Optical Coatings as Mirrors for Optical Diagnostics


  • L. Marot Department of Physics, University of Basel
  • G. Arnoux CCFE, Culham Science Centre
  • A. Huber Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung - Plasmaphysik, D-52425 Jülich
  • V. Huber ülich Supercomputing Centre, Research Centre Jülich, D-52425 Jülich
  • Ph. Mertens Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung - Plasmaphysik, D-52425 Jülich
  • G. Sergienko Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung - Plasmaphysik, D-52425 Jülich
  • E. Meyer Department of Physics, University of Basel




First Mirrors, ITER, Mo, Rh coating, JET wide angle viewing system


The aim of this work was to provide a comprehensive insight concerning coated films which might be used for first mirrors in ITER. The influence of the mirror crystallite size has been addressed as well as the coating techniques to provide nanocrystalline films. Tests of coated mirrors both in laboratories and in tokamaks are reviewed. For the tokamak tests a wide angle camera system has been installed in JET-ILW which is composed of a mirror box with 3 stainless steel mirrors coated with rhodium viewing the torus through a conically shaped aperture. The system delivered the required image quality for plasma monitoring and wall protection. No or insignificant degradation of the optical transmittance has been observed during the experimental campaign in 2014 with about 3000 plasma pulses in different magnetic field configurations.


[1] Walsh M, Andrew P, Barnsley R, et al. ITER diagnostic challenges, in: IEEE, 2011: pp. 1-8.
[2] Brooks JN, Allain JP. Particle deposition and optical response of ITER motional Stark effect diagnostic first mirrors. Nucl Fusion 2008; 48: 045003.
[3] Marot L, De Temmerman G, Oelhafen P, Covarel G, Litnovsky A. Rhodium coated mirrors deposited by magnetron sputtering for fusion applications. Rev Sci Instrum 2007; 78: 103507.
[4] Marot L, Mathys D, De Temmerman G, Oelhafen P. Characterization of sub-stoichiometric rhodium oxide deposited by magnetron sputtering. Surf Sci 2008;602: 3375-80.
[5] Marot L, Steiner R, De Temmerman G, Oelhafen P. Reactivity of rhodium during co-deposition of rhodium and carbon. J Nucl Mater 2009; 390-391: 1135-7.
[6] Bardamid A, Bryk V, Konovalov V, et al. Erosion of steel under bombardment with ions of a deuterium plasma. Vacuum 2000; 58: 10-15.
[7] Wisse M, Eren B, Marot L, Steiner R, Meyer E. Spectroscopic reflectometry of mirror surfaces during plasma exposure. Rev Sci Instrum 2012; 83: 013509.
[8] Voitsenya VS, Balden M, Bardamid AF, et al. Development of surface relief on polycrystalline metals due to sputtering. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 2013; 302: 32-9.
[9] Voitsenya VS, Bardamid AF, Donné AJH. Experimental simulation of the behaviour of diagnostic first mirrors fabricated of different metals for ITER conditions, Accepted in The Open Optics Journal. (2015).
[10] Bennett HE, Porteus JO. Relation between surface roughness and specular reflectance at normal incidence. J Opt Soc Am 1961; 51: 123.
[11] Voitsenya VS, Bardamid AF, Belyaeva AI, et al. Modification of optical characteristics of metallic amorphous mirrors under ion bombardment. Plasma Devices Oper 2009; 17: 144-54.
[12] Bardamid AF, Voitsenya VS, Davis JW, et al. Comparison of the behavior of Zr(41.2%)Ti(13.8%)Cu(12.5%)Ni(10%)Be(22.5%) amorphous and crystallized mirrors under deuterium ion bombardment. J Alloys Compd 2012; 514: 189-94.
[13] Orlovskiy I, Alekseev A, Andreenko E, et al. Thermal testing of the first mirror unit mock-up for H-alpha and visible spectroscopy in ITER. Fusion Eng Des 2015; 96-97: 899-902.
[14] Marot L, De Temmerman G, Thommen V, Mathys D, Oelhafen P. Characterization of magnetron sputtered rhodium films for reflective coatings. Surf Coat Technol 2008; 202: 2837-43.
[15] Eren B, Marot L, Litnovsky A, et al. Reflective metallic coatings for first mirrors on ITER. Fusion Eng Des 2011; 86: 2593-6.
[16] Passoni M, Dellasega D, Grosso G, Conti C, Ubaldi MC, Bottani CE. Nanostructured rhodium films produced by pulsed laser deposition for nuclear fusion applications. J Nucl Mater 2010; 404: 1-5.
[17] Uccello A, Dellasega D, Perissinotto S, Lecis N, Passoni M. Nanostructured rhodium films for advanced mirrors produced by Pulsed Laser Deposition. J Nucl Mater 2013; 432: 261-5.
[18] Mostako ATT, Rao CVS, Khare A. Mirror-like pulsed laser deposited tungsten thin film. Rev Sci Instrum 2011; 82: 013101.
[19] Razdobarin AG, Mukhin EE, Semenov VV, et al. Diagnostic mirrors with transparent protection layer for ITER. Fusion Eng Des 2011; 86: 1341-4.
[20] Mukhin EE, Semenov VV, Razdobarin AG, et al. First mirrors in ITER: material choice and deposition prevention/cleaning techniques. Nucl Fusion 2012; 52: 013017.
[21] Joanny M, Travere JM, Salasca S, et al. Achievements on engineering and manufacturing of ITER first-mirror mock-ups. IEEE Trans Plasma Sci 2012; 40: 692-6.
[22] Marot L, Covarel G, Tuilier M-H, Steiner R, Oelhafen P. Adhesion of rhodium films on metallic substrates. Thin Solid Films 2008; 516: 7604-8.
[23] Eren B, Marot L, Wisse M, et al. In situ evaluation of the reflectivity of molybdenum and rhodium coatings in an ITER-like mixed environment. J Nucl Mater 2013; 438: S852-5.
[24] Marot L, Steiner R, Gantenbein M, Mathys D, Meyer E. Co-deposition of rhodium and tungsten films for the first-mirror on ITER. J Nucl Mater 2011; 415: S1203-5.
[25] Eren B, Wisse M, Marot L, Steiner R, Meyer E. Deuterium plasma exposure on rhodium: Reflectivity monitoring and evidence of subsurface deuteride formation. Appl Surf Sci 2013; 273: 94-100.
[26] Bardamid AF, Belyaeva AI, Davis JW, et al. Optical properties of Al mirrors under impact of deuterium plasma ions in experiments simulating ITER conditions, J. Nucl. Mater. 393 (2009) 473–480.
[27] A. Uccello, B. Eren, L. Marot, D. Dellasega, A. Maffini, R. Steiner, et al., Deuterium plasma exposure of rhodium films: Role of morphology and crystal structure. J Nucl Mater 2014; 446: 106-12.
[28] Eren B, Marot L, Langer M, et al. The effect of low temperature deuterium plasma on molybdenum reflectivity. Nucl Fusion 2011; 51: 103025.
[29] Eren B, Marot L, Ryzhkov IV, et al. Roughening and reflection performance of molybdenum coatings exposed to a high-flux deuterium plasma. Nucl Fusion 2013; 53: 113013.
[30] Kotov V, Reiter D, Kukushkin AS, Pacher HD. Numerical estimates of the ITER first mirrors degradation due to atomic fluxes. Fusion Eng Des 2011; 86: 1583-6.
[31] Marot L, De Temmerman G, van den Berg MA, et al. ITER first mirror mock-ups exposed in Magnum-PSI. Submitted to Nucl Fusion (2015).
[32] Litnovsky A, Rubel M, Garcia-Carrasco A, et al. 25th Meeting of the ITPA Diagnostics Topical Group, NIFS, Toki, Gifu, Japan 19-22 May 2015, Report of the Specialists Working Group on First Mirrors, (2015).
[33] Matveeva M, Litnovsky A, Marot L, et al. Material choice for first ITER mirrors under erosion conditions, in: 37th EPS Conf Plasma Phys. Dublin Irel., 2010.
[34] Matveeva M. Influence of the surface composition and morphology on the reflectivity of diagnostic mirrors in a fusion reactor, Thesis, University Duesseldorf, 2014.
[35] Marot L, Oelhafen P, Temmerman GD, Rudakov DL, Litnovsky A, Simakov S. Coated mirrors for ITER, in: 13th ITPA Diagn. Meet. Chengdu China, 2007.
https://portal.iter.org/departments/POP/ ITPA/Diag/DIAG/Document%20Library/21/Marot.mirrors.pdf
[36] Marot L, Meyer E, Rubel M, et al. Performances of Rh and Mo mirrors under JET exposure. J Nucl Mater 2013; 438: S1187-91. http://www.sciencedirect.com/science/article/pii/S0022311513002705
[37] Rubel M, Ivanova D, Coad JP, et al. Overview of the second stage in the comprehensive mirrors test in JET. Phys Scr 2011; T145: 014070. http://iopscience.iop.org/article/10.1088/0031-8949/2011/T145/ 014070/meta
[38] Ivanova D, Rubel M, Widdowson A, et al. An overview of the comprehensive First Mirror Test in JET with ITER-like wall. Phys Scr 2014; T159: 014011.
[39] Clever M, Arnoux G, Balshaw N, et al. A wide angle view imaging diagnostic with all reflective, in-vessel optics at JET. Fusion Eng Des 2013; 88: 1342-6.
[40] Coenen JW, Sertoli M, Brezinsek S, et al. Long-term evolution of the impurity composition and impurity events with the ITER-like wall at JET. Nucl Fusion 2013; 53: 073043.