Solvent Vapour Induced Film Formation of PS/AgNPs Composites Using Spectroscopic Techniques

Authors

  • Can Akaoglu Physics Engineering Department, Faculty of Science and Letters, İstanbul Technical University, 34469 Maslak, İstanbul, Turkey
  • Saziye Ugur Physics Engineering Department, Faculty of Science and Letters, İstanbul Technical University, 34469 Maslak, İstanbul, Turkey

DOI:

https://doi.org/10.6000/2369-3355.2018.05.02.1

Keywords:

Polystyrene, Silver Nanoparticles, Films, Coatings, Solvent Vapor, Latex.

Abstract

In this work, pyrene labeled polystyrene (PS) latex dispersions and silver nanoparticles (AgNPs) were mixed at different weight ratios of AgNPS in the range of 0-50 wt%. Powder (PS/AgNPs) films were prepared on glass substrates from these mixtures by the drop-casting method at room temperature. The fast transient fluorescence (FTRF) technique was used to monitor the film formation process of PS/AgNPs composites by measuring the fluorescence lifetimes of pyrene during vapour exposure. It was observed that pyrene lifetimes decreased as vapour exposure time, t increased obeying Stern–Volmer kinetic. The optical transmission (UVV) experiments showed that the transparency of the films decreased with increasing AgNPs content. Transparent films were produced for the composites with 0 to 20 wt % of AgNPs content. The Prager–Tirrel model was employed to FTRF and UVV data to obtain back-and-forth frequencies, ν, of the reptating PS chains during vapour induced film formation process and polymer interdiffusion was found to obey a t1/2 law. Although the conductivity increased by 3 orders of magnitude with increasing AgNPs content, the composites behaved like an insulator. The morphology of composite films also progressively changed during vapour exposure and affected by AgNPs content.

References

Granier V, Sartre A. Ordering and adhesion of latex particles on model inorganic surfaces. Langmuir 1995; 11(6): 2179-86. https://doi.org/10.1021/la00006a054 DOI: https://doi.org/10.1021/la00006a054

Muller R.-Mall. Macromol. Symp 1995; 100: 159-62. DOI: https://doi.org/10.1002/masy.19951000126

Wang Y, Winnik MA. Polymer diffusion across interfaces in latex films. J Phys Chem 1993; 97(11): 2507-15. https://doi.org/10.1021/j100113a008 DOI: https://doi.org/10.1021/j100113a008

Keddie JL, Meredith P, Jones RAL, et.al. Kinetics of film formation in acrylic latices studied with multiple-angle-of-incidence ellipsometry and environmental SEM. Macromolecules 1995; 28(8): 2673-82. https://doi.org/10.1021/ma00112a012 DOI: https://doi.org/10.1021/ma00112a012

Mackenzie JK, Shutlewort RA. Phenomenological theory of sintering. Proc Phy Soc B 1949; 62(12): 833-8. https://doi.org/10.1088/0370-1301/62/12/310 DOI: https://doi.org/10.1088/0370-1301/62/12/310

Steward PA, Hearn J, Wilkinson, MC. An overview of polymer latex film formation and properties. Adv Colloid Interface Sci 2000; 86(3): 195-267. https://doi.org/10.1016/S0001-8686(99)00037-8 DOI: https://doi.org/10.1016/S0001-8686(99)00037-8

Dragnevski K, Donald A, Taylor P, et al. Latex film formation in the ESEM. Macromol Symp 2009; 281: 119-25. https://doi.org/10.1002/masy.200950716 DOI: https://doi.org/10.1002/masy.200950716

Ludwig I, Schabel W, Kind, et al. Drying and film formation of industrial waterbone latices. AIChE J 2007; 53(3): 549-60. https://doi.org/10.1002/aic.11098 DOI: https://doi.org/10.1002/aic.11098

Chou TW, Cahn RW, Haasen P, et al. Structure and properties of composites. Mater Sci Technol 1993; 13.

Ugur S, Pekcan Ö. Time evolution of film formation from polystyrene particles: a percolation approach. Colloid Polym Sci 2005; 284(3): 1097-1105. https://doi.org/10.1007/s00396-005-1380-8 DOI: https://doi.org/10.1007/s00396-005-1380-8

Colombini D, Ljungberg N, Hassander H, et al. The effect of the polymerization route on the amount of interphase in structured latex particles and their corresponding films. Polymer 2005; 46(4): 1295-1308. https://doi.org/10.1016/j.polymer.2004.11.056 DOI: https://doi.org/10.1016/j.polymer.2004.11.056

Vaessen DM, McCormick AV, Francis LF. Effects of phase separation on stress development in polymeric coatings. Polymer 2002; 43(8): 2267-77. https://doi.org/10.1016/S0032-3861(02)00042-3 DOI: https://doi.org/10.1016/S0032-3861(02)00042-3

Zou H, Wu SS, Shen J. Polymer/silica nanocomposites: preparation, characterization, properties and applications. Chem Rev 2008; 108(9): 3893-3957. https://doi.org/10.1021/cr068035q DOI: https://doi.org/10.1021/cr068035q

Schaefer DW, Justice RS. How nano are nanocomposites? Macromolecules. 2007; 40(24): 8501-17. https://doi.org/10.1021/ma070356w DOI: https://doi.org/10.1021/ma070356w

Caseri W. Inorganic nanoparticles as optically effective additives for polymers. Chem Eng Comm 2009; 196(5): 549-72. https://doi.org/10.1080/00986440802483954 DOI: https://doi.org/10.1080/00986440802483954

Jurewicz I, Worajittiphon P, King AAK, et al. Locking carbon nanotubes in confined lattice geometries- a route to low percolation in conducting composites. J Phys Chem B 2011; 115(20): 6395-6400. https://doi.org/10.1021/jp111998p DOI: https://doi.org/10.1021/jp111998p

Lacour SP, Wagner S, Huang Z, et al. Stretchable gold conductors on elastomeric substrates. Appl Phys Lett 2003; 82(15): 2404–6. https://doi.org/10.1063/1.1565683 DOI: https://doi.org/10.1063/1.1565683

Roth SV, Santoro G, Risch JFH, et al. Patterned diblock co-polymer thin films as templates for advanced anisotropic metal nanostructures. ACS Appl Mater Interfaces 2015; 7(23): 12470-77. https://doi.org/10.1021/am507727f DOI: https://doi.org/10.1021/am507727f

Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science 2010; 327(5973): 1603–7. https://doi.org/10.1126/science.1182383 DOI: https://doi.org/10.1126/science.1182383

Benight SJ, Wang C, Tok JBH, et al. Stretchable and self-healing polymers and devices for electronic skin. Prog Polym Sci 2013; 38(12): 1961–77. https://doi.org/10.1016/j.progpolymsci.2013.08.001 DOI: https://doi.org/10.1016/j.progpolymsci.2013.08.001

Tillman ES, Lewis NS. Mechanism of enhanced sensitivity of linear poly(ethylenimine)- carbon black composite detectors to carboxylic acid vapors. Sen Actuators B 2003; 96(1-2): 329-342. https://doi.org/10.1016/S0925-4005(03)00567-7 DOI: https://doi.org/10.1016/S0925-4005(03)00567-7

Cui J, Daniel D, Grinthal A, et al. Dynamic polymer systems with self-regulated secretion for the control of surface properties and material healing. Nat Mater 2015; 14(8): 790–95. https://doi.org/10.1038/nmat4325 DOI: https://doi.org/10.1038/nmat4325

Wilson GO, Andersson HM, White SR, et al. Self-healing polymers. EPST 2010; 1-33. DOI: https://doi.org/10.1002/0471440264.pst469

Hsieh H-C, Yang T-J, Lee S. Crack healing in poly (methyl methacrylate) induced by co-solvent of methanol and ethanol. Polymer 2001; 42(3): 1227–41. https://doi.org/10.1016/S0032-3861(00)00407-9 DOI: https://doi.org/10.1016/S0032-3861(00)00407-9

Baek P, Aydemir N, Chaudhary OJ, et al. Polymer electronic composites that heal by solvent . RSC Adv 2016; 6(100): 98466-74. https://doi.org/10.1039/C6RA24296K DOI: https://doi.org/10.1039/C6RA24296K

Birks JB. Photophysics of aromatic molecules. New York (NY): Wiley–Interscience 1971.

Dorrance RC, Hunda TF. Absorption and emission studies of solubilization in micelles. Part 1. –Pyrene in long-chain cationic micelles. J Chem Soc Faraday Trans 1972; 68: 1312-21. https://doi.org/10.1039/f19726801312 DOI: https://doi.org/10.1039/f19726801312

Cheng S, Thomas JK. Dynamics of pyrene fluorescence in phospholipid dispersions radiat. Res 1974; 60(2): 268-79. DOI: https://doi.org/10.2307/3573962

Kalyanasundaram K, Thomas JK. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc 1977; 99(7): 2039-44. https://doi.org/10.1021/ja00449a004 DOI: https://doi.org/10.1021/ja00449a004

Pekcan Ö, Winnik MA, Croucher MD. Direct energy transfer studies on doped and labeled polymer latex particles. Phys Rev Lett 1988; 61(5): 641-4. https://doi.org/10.1103/PhysRevLett.61.641 DOI: https://doi.org/10.1103/PhysRevLett.61.641

Pekcan Ö, Egan LS, Winnik MA, et al. Fluorescence studies of cloalescence and film formation in poly (methyl methacrylate) nonaqueous dispersion particles. Macromolecules 1990; 23(10): 2210-6. https://doi.org/10.1021/ma00210a015 DOI: https://doi.org/10.1021/ma00212a013

Winnik MA, Pekcan Ö, Chen L, et al. Morphology changes and volume deformation of individual phases of polymer blends: fluorescence study of polymer colloids. Macromolecules 1988; 21(1): 55-9. https://doi.org/10.1021/ma00179a013 DOI: https://doi.org/10.1021/ma00179a013

Pekcan Ö. Diffusions and phase relaxations within the interphase domain of polymer blend like particles. J Polym Sci 1996; 59(3): 521-9. DOI: https://doi.org/10.1002/(SICI)1097-4628(19960118)59:3<521::AID-APP18>3.3.CO;2-#

Crank J. Mathematics of diffusion 2. Clarendon (AR): Oxford 1975.

Birks JB, Christophoron LG. Proc Roy Soc A 1963; 274: 552. https://doi.org/10.1098/rspa.1963.0150 DOI: https://doi.org/10.1098/rspa.1963.0150

Prager S, Tirrell MJ. The healing process at polymer-polymer interfaces. Chem Phys 1981; 75(10): 5194-8. https://doi.org/10.1063/1.441871 DOI: https://doi.org/10.1063/1.441871

De Gennes PG. Kinetics of diffusion-controlled processes in dense polymer systems I nonentagled regimes. J Chem Phys 1982; 76(6): 3316-22. https://doi.org/10.1063/1.443328 DOI: https://doi.org/10.1063/1.443328

Wool RP, Yuan BL, Mc Garel OJ. Welding of polymer interfaces. Polym Eng Sci 1989; 29(19): 1340-67. https://doi.org/10.1002/pen.760291906 DOI: https://doi.org/10.1002/pen.760291906

Liu YS, Feng J, Winnik MA. Study of polymer diffusion across the interface in latex films through direct energy transfer experiments. J Chem Phys 1994; 101(10): 9096-9103. https://doi.org/10.1063/1.468488 DOI: https://doi.org/10.1063/1.468488

Yeo SY, Jeong SH. Preparation and characteriation of polypropylene/silver nanocomposite fibers. Polym Int 2003; 52(7): 1053-7. https://doi.org/10.1002/pi.1215 DOI: https://doi.org/10.1002/pi.1215

Russom A, Gupta AK, Nagrath S, et al. Differential interial focusing of particles in curved low-aspect-ratio microchannels. New J Phys 2009; 11: 1-11. https://doi.org/10.1088/1367-2630/11/7/075025 DOI: https://doi.org/10.1088/1367-2630/11/7/075025

Ware WR, James DR, Siemiarczuk A. Stroboscopic optical boxcar technique for the determination of fluorescence lifetimes. Rev Sci Instrum 1992; 63: 1710-6. https://doi.org/10.1063/1.1143328 DOI: https://doi.org/10.1063/1.1143328

Meeten GH. Optical properties of polymers. London: Elsevier Applied Science Publishers 1986.

Tzitzinou A, Keddie JL, Geurts JM, et al. Film formation of latex blends with biomodal particle size distrubitions: consideration of particle deformability and continuity of the dispered phase. Macromolecules 2000; 33(7): 2695-2708. https://doi.org/10.1021/ma991372z DOI: https://doi.org/10.1021/ma991372z

Bohn L, Brandup J, Immergut EH. Polymer Handbook. 2nd ed. New York: Wiley 1975.

Rosen SL. Two-phase polymer systems. Polym Eng Sci 1967; 7: 115-23. https://doi.org/10.1002/pen.760070210 DOI: https://doi.org/10.1002/pen.760070210

Ugur S, Sunay S, Pekcan Ö. Film formation of nano-sized hard latex (PS) in soft polymer matrix (PBA): an excimer study. Polym Compos 2010; 31(9): 1611-19. https://doi.org/10.1002/pc.20950 DOI: https://doi.org/10.1002/pc.20950

Dong SJ, Yan JT, Xu N, Xu J, Wang HY, Molecular Dynamics simulation on surface modification of carbon black with polyvinyl alcohol. Surf. Sci. 2010; 605: 868-74. https://doi.org/10.1016/j.susc.2011.01.021 DOI: https://doi.org/10.1016/j.susc.2011.01.021

Rozenberg BA, Tenne R, Polymer-assisted fabrication of nanoparticles and nanocomposites. Prog. Polym. Sci 2008; 33: 40-112. https://doi.org/10.1016/j.progpolymsci.2007.07.004 DOI: https://doi.org/10.1016/j.progpolymsci.2007.07.004

Winey KI, Vaia RA, Polymer nanocomposites. MRS Bull 2007; 32: 314-22. https://doi.org/10.1557/mrs2007.229 DOI: https://doi.org/10.1557/mrs2007.229

Downloads

Published

2018-11-12

How to Cite

Akaoglu, C. ., & Ugur, S. . (2018). Solvent Vapour Induced Film Formation of PS/AgNPs Composites Using Spectroscopic Techniques. Journal of Coating Science and Technology, 5(2), 27–41. https://doi.org/10.6000/2369-3355.2018.05.02.1

Issue

Section

Articles