Phase Structure, Wear Resistance and Antimicrobial Response of Austenitic Stainless Steels 316L by Sputtering Cu during Plasma Nitriding and PECVD of Silicon Nitride

Authors

  • Ahmad Reza Rastkar Laser and Plasma Research Institute, Shahid Beheshti University, G. C., Evin, Tehran 1983969411, Iran

DOI:

https://doi.org/10.6000/2369-3355.2014.01.02.4

Keywords:

α-Si3N4, E. coli, Friction, Hardness, PECVD.

Abstract

The surface of stainless steel 316L was plasma nitrided and subsequently deposited with silicon nitride from tetraethylorthosilicate (TEOS):H2:N2 gas mixtures by plasma enhanced chemical vapor deposition (PECVD). A copper mesh was employed to sputter copper atoms onto the surface during the two processes to consider its effect on the microstructure, tribology and antibacterial response of hard surface layers.

The surface layers were characterized using XRD, optical and SEM microscopy, EDX analysis, microhardness test, pin-on-disc wear tests and microbial viability test. α-Si3N4 was found on the top surfaces of two steps processed stainless steel 316 L. Fe2–3N, Fe4N and CrN were identified in the compound layers. The overall thickness of the surface layers were more than 60 µm. The two step treatments improved the hardness up to 1600 HV0.1. The combination of plasma nitriding (with Cu sputtering) and PECVD of silicon nitride compound (with Cu sputtering) of SS 316 L resulted in superior high hardness, 3 times lower friction and 10 times higher wear resistance of treated surfaces if compared to those of conventional plasma nitrided surfaces.

Cu addition to single plasma nitriding resulted in an effective reduction of 100% of Escherichia coli (E. coli) within 2 to 3 h. However the bacteria viability after the two step processes with Cu addition diminished to zero in 3.5 to 4 h. The antimicrobial response of the surfaces depends mainly on the Cu action and does not interfere with the wear resistance of the surfaces.

Author Biography

Ahmad Reza Rastkar, Laser and Plasma Research Institute, Shahid Beheshti University, G. C., Evin, Tehran 1983969411, Iran

Laser and Plasma Research Institute

References

Fossati A, Borgioli F, Galvanetto E, Bacci T. Glow discharge nitriding of AISI 316L austenitic stainless steel: influence fo treatment time. Surf Coat Technol 2006; 200: 3511-7. http://dx.doi.org/10.1016/j.surfcoat.2004.10.122 DOI: https://doi.org/10.1016/j.surfcoat.2004.10.122

Lamb S. CASTI Handbook of Stainless Steel and Nickel Alloys. Canada: CASTI Publishing Inc ASM International; 2001.

Li CX, Bell T. Corrosion properties of active screen plasma nitrided 316 austenitic stainless steel. Corr Sci 2004; 46: 1527-47. http://dx.doi.org/10.1016/j.corsci.2003.09.015 DOI: https://doi.org/10.1016/j.corsci.2003.09.015

Saied C, Chala A, Nouveau C, Djouadi MA, Chekour L. Determination of the Optimum Conditions for Ion Nitriding of 32CDV13 Low Alloy Steel. Plasma Process Polym 2007; 4: S757-60. http://dx.doi.org/10.1002/ppap.200731812 DOI: https://doi.org/10.1002/ppap.200731812

Czerwiec T, He H, Marcos G, Thiriet T, Weber S, Michel H. Fundamental and innovations in plasma assisted diffusion of nitrogen and carbon in austenitic stainless steels and related alloys. Plasma Process Polym 2009; 6: 401-9. http://dx.doi.org/10.1002/ppap.200930003 DOI: https://doi.org/10.1002/ppap.200930003

Li CX, Bell T. Corrosion properties of plasma nitrided AISI 410 martensitic stainless steel in 3.5% NaCl and 1% HCl aqueous solutions. Corr Sci 2006; 48: 2036-49. http://dx.doi.org/10.1016/j.corsci.2005.08.011 DOI: https://doi.org/10.1016/j.corsci.2005.08.011

Rolinski E. Effect of plasma nitriding temperature on surface properties of austenitic stainless steel. Surf Eng 1987; 3: 35-40. http://dx.doi.org/10.1179/sur.1987.3.1.35 DOI: https://doi.org/10.1179/sur.1987.3.1.35

Yasumaru N. Low-temperature ion nitriding of austenitic stainless steels. Mater Trans JIM 1998; 39: 1046-52. http://dx.doi.org/10.2320/matertrans1989.39.1046 DOI: https://doi.org/10.2320/matertrans1989.39.1046

Bell T, Sun Y. Plasma surface engineering of low alloy steel. Heat Treatment of Metals 2002; 29: 57-64.

Ma S, Prochazka J, Karvankova P, et al. Comparative study of the tribological behaviour of superhard nanocomposite coatings nc-TiN/a-Si3N4 with TiN. Surf Coat Technol 2005; 194: 143-8. http://dx.doi.org/10.1016/j.surfcoat.2004.05.007 DOI: https://doi.org/10.1016/j.surfcoat.2004.05.007

Miyoshi K, Pouch JJ, Altrovitz SA. Adhesion, friction, and wear of plasma-deposited thin silicon nitride films at temperatures to 700 °C. Wear 1989; 133: 107-23. http://dx.doi.org/10.1016/0043-1648(89)90117-8 DOI: https://doi.org/10.1016/0043-1648(89)90117-8

Batan A, Franquet A, Vereecken J, Reniers F. Characterization of the silicon nitride thin films deposited by plasma magnetron. Surf Interface Anal 2008; 40: 754-7. http://dx.doi.org/10.1002/sia.2730 DOI: https://doi.org/10.1002/sia.2730

Li D, Guruvenket S, Azzi M, Szpunar JA, Klemberg-Sapieha JE, Martinu L. Corrosion and tribo-corrosion behavior of a-SiCx:H, a-SiNx:H and a-SiCxNy:H coatings on SS301 substrate. Surf Coat Technol 2010; 204: 1616-22. http://dx.doi.org/10.1016/j.surfcoat.2009.10.018 DOI: https://doi.org/10.1016/j.surfcoat.2009.10.018

Zhong-rong G, Peng-xun Y, Duo-wang F, Guang-hui Y. Si3N4 nano-microsphere synthesized by cathode arc plasma and heat treatment. Tras Nonferrous Met Soc China 2009; 19: S718-21. http://dx.doi.org/10.1016/S1003-6326(10)60138-0 DOI: https://doi.org/10.1016/S1003-6326(10)60138-0

Li YS, Shimada S. Synthesis of anticorrosion SiC and SiN x films from alkoxide solution using liquid injection PECVD. Surf Coat Technol 2006; 201: 1160-5. http://dx.doi.org/10.1016/j.surfcoat.2006.01.038 DOI: https://doi.org/10.1016/j.surfcoat.2006.01.038

Radwan M, Kashiwagi T, Miyamoto Y. New synthesis route for Si2N2O ceramics based on desert sand. J European Ceram Soc 2003; 23: 2337-41. http://dx.doi.org/10.1016/S0955-2219(03)00040-2 DOI: https://doi.org/10.1016/S0955-2219(03)00040-2

Raynaud P, Despax B, Segui Y, Caquineau H. FTIR plasma phase analysis of hexamethyldisiloxane discharge in microwave multipolar plasma at different electrical power. Plasma Process Polym 2005; 2: 45-52. http://dx.doi.org/10.1002/ppap.200400034 DOI: https://doi.org/10.1002/ppap.200400034

Vinogradov I, Zimmer D, Lunk A. Diagnostics of SiCOH-film-deposition in the dielectric barrier discharge at atmospheric pressure. Plasma Process Polym 2007; 4: S435-9. DOI: https://doi.org/10.1002/ppap.200731202

Tsujikawa M, Yamauchi N, Ueda N, Sone T, Hirose Y. Behavior of carbon in low temperature plasma nitriding layer of austenitic stainless steel. Surf Coat Technol 2005; 193: 309-13. http://dx.doi.org/10.1016/j.surfcoat.2004.08.179 DOI: https://doi.org/10.1016/j.surfcoat.2004.08.179

Arslan E, Igdil MC, Trabzon L, Kazmanl K, Gulmez T. The corrosion behaviour of austenitic 316L stainless steel after low-T plasma nitridation in the physiological solutions. Plasma Process Polym 2007; 4: S717-20. DOI: https://doi.org/10.1002/ppap.200731804

Wang J, Xiong J, Peng Q, et al. Effects of DC plasma nitriding parameters on microstructure and properties of 304L stainless steel. Mater Character 2009; 60: 197-203. http://dx.doi.org/10.1016/j.matchar.2008.08.011 DOI: https://doi.org/10.1016/j.matchar.2008.08.011

Snyders R, Bousser E, Amireault P, et al. Tribo-mechanical properties of DLC coatings deposited on nitrided biomedical stainless steel. Plasma Process Polym 2007; 4: S640-6. http://dx.doi.org/10.1002/ppap.200731601 DOI: https://doi.org/10.1002/ppap.200731601

Ynag K, Manqi LU. The effect of rare earth element Ce on microstructure and properties of austenitic 201 stainless steel. J Mater Sci Technol 2007; 23: 333-6.

Dong Y, Li X, Tian L, Bell T, Sammons RL, Dong H. Towards long-lasting antibacterial stainless steel surfaces by combining double glow plasma silvering with active screen plasma nitriding. Acta Biomater 2011; 7: 447-57. http://dx.doi.org/10.1016/j.actbio.2010.08.009 DOI: https://doi.org/10.1016/j.actbio.2010.08.009

Huang ZK, Greil P, Petzow G. Formation of silicon oxynitride from Si3N4 and SiO2 in the presence of Al2O3. Ceramics Inter 1984;10: 14-7. http://dx.doi.org/10.1016/0272-8842(84)90017-8 DOI: https://doi.org/10.1016/0272-8842(84)90017-8

El-Hossary FM, Negm NZ, Abd El-Rahman AM, Hammad M. Duplex treatment of 304 AISI stainless steel using rf plasma nitriding. Mater Sci Eng 2009; 29: 1167-73. http://dx.doi.org/10.1016/j.msec.2008.09.049 DOI: https://doi.org/10.1016/j.msec.2008.09.049

Duan RG, Roebben G, Vleugels J, Van der Biest O. Thermal stability of in situ formed Si3N4–Si2N2O–TiN composites. J Euro Ceram Soc 2002; 22: 2527-35. http://dx.doi.org/10.1016/S0955-2219(02)00110-3 DOI: https://doi.org/10.1016/S0955-2219(02)00110-3

Forsich C, Heim D, Mueller T. Influence of the deposition temperature on mechanical and tribological properties of a-C:H:Si coatings on nitrided and postoxidized steel deposited by DC-PACVD. Surf Coat Technol 2008; 203: 521-5. http://dx.doi.org/10.1016/j.surfcoat.2008.05.044 DOI: https://doi.org/10.1016/j.surfcoat.2008.05.044

Cullity BD. Elements of X-Ray Diffraction. 3rd ed., Prentice Hall; 2001.

De Las Heras E, Santamarıa DG, Garcıa-Luis A, et al. Microstructure and wear behavior of DC-pulsed plasma nitrided AISI 316L austenitic stainless steel. Plasma Process Polym 2007; 4: S741-5. http://dx.doi.org/10.1002/ppap.200731809 DOI: https://doi.org/10.1002/ppap.200731809

Habraken FHPM, Kuiper AET. Silicon nitride and oxynitride films. Mater Sci Eng 1994; R12: 123-75. http://dx.doi.org/10.1016/0927-796X(94)90006-X DOI: https://doi.org/10.1016/0927-796X(94)90006-X

Kato K. Tribology of ceramics and hard coatings. Mat-wiss u Werkstofftech 2003; 34: 1003-7. http://dx.doi.org/10.1002/mawe.200300685 DOI: https://doi.org/10.1002/mawe.200300685

Downloads

Published

2014-10-30

How to Cite

Rastkar, A. R. (2014). Phase Structure, Wear Resistance and Antimicrobial Response of Austenitic Stainless Steels 316L by Sputtering Cu during Plasma Nitriding and PECVD of Silicon Nitride. Journal of Coating Science and Technology, 1(2), 117–129. https://doi.org/10.6000/2369-3355.2014.01.02.4

Issue

Section

Articles