Graphene Based Sensors for Air Quality Monitoring - Preliminary Development Evaluation

Authors

  • Denise Machado Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical engineering, University of Aveiro, 3810-193 Aveiro, Portugal
  • Maria J. Hortigüela Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical engineering, University of Aveiro, 3810-193 Aveiro, Portugal
  • Gonzalo Otero- Irurueta Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical engineering, University of Aveiro, 3810-193 Aveiro, Portugal
  • Paula A.A.P. Marques Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical engineering, University of Aveiro, 3810-193 Aveiro, Portugal
  • Ricardo Silva Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical engineering, University of Aveiro, 3810-193 Aveiro, Portugal
  • Rui F. Silva Aveiro Institute of Materials (CICECO), Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
  • Victor Neto Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical engineering, University of Aveiro, 3810-193 Aveiro, Portugal

DOI:

https://doi.org/10.6000/2369-3355.2019.06.01.2

Keywords:

Pollution, health, graphene, gas, sensors.

Abstract

Indoor air pollution can induce adverse health effects on building occupants and pose a significant role in health worldwide. To avoid such effects, it is extremely important to monitor and control common indoor pollutants such as CO2, VOCs, and relative humidity. Therefore, this work focuses on recent advances in the field of graphene-based gas sensors, emphasizing the use of modified graphene that broadly expands the range of nanomaterials sensors. Graphene films were grown on copper by chemical vapor deposition (CVD) and transferred to arbitrary substrates. After synthesis, the samples were functionalized with Al2O3 by ALD and characterized by a large set of experimental techniques such as XPS, Raman, and SEM. The results demonstrated that graphene was successfully synthesized and transferred to SiO2, glass, and polymer. As a proof-of-concept, ALD of Al2O3 was performed on the graphene surface to produce a graphene/metal oxide nanostructure towards the development of nanocomposites for gas sensing. From this perspective, a laboratory prototype device based on measuring the electrical properties of the graphene sample as a function of the gas absorption is under development.

References

Wei W, Ramalho O, Mandin C. Indoor air quality requirements in green building certifications. Build and Environ 2015; 92: 10-9. https://doi.org/10.1016/j.buildenv.2015.03.035 DOI: https://doi.org/10.1016/j.buildenv.2015.03.035

Ghebreyesus TA, Al-Ansary LA, Grove JT. World health statistics 2018. World Health Organization; 2018.

Air Quality - Existing Legislation, E. Commission [Internet]. 2017. Available from: http://ec.europa.eu/environment/air/quality/existing_ leg.htm

Arroyo P, Lozano J, Suárez JI, Herrero JL, Carmona P. Wireless Sensor Network for Air Quality Monitoring and Control. Chem Eng Trans 2016; 54: 217-22.

Kataoka H, Ohashi Y, Mamiya T, et al. Indoor Air Monitoring of Volatile Organic Compounds and Evaluation of Their Emission from Various Building Materials and Common Products by Gas Chromatography-Mass Spectrometry. In: Advanced Gas Chromatography - Progress in Agricultural Biomedical and Industrial Applications, Dr. Mustafa Ali Mohd, editor. InTech 2010; p 161-84.

Parks H, Needham W, Rajaram S, et al. Semiconductor Manufacturing. In: The electrical engineering Handbook. Electronics, Power Electronics, Optoelectronics, Microwaves, Electromagnetics, and Radar. 3rd ed. Boca Raton: Taylor & Francis Group, LLC 2006; p 64-132.

Xiao Z, Kong LB, Ruan S, et al. Recent Development in Nanocarbon Materials for Gas Sensor Applications. Sens Actuators B Chem 2018; 274: 235-67. https://doi.org/10.1016/j.snb.2018.07.040 DOI: https://doi.org/10.1016/j.snb.2018.07.040

Medvedeva E, Baranov A, Somov A. Design and investigation of thin film nanocomposite electrodes for electrochemical sensors. Sens Actuators B Chem 2016; 236: 858-64. https://doi.org/10.1016/j.snb.2016.02.104 DOI: https://doi.org/10.1016/j.snb.2016.02.104

Hung CM, Thi D, Le T, Hieu N Van. On-chip growth of semiconductor metal oxide nanowires for gas sensors : A review. Journal of Science: Advanced Materials and Devices 2017; 2: 263-85. https://doi.org/10.1016/j.jsamd.2017.07.009 DOI: https://doi.org/10.1016/j.jsamd.2017.07.009

Ouyang Y, Wang X, Yu G, Song Z, Zhang X. Performance of Amperometric and Potentiometric Hydrogen Sensors. J Mater Sci Technol 2014; 30: 1160-65. https://doi.org/10.1016/j.jmst.2014.07.001 DOI: https://doi.org/10.1016/j.jmst.2014.07.001

Li C, Shi G. Carbon nanotube-based fluorescence sensors. J Photochem Photobiol C 2014; 19: 20-34. https://doi.org/10.1016/j.jphotochemrev.2013.10.005 DOI: https://doi.org/10.1016/j.jphotochemrev.2013.10.005

Barsan N, Koziej D, Weimar U. Metal oxide-based gas sensor research: How to?. Sens Actuators B Chem 2007; 121: 18-35. https://doi.org/10.1016/j.snb.2006.09.047 DOI: https://doi.org/10.1016/j.snb.2006.09.047

Kanan SM, El-Kadri OM, Abu-Yousef IA, Kanan MC. Semiconducting metal oxide based sensors for selective gas pollutant detection. Sensors 2009; 9: 8158-96. https://doi.org/10.3390/s91008158 DOI: https://doi.org/10.3390/s91008158

Caron A, Redon N, Thevenet F, Hanoune B, Coddeville P. Performances and limitations of electronic gas sensors to investigate an indoor air quality event. Build Environ 2016; 107: 19-28. https://doi.org/10.1016/j.buildenv.2016.07.006 DOI: https://doi.org/10.1016/j.buildenv.2016.07.006

Ampuero S, Bosset JO. The electronic nose applied to dairy products: A review. Sens Actuators B Chem 2003; 94: 1-12. https://doi.org/10.1016/S0925-4005(03)00321-6 DOI: https://doi.org/10.1016/S0925-4005(03)00321-6

Atta NF, Galal A, El-Ads EH. Graphene - A Platform for Sensors and Biosensors Applications. In: Biosensors - Micro and Nanoscale Applications. Intech 2015; p 37 - 84. https://doi.org/10.5772/60676 DOI: https://doi.org/10.5772/60676

Jiang W-S, Xin W, Xun S, et al. Reduced graphene oxide-based optical sensor for detecting specific protein. Sens Actuators B Chem 2017; 249: 142-48. https://doi.org/10.1016/j.snb.2017.03.175 DOI: https://doi.org/10.1016/j.snb.2017.03.175

Gutierrez F, Gonzalez-Dominguez JM, Ansón-Casaos A, et al. Single-walled carbon nanotubes covalently functionalized with cysteine: A new alternative for the highly sensitive and selective Cd(II) quantification. Sens Actuators B Chem 2017; 249: 506-14. https://doi.org/10.1016/j.snb.2017.04.026 DOI: https://doi.org/10.1016/j.snb.2017.04.026

Liu CS, Jia R, Ye XJ, Zeng Z. Non-hexagonal symmetry-induced functional T graphene for the detection of carbon monoxide. J Chem Phys 2013; 139: 1-7. https://doi.org/10.1063/1.4813528 DOI: https://doi.org/10.1063/1.4813528

Kumar P, Skouloudis AN, Bell M, et al. Real-time sensors for indoor air monitoring and challenges ahead in deploying them to urban buildings. Sci Total Environ 2016; 560: 150-59. https://doi.org/10.1016/j.scitotenv.2016.04.032 DOI: https://doi.org/10.1016/j.scitotenv.2016.04.032

Mead MI, Popoola OAM, Stewart GB, et al. The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks. Atmos Environ 2013; 70: 186-203. https://doi.org/10.1016/j.atmosenv.2012.11.060 DOI: https://doi.org/10.1016/j.atmosenv.2012.11.060

Kumar P, Pirjola L, Ketzel M, Harrison RM. Nanoparticle emissions from 11 non-vehicle exhaust sources - A review. Atmos Environ 2013; 67: 252-77. https://doi.org/10.1016/j.atmosenv.2012.11.011 DOI: https://doi.org/10.1016/j.atmosenv.2012.11.011

Wolkoff P. Indoor air pollutants in office environments: Assessment of comfort, heath, and performance. Int J Hyg Environ Health 2013; 216: 371-94. https://doi.org/10.1016/j.ijheh.2012.08.001 DOI: https://doi.org/10.1016/j.ijheh.2012.08.001

U.S.EPA. Federal Register: rules and regulations. U.S. Environmental Protection Agency, Air quality index reporting. Fed Regist. 1999; 73: 74932-43.

Kumar P, Morawska L, Martani C, et al. The rise of low-cost sensing for managing air pollution in cities. Environ Int 2015; 75: 199-205. https://doi.org/10.1016/j.envint.2014.11.019 DOI: https://doi.org/10.1016/j.envint.2014.11.019

Capone S, Forleo A, Francioso L, et al. Solid State Gas Sensors: State of the Art and Future Activities. Journal of optoelectronics and Advanced Materials 2004; 5: 1335-348. https://doi.org/10.1002/chin.200429283 DOI: https://doi.org/10.1002/chin.200429283

Varghese SS, Lonkar S, Singh KK, Swaminathan S, Abdala A. Recent advances in graphene based gas sensors. Sens Actuators B Chem 2015; 218:160-83. https://doi.org/10.1016/j.snb.2015.04.062 DOI: https://doi.org/10.1016/j.snb.2015.04.062

Justino CIL, Gomes AR, Freitas AC, Duarte AC, Rocha-Santos TAP. Graphene based sensors and biosensors. Trends Analyt Chem 2017; 91: 53-66. https://doi.org/10.1016/j.trac.2017.04.003 DOI: https://doi.org/10.1016/j.trac.2017.04.003

Bollella P, Fusco G, Tortolini C, et al. Beyond graphene: Electrochemical sensors and biosensors for biomarkers detection. Biosens Bioelectron 2017; 89: 152-66. https://doi.org/10.1016/j.bios.2016.03.068 DOI: https://doi.org/10.1016/j.bios.2016.03.068

Wang T, Huang D, Yang Z, et al. A Review on Graphene-Based Gas/Vapor Sensors with Unique Properties and Potential Applications. Nano-Micro Lett 2016; 8: 95-119. https://doi.org/10.1007/s40820-015-0073-1 DOI: https://doi.org/10.1007/s40820-015-0073-1

Tricoli A, Righettoni M, Teleki A. Semiconductor Gas Sensors: Dry Synthesis and Application. Angew Chem Int Ed Engl 2010; 49: 7632-59. https://doi.org/10.1002/anie.200903801 DOI: https://doi.org/10.1002/anie.200903801

Jiménez-Cadena G, Riu J, Rius FX. Gas sensors based on nanostructured materials. Analyst 2007; 132: 1083-99. https://doi.org/10.1039/b704562j DOI: https://doi.org/10.1039/b704562j

Chaika AN, Aristov VY, Molodtsova OV. Graphene on cubic-SiC. Prog Mater Sci 2017; 89: 1-30. https://doi.org/10.1016/j.pmatsci.2017.04.010 DOI: https://doi.org/10.1016/j.pmatsci.2017.04.010

He Q, Wu S, Yin Z, Zhang H. Graphene-based electronic sensors. Chem Sci 2012; 3: 1764-72. https://doi.org/10.1039/c2sc20205k DOI: https://doi.org/10.1039/c2sc20205k

Kulkarni GS, Reddy K, Zhong Z, Fan X. Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection. Nat Commun 2014; 5: 1-7. https://doi.org/10.1038/ncomms5376 DOI: https://doi.org/10.1038/ncomms5376

Ghany NA, Elsherif SA, Handal HT. Revolution of Graphene for different applications: State-of-the-art. Surfaces and Interfaces 2017; 9: 93-106. https://doi.org/10.1016/j.surfin.2017.08.004 DOI: https://doi.org/10.1016/j.surfin.2017.08.004

Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL. Graphene for electrochemical sensing and biosensing. Trends Analyt Chem 2010; 29: 954-65. https://doi.org/10.1016/j.trac.2010.05.011 DOI: https://doi.org/10.1016/j.trac.2010.05.011

Kaur G, Gupta S, Dharamvir K. Theoretical investigation of adsorption of gas molecules on Li metal adsorbed at H-site of graphene : A search for graphene based gas sensors. Surfaces and Interfaces 2017; 8: 83-90. https://doi.org/10.1016/j.surfin.2017.05.002 DOI: https://doi.org/10.1016/j.surfin.2017.05.002

Schedin F, Geim AK, Morozov SV, et al. Detection of individual gas molecules adsorbed on graphene. Nat Mater 2007; 6: 652-5. https://doi.org/10.1038/nmat1967 DOI: https://doi.org/10.1038/nmat1967

Phiri J, Gane P, Maloney TC. General overview of graphene: Production, properties and application in polymer composites. Mater Sci Eng B Solid State Mater Adv Technol 2017; 215: 9-28. https://doi.org/10.1016/j.mseb.2016.10.004 DOI: https://doi.org/10.1016/j.mseb.2016.10.004

Geim AK, Novoselov KS. The rise of graphene. Nat Mater 2007; 6: 183-91. https://doi.org/10.1038/nmat1849 DOI: https://doi.org/10.1038/nmat1849

Chen X, Wu G, Jiang Y, Wang Y, Chen X. Graphene and graphene-based nanomaterials: the promising materials for bright future of electroanalytical chemistry. Analyst 2011; 136: 4631-40. https://doi.org/10.1039/c1an15661f DOI: https://doi.org/10.1039/c1an15661f

Mattevi C, Kim H, Chhowalla M. A review of chemical vapour deposition of graphene on copper. J Mater Chem 2011; 21: 3324-34. https://doi.org/10.1039/C0JM02126A DOI: https://doi.org/10.1039/C0JM02126A

Kim KS, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009; 457: 706-10. https://doi.org/10.1038/nature07719 DOI: https://doi.org/10.1038/nature07719

Li X, Cai W, An J, Kim S, Nah J, Yang D, et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009; 324: 1312-4. https://doi.org/10.1126/science.1171245 DOI: https://doi.org/10.1126/science.1171245

Nam J, Kim DC, Yun H, et al. Chemical vapor deposition of graphene on platinum: Growth and substrate interaction. Carbon N Y 2017; 111: 733-40. https://doi.org/10.1016/j.carbon.2016.10.048 DOI: https://doi.org/10.1016/j.carbon.2016.10.048

Geim AK. Graphene: status and prospects. Prospects 2009; 324: 1-8. https://doi.org/10.1126/science.1158877 DOI: https://doi.org/10.1126/science.1158877

Mu W, Fu Y, Sun S, et al. Controllable and fast synthesis of bilayer graphene by chemical vapor deposition on copper foil using a cold wall reactor. Chem Eng J 2016; 304: 106-14. https://doi.org/10.1016/j.cej.2016.05.144 DOI: https://doi.org/10.1016/j.cej.2016.05.144

Zhang Y, Chen Y, Zhou K, Liu C. Improving gas sensing properties of graphene by introducing dopants and defects : a first-principles study. Nanotechnology 2009; 20: 1-8. https://doi.org/10.1088/0957-4484/20/18/185504 DOI: https://doi.org/10.1088/0957-4484/20/18/185504

Nayak PK, Wang Z, Hedhili MN, Wang QX, Alshareef HN. Semiconductor (CMOS) Device Using a Single-Step Deposition of the Channel Layer. Sci Rep 2014; 4: 1-7. https://doi.org/10.1038/srep04672

Cadore AR, Mania E, Alencar AB, et al. Enhancing the response of NH3 graphene-sensors by using devices with different graphene-substrate distances. Sens Actuators B Chem 2018; 1-19. https://doi.org/10.1016/j.snb.2018.03.164 DOI: https://doi.org/10.1016/j.snb.2018.03.164

Axet MR, Bacsa RR, Machado BF, Serp P. Adsorption on and reactivity of carbon nanotubes and graphene. In: Kadish K, D’souza F, editors. Handbook of Carbon Nano Materials. World Scientific 2014; p. 39-183. https://doi.org/10.1142/9789814566704_0002 DOI: https://doi.org/10.1142/9789814566704_0002

Aroutiounian V. Band Gap Opening in Graphene. Armen J Phys 2013; 6: 141-8.

Varghese SS, Varghese SH, Swaminathan S, Singh KK, Mittal V. Two-Dimensional Materials for Sensing: Graphene and Beyond. Electronics 2015; 4: 651-87. https://doi.org/10.3390/electronics4030651 DOI: https://doi.org/10.3390/electronics4030651

Knez M, Nielsch K, Niinistö L. Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Adv Mater 2007; 19: 3425-38. https://doi.org/10.1002/adma.200700079 DOI: https://doi.org/10.1002/adma.200700079

Marichy C, Pinna N. Carbon-nanostructures coated/decorated by atomic layer deposition : Growth and applications. Coord Chem Rev 2013; 257: 3232-53. https://doi.org/10.1016/j.ccr.2013.08.007 DOI: https://doi.org/10.1016/j.ccr.2013.08.007

George SM. Atomic Layer Deposition : An Overview. Chem Rev 2010; 110: 111- 31. https://doi.org/10.1021/cr900056b DOI: https://doi.org/10.1021/cr900056b

Elam JW, Groner MD, George SM. Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition. Rev Sci Instrum 2013; 73: 2981-7. https://doi.org/10.1063/1.1490410 DOI: https://doi.org/10.1063/1.1490410

Meng X, Byun Y, Kim HS, et al. Atomic Layer Deposition of Silicon Nitride Thin Films : A Review of Recent Progress, Challenges, and Outlooks. Materials (Basel) 2016; 9: 1-20. https://doi.org/10.3390/ma9121007 DOI: https://doi.org/10.3390/ma9121007

Kim H, Lee HBR, Maeng WJ. Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films 2009; 517: 2563-80. https://doi.org/10.1016/j.tsf.2008.09.007 DOI: https://doi.org/10.1016/j.tsf.2008.09.007

Neri G, Bonavita A, Rizzo G, et al. Towards enhanced performances in gas sensing: SnO2 based nanocrystalline oxides application. Sens Actuators B Chem 2007; 122: 564-71. https://doi.org/10.1016/j.snb.2006.07.006 DOI: https://doi.org/10.1016/j.snb.2006.07.006

Gopel W, Schierbaum K. SNO2 sensors: current status and future prospects. Sens Actuators B Chem. 1995; 27: 1-12. https://doi.org/10.1016/0925-4005(94)01546-T DOI: https://doi.org/10.1016/0925-4005(94)01546-T

Ferrari AC, Basko DM. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 2013; 8: 235-46. https://doi.org/10.1038/nnano.2013.46 DOI: https://doi.org/10.1038/nnano.2013.46

Nayak P, Caraveo-Frescas J, Wang Z, et al. Thin Film Complementary Metal Oxide Semiconductor (CMOS) Device Using a Single-Step Deposition of the Channel Layer. Sci Rep 2014; 4: 1-7. https://doi.org/10.1038/srep04672 DOI: https://doi.org/10.1038/srep04672

Downloads

Published

2019-10-14

How to Cite

Machado, D., Hortigüela, M. J., Irurueta, G. O.-., Marques, P. A., Silva, R., Silva, R. F., & Neto, V. (2019). Graphene Based Sensors for Air Quality Monitoring - Preliminary Development Evaluation. Journal of Coating Science and Technology, 6(1), 10–21. https://doi.org/10.6000/2369-3355.2019.06.01.2

Issue

Section

Articles

Most read articles by the same author(s)