Bacterial Anti-Adhesion of Coated and Uncoated Thin-Film-Composite (TFC) Polyamide (PA) Membranes

Authors

  • Juha Nikkola VTT Technical Research Centre of Finland, Box 1000, 02044 Espoo, Finland
  • Hanna-Leena Alakomi VTT Technical Research Centre of Finland, Box 1000, 02044 Espoo, Finland
  • Chuyang Y. Tang Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong

DOI:

https://doi.org/10.6000/2369-3355.2014.01.01.1

Keywords:

Thin film composite (TFC) polyamide (PA) membrane, polyvinyl alcohol (PVA), surface energy, topography, biofouling

Abstract

This study investigates the bacterial anti-adhesion performance of uncoated and coated reverse osmosis (RO) membranes. All the membranes were commercially available fully-aromatic thin-film-composite (TFC) polyamide (PA) membranes. Two of the TFC PA membranes (SW30 and BW30) were coated using polyvinyl alcohol (PVA) coating, while the other three membranes (LE, XLE and NF90) were uncoated. Among the characterised TFC PA membranes, the PVA coated were more hydrophilic and their surface energy was higher in comparison to uncoated. In addition, the PVA coated membranes had lower surface roughness. AFM interaction force measurement demonstrated higher repellence performance for the more polar surface. Bacteria attachment test showed differences between the coated and the uncoated membranes. Indeed, the increase in hydrophilicity and surface polarity showed decrease in the attachment of Pseudomonas aeruginosa cells. Moreover, the results demonstrated that the surface polarity showed better correlation with the attachment of the bacteria. In addition, the type of the surface roughness may somehow contribute to the bacteria repellence.

Author Biography

Chuyang Y. Tang, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong

Department of Civil Engineering

References

Al-Ahmad M, Abdul Aleem FA, Mutiri A, Ubaisy A. Biofuoling in RO membrane systems Part 1: Fundamentals and control. Desalination 2000; 132: 173-79. http://dx.doi.org/10.1016/S0011-9164(00)00146-6

Hemming H-C. Reverse osmosis membrane biofouling. Exper Thermal Fluid Sci 1997; 14(4): 382-91.

Tang CY, Chong TH, Fane AG. Colloidal interactions and fouling of NF and RO membranes: A review. Adv Colloid Interface Sci 2011; 164(1-2): 126-43. http://dx.doi.org/10.1016/j.cis.2010.10.007

Vrijenhoek EM, Hong S, Elimelech M. Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. J Membr Sci 2001; 188: 115-28. http://dx.doi.org/10.1016/S0376-7388(01)00376-3

Chen V, Mansouri J, Charlton T. Biofouling in Membrane Systems, In: Peinemann K-V, Nunes SP, Membranes for Water Treatment, Wiley-VCH, Weinheim 2010; vol. 4: pp. 25-48.

Redondo JA. Development and experience with new FILMTEC reverse-osmosis membrane elements for water-treatment. Desalination 1996; 108: 59-66. http://dx.doi.org/10.1016/S0011-9164(97)00009-X

Tang CY, Kwon Y-N, Leckie JO. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: I. FTIR and XPS characterization of polyamide and coating layer chemistry. Desalination 2009; 242: 149-67. http://dx.doi.org/10.1016/j.desal.2008.04.003

Tang CY, Kwon Y-N, Leckie JO. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes II. Membrane physiochemical properties and their dependence on polyamide and coating layers. Desalination 2009; 242: 168-82. http://dx.doi.org/10.1016/j.desal.2008.04.004

Tang CY, Kwon Y-N, Leckie JO. Fouling of reverse osmosis and nanofiltration membranes by humic acid - Effects of solution composition and hydrodynamic conditions. J Membr Sci 2007; 290: 86-94. http://dx.doi.org/10.1016/j.memsci.2006.12.017

Wang YN, Tang CY. Protein fouling of nanofiltration, reverse osmosis, and ultrafiltration membranes - The role of hydrodynamic conditions, solution chemistry, and membrane properties. J Membr Sci 2011; 376: 275-82. http://dx.doi.org/10.1016/j.memsci.2011.04.036

Norberg D, Hong S, Taylor J, Zhao Y. Surface characterization and performance evaluation of commercial fouling resistant low-pressure RO membranes. Desalination 2007; 202: 45-52. http://dx.doi.org/10.1016/j.desal.2005.12.037

Herzberg M, Elimelech M. Biofouling of reverse osmosis membranes: Role of biofilm-enhanced osmotic pressure. J Membr Sci 2007; 295: 11-20. http://dx.doi.org/10.1016/j.memsci.2007.02.024

Klausen M, Heydorn A, Ragas P, et al. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 2003; 486: 1511-24. http://dx.doi.org/10.1046/j.1365-2958.2003.03525.x

Flemming H-C, Wingender J. The biofilm matrix. Nat Rev Microbiol 2010; 8: 623-33.

Sadr Ghayeni SB, Beatson PJ, Schneider RP, Fane AG. Adhesion of waste water bacteria to reverse osmosis membranes. J Membr Sci 1998; 138: 29-42. http://dx.doi.org/10.1016/S0376-7388(97)00196-8

Subramani A, Hoek EMV. Biofilm formation, cleaning, re-formation on polyamide composite membranes. Desalination 2010; 257: 73-79. http://dx.doi.org/10.1016/j.desal.2010.03.003

Kang S, Hoek EMV, Choi H, Shin H. Effect of membrane surface properties during the fast evaluation of cell attachment. Sep Sci Technol 2006; 41: 1475-87. http://dx.doi.org/10.1080/01496390600634673

Khan MMT, Stewart PS, Moll DJ, Mickols WE, Nelson SE, Camper AK. Characterization and effect of biofouling on polyamide reverse osmosis and nanofiltration membrane surfaces. Biofouling 2011; 272: 173-83. http://dx.doi.org/10.1080/08927014.2010.551766

Rana D, Matsuura T. Surface Modifications for Antifouling Membranes. Chem Rev 2010; 110: 2448-71. http://dx.doi.org/10.1021/cr800208y

Tang CY, Fu QS, Robertson AP, Criddle CS, Leckie JO. Use of reverse osmosis membranes to remove perfluorooctane sulfonate (PFOS) from semiconductor wastewater. Environ Sci Technol 2006; 40: 7343-49. http://dx.doi.org/10.1021/es060831q

Grundke K. Characterization of Polymer Surfaces by Wetting and Electrokinetic Measurements - Contact Angle, Interfacial Tension, Zeta Potential, In: Stamn M. Polymer Surfaces and Interfaces - Characterization, modification and Applications, 1st ed. Springer-Verlag Berlin Heidelberg 2008; pp. 103-136. http://dx.doi.org/10.1007/978-3-540-73865-7_6

Tang CY, Kwon Y-N, Leckie JO. The role of foulant-foulant electrostatic interaction on limiting flux for RO and NF membranes during humic acid fouling—Theoretical basis, experimental evidence, and AFM interaction force measurement. J Membr Sci 2009; 326: 526-32. http://dx.doi.org/10.1016/j.memsci.2008.10.043

Li Q, Elimelech M. Organic fouling and chemical cleaning of nanofiltration membranes: Measurements and mechanisms. Environ Sci Technol 2004; 38: 4683-93. http://dx.doi.org/10.1021/es0354162

Khulbe KC, Feng CY, Matsuura T. Synthetic polymeric membranes - characterisation by atomic force microscopy. Springer-Verlag Berlin Heidelberg 2008; pp. 157-167.

D1141-98 Standard Practise for the Preparation of Substitute Ocean Water 2008.

Tang CY, Kwon Y-N, Leckie JO. Probing the nano- and micro-scales of reverse osmosis membranes—A comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential measurements. J Membr Sci 2007; 287: 146-56. http://dx.doi.org/10.1016/j.memsci.2006.10.038

Downloads

Published

2014-06-24

How to Cite

Nikkola, J., Alakomi, H.-L., & Tang, C. Y. (2014). Bacterial Anti-Adhesion of Coated and Uncoated Thin-Film-Composite (TFC) Polyamide (PA) Membranes. Journal of Coating Science and Technology, 1(1), 1–7. https://doi.org/10.6000/2369-3355.2014.01.01.1

Issue

Section

Articles