Fixed Effects High-Dimensional Profiling Models in Low Information Context


  • Jason P. Estes Mountain View, CA 94043, USA
  • Damla Sentürk Department of Biostatistics, University of California, Los Angeles, CA 90095, USA
  • Esra Kürüm Department of Statistics, University of California, Riverside, CA 92521, USA
  • Connie M. Rhee Department of Medicine, University of California Irvine, Orange, CA 92868, USA
  • Danh V. Nguyen Department of Medicine, University of California Irvine, Orange, CA 92868, USA



End-stage renal disease, fixed effects, high-dimensional parameters, logistic regression, infrequent events, Firth’s correction


Profiling or evaluation of health care providers, including hospitals or dialysis facilities, involves the application of hierarchical regression models to compare each provider’s performance with respect to a patient outcome, such as unplanned 30-day hospital readmission. This is achieved by comparing a specific provider’s estimate of unplanned readmission rate, adjusted for patient case-mix, to a normative standard, typically defined as an “average” national readmission rate across all providers. Profiling is of national importance in the United States because the Centers for Medicare and Medicaid Services (CMS) policy for payment to providers is dependent on providers’ performance, which is part of a national strategy to improve delivery and quality of patient care. Novel high dimensional fixed effects (FE) models have been proposed for profiling dialysis facilities and are more focused towards inference on the tail of the distribution of provider outcomes, which is well-suited for the objective of identifying sub-standard (“extreme”) performance. However, the extent to which estimation and inference procedures for FE profiling models are effective when the outcome is sparse and/or when there are relatively few patients within a provider, referred to as the “low information” context, have not been examined. This scenario is common in practice when the patient outcome of interest is cause-specific 30-day readmissions, such as 30-day readmission due to infections in patients on dialysis, which is only about ~ 8% compared to the > 30% for all-cause 30-day readmission. Thus, we examine the feasibility and effectiveness of profiling models under the low information context in simulation studies and propose a novel correction method to FE profiling models to better handle sparse outcome data.




How to Cite

Estes, J. P., Sentürk, D. ., Kürüm, E., Rhee, C. M., & Nguyen, D. V. (2021). Fixed Effects High-Dimensional Profiling Models in Low Information Context. International Journal of Statistics in Medical Research, 10, 118–131.



General Articles