soto-Sánchez J, Santos-Juanes J, Coto-Segura P, et al. Genetic variation at the CCR5/CCR2 gene cluster and risk of psoriasis and psoriatic arthritis. Cytokine 2010; 50: 114-6. https://doi.org/10.1016/j.cyto.2010.01.006 DOI: https://doi.org/10.1016/j.cyto.2010.01.006

Von Hippel PT. The heterogeneity statistic I² can be biased in small meta-analyses. BMC Med Res Methodol 2015; 15: 1-8. https://doi.org/10.1186/s12874-015-0024-z DOI: https://doi.org/10.1186/s12874-015-0024-z

Rutter-Locher Z, Smith TO, Giles I, Sofat N. Association between systemic lupus erythematosus and periodontitis: a systematic review and meta-analysis. Front Immunol 2017; 8: 1295. https://doi.org/10.3389/fimmu.2017.01295 DOI: https://doi.org/10.3389/fimmu.2017.01295

Pessoa L, Aleti G, Choudhury S, et al. Host-Oral Microbial Interactions in Lupus and Periodontal Diseases. Front Immunol 2019; 10: 2602. https://doi.org/10.3389/fimmu.2019.02602 DOI: https://doi.org/10.3389/fimmu.2019.02602

Samarani S, Dupont-Lucas C, Marcil V, et al. CpG Methylation in TGFβ1 and IL-6 Genes as Surrogate Biomarkers for Diagnosis of IBD in Children. Inflamm Bowel Dis 2020; 26: 1572-8. https://doi.org/10.1093/ibd/izaa074 DOI: https://doi.org/10.1093/ibd/izaa074

Silva, FRP Vasconcelos ACCG, França LFC, et al. Relationship between-889 C/T polymorphism in interleukin-1A gene and risk of chronic periodontitis: evidence from a meta-analysis with new published findings. Med Oral Patol Oral Cir Bucal 2017; 22: e7-e14.

Silva FRP, Santos PL, Vasconcelos ACCG, et al. Polymorphisms in interleukins 17A and 17F genes and periodontitis: results from a meta-analysis. Mol Biol Rep 2017; 44: 443-53. https://doi.org/10.1007/s11033-017-4128-x DOI: https://doi.org/10.1007/s11033-017-4128-x

Silva FRP, Vasconcelos ACCG, França LFC, et al. Association between the rs1143634 polymorphism in interleukin-1B and chronic periodontitis: Results from a meta-analysis composed by 54 case/control studies. Gene 2018; 668: 97-106. https://doi.org/10.1016/j.gene.2018.05.067 DOI: https://doi.org/10.1016/j.gene.2018.05.067

Silva FRP, Galeno JG, Leal ALAB, et al. Non-significant association between− 330 T/G polymorphism in interleukin-2 gene and chronic periodontitis: findings from a meta-analysis. BMC Oral Health 2020; 20: 58. https://doi.org/10.1186/s12903-020-1034-8 DOI: https://doi.org/10.1186/s12903-020-1034-8

Silva FRP, Leal ALAB, Nibali L, et al. Lack of association between mannose binding Lectin-2 gene polymorphisms and periodontitis: A meta-analysis. Meta Gene 2020; 100757. https://doi.org/10.1016/j.mgene.2020.100757 DOI: https://doi.org/10.1016/j.mgene.2020.100757

Silva FRP, Pessoa LS, Shin JI, et al. Polymorphisms in the interleukin genes and chronic periodontitis: A field synopsis and revaluation by Bayesian approaches. Cytokine 2021; 138: 155361. https://doi.org/10.1016/j.cyto.2020.155361 DOI: https://doi.org/10.1016/j.cyto.2020.155361

Ahmed HS, Ahmed H, Ad'hiah AH. Interleukin-1 single nucleotide polymorphisms and risk of systemic lupus erythematosus among Iraqi patients. Meta Gene 2020; 23: 100640. https://doi.org/10.1016/j.mgene.2019.100640 DOI: https://doi.org/10.1016/j.mgene.2019.100640

Nasiri M, Jaafari SM, Daryagard F, et al. Association of TIM-3 (rs1036199) and TIM-4 (rs7700944, rs6882076) gene polymorphisms with susceptibility to systemic lupus erythematosus. Meta Gene 2020; 25: 100749. https://doi.org/10.1016/j.mgene.2020.100749 DOI: https://doi.org/10.1016/j.mgene.2020.100749

Downloads

Published

2021-09-20

How to Cite

Pereira da Silva, F. R. ., Bentes Leal, A. L. A. ., Koga, R. S., Pereira Alves, E. H. ., Pinho de Lira, J. A. S. ., Alves da Silva, H. ., Rodríguez Ayala, K. N. ., Carneiro Gomes, P. R. ., Cunha Pereira, A. C. T. da ., & Pereira Vasconcelos, D. F. . (2021). Relationship between the rs333 Polymorphism in the CC Chemokine Receptor Type Five (CCR5) Gene and Immunological Disorders: Data from a Meta-Analysis. International Journal of Statistics in Medical Research, 10, 85–96. https://doi.org/10.6000/1929-6029.2021.10.08

Issue

Section

General Articles