The Communication Barriers in a Ukrainian Family: Adultery and Socio-Psychological Aspects


  • Hlib A. Prib Department of Psychology, Ukrainian State Employment Service Training Institute (USESTI), 03038, 17 Novovokzalna Str., Kyiv, Ukraine
  • Svitlana S. Bondar Department of Psychology, Ukrainian State Employment Service Training Institute (USESTI), 03038, 17 Novovokzalna Str., Kyiv, Ukraine



Psychological features, sexuality, adultery, inferiority complex, psycho-emotional issues, family interaction


A common cause of disruption of family communication is adultery, which creates a traumatic situation and even leads to family destruction. The purpose of the article is to investigate sexual and psychosocial disorders in family communication under adultery—research methods. The study used validity methods «Eysenck Inventory of Attitudes to Sex» and «Diagnostics of the inferiority complex». Statistical methods. For the non-parametric data correlation variables, the Spearman coefficient was used, Kendall's, Pearson's.

Results: The present study found the destructive effect of the psychological characteristics of sexuality on family functioning in CGA. The connection between disappointment with existing sexual relations and desire for sexual satisfaction was established (p <0.05). Conflicts between beliefs and internal impulses were detected (p <0.05). It was found that treating a partner as a sexual object without finding sensual pleasure correlated with intolerance to a verbal description of bed scenes (p <0.05). Sexual shyness is a characteristic of couples with sexual inactivity and aversion to sexual manifestations (p <0.05). In turn, the difficulty of acquiring sexual excitement correlated with a fascination with only physical sex without its spiritual component (p <0.05).

Conclusion: Features of the psychological response of men and women in CGA and CG in the genesis and development of impaired family life are connected to the following: a great number of complexes and constant struggle with personal weaknesses, drawbacks, mistakes; fear of analyzing oneself and one's own actions by "hiding" and "postponing" the resolution; inflated self-esteem, self-deception, living in the so-called "imaginary world", low communication (p <0.05).


Huang BK, Suggs CW. Vibrations studies of tractor operators. Trans ASAE 1967; 10(4): 478-482. DOI:

Bovenzi M, Rui F, Negro C, Agostin F, Angotzi G, Bianchi S, Rondina L. An epidemiological study of low back pain in professional drivers. J Sound Vib 2006; 298(3): 514-539. DOI:

Howard B, Sesek R, Bloswick D. Typical whole body vibration exposure magnitudes encountered in the open pit mining industry. Work 2009; 34(3): 297-303. DOI:

Rauser EFM, Bonauto D, Edwards S, Spielholz PSB. Preventing Injuries in the Trucking Industry. Washington State Department of Labor & Industries 2008. Available

Kumar S. Vibration in operating heavy haul trucks in overburden mining. Appl Ergon 2004; 35 (6): 509-520. DOI:

Rehn B, Bergdahl IA, Ahlgren C, From C, Järvholm B, Lundström R, Sundelin G. Musculoskeletal symptoms among drivers of all-terrain vehicles. J Sound Vib 2002; 253 (1): 21-29. DOI:

Waters T, Genaidy A, Viruet HB, Makola M. The impact of operating heavy equipment vehicles on lower back disorders. Ergonomics 2008; 51(5): 602-636. DOI:

Kim MK, Kim SG, Shin YJ, Choi EH, Choe YW. The relationship between anterior pelvic tilt and gait, balance in patient with chronic stroke. J Phys Ther Sci 2018; 30: 27-30. DOI:

Eger T, Stevenson J, Boileau PE, Salmoni A, Vib RG. Predictions of health risks associated with the operation of load-haul-dump mining vehicles: Part 1: Analysis of whole-body vibration exposure using ISO 2631-1 and ISO-2631-5 standards. Int J Ind Ergon 2008; 38: 726-738. DOI:

Village J, Morrison J, Leong D. Whole-body vibration in underground load haul-dump vehicles. Ergonomics 1989; 32:1167-83. DOI:

Mayton AG, Jobes CC, Gallagher S. Assessment of whole-body vibration exposures and influencing factors for quarry haul truck drivers and loader operators. Int J Heavy Veh Syst 2014; 21(3): 241-261. DOI:


Chaudhary DK, Bhattacherjee A, Patra AK, Chau N. Whole-body vibration exposure of drill operators in iron ore mines and role of machine-related, individual, and rock-related factors. Saf Health Work 2015; 6(4): 268-278. DOI:

McPhee B, Foster G, Long A. Exposure to whole body vibration for drivers and passengers in mining vehicles, Part 2. Report of findings at four underground mines in Australia, Joint Coal Board Health and Safety Trust and National Occupational Health and Safety Commission, 2007. DOI:

Mayton AG, Kittusamy NK, Ambrose DH, Jobes CC, Legault ML. Jarring/ jolting exposure and musculoskeletal symptoms among farm equipment operators. Int J Ind Ergon 2008; 8(9-10): 758-766. DOI:

Mandal BB, Srivastava AK. Risk from vibration in Indian mines. Indian J Occup Environ Med 2006; 10:53-57. DOI:

Smets MPH, Eger TR, Grenier SG. Whole-body vibration experienced by haulage truck operators in surface mining operations: a comparison of various analysis methods utilized in the prediction of health risks. Appl Ergon 2010; 41(6): 763-770. DOI:

Marin LS, Rodriguez AC, Rey-Becerra E, Piedrahita H, Barrero LH, Dennerlein JT, Johnson PW. Assessment of whole-body vibration exposure in mining earth-moving equipment and other vehicles used in surface mining. Ann Work Expo Health 2017; 61(6): 669-680. DOI:

Tiemessen IJ, Hulshof CTJ, Frings-Dresen MH. An overview of strategies to reduce whole-body vibration exposure on drivers: A systematic review. Int J Ind Ergon 2007; 37(3): 245-256. DOI:

Akinnuli BO, Dhaunsi OA, Ayodeji SP, Bodunde OP. Whole-body vibration exposure on earth moving equipment operators in construction industries. Cogent Engg 2018; 5(1): 1507-266. DOI:

Mandal BB, Srivastava AK. Musculoskeletal disorders in dumper operators exposed to whole-body vibration at Indian mines. Int J Min Reclam Environ 2010; 24: 233-243. DOI:

Jeripotula SK, Manglapady A, Mandela GR. Evaluation of Whole-Body Vibration (WBV) of Dumper Operators Based on Job Cycle. Mining Metall Explor 2020; 37: 761-772. DOI:

Jeripotula S, Mangalpady A, Mandela G. Musculoskeletal Disorders Among Dozer Operators Exposed to Whole-Body Vibration in Indian Surface Coal Mines. Mining Metall Explor 2020; 37: 803-811. DOI:

Boileau PE, Rakheja S. Vibration attenuation performance of suspension seats for off road forestry vehicles. Int J Ind Ergon 1990; 5(3): 275-291. cabdirect/abstract/19912449727 DOI:

Burdorf A, Swuste P. The effect of seat suspension on exposure to whole-body vibration of professional drivers. Ann Occup Hyg 1993; 37(1): 45-55. DOI:

Ozkaya N, Goldsheyder D, Willems B. Effect of operator seat design on vibration exposure. Am Ind Hyg Assoc J 1996; 57(9): 837-842. DOI:<0837:EOOSDO>2.0.CO;2

Ozkaya N, Willems B, Goldsheyder D. Whole-body vibration exposure: a comprehensive field study. Am Ind Hyg Assoc J 1997; 55(12): 1164-1171. DOI:<1164:WVEACF>2.0.CO;2

Johanning E, Fischer S, Christ E, Gores B, Landsbergis P. Whole-body vibration exposure study in U.S. railroad locomotives - an ergonomic risk assessment. Am Ind Hyg Assoc J 2002; 63(4): 439-446. DOI:

Cann AP, Salmoni AW, Eger TR. Predictors of whole-body vibration exposure experienced by highway transport truck operators. Ergonomics 2004, 47(13): 1432-1453. DOI:

Paddan GS, Griffin MJ. Effect of seating on exposures to whole-body vibration in vehicles. J Sound Vib 2002; 253(1): 215-241. DOI:


Rehn B, Lundström R, Nilsson L, Liljelind I, Järvholm B. Variation in exposure to whole-body vibration for operators of forwarder vehicles - aspects on measurement strategies and prevention. Int J Ind Ergon 2005; 35(9): 831-842. DOI:

Hostens I, Ramon H. Descriptive analysis of combine cabin vibrations and their effect on the human body. J Sound Vib 2003; 266(3): 453-464. DOI:

Mani R, Milosavljevic S, Sullivan SJ. The influence of body mass on whole-body vibration: A Quad-bike field study. Ergonomics 2011; 4(1): 1-9. DOI:

Milosavljevic S, Mcbride DI, Bagheri N, Vasiljev RM, Mani R, Carmann AB, Rehn B. Exposure to whole-body vibration and mechanical shock: a field study of quad bike use in agriculture. Ann Occup Hyg 2011; 55(3): 286-295. DOI:

Wolfgang R, Limerick RB. Whole-body vibration exposure of haul truck drivers at a surface coal mine. App Ergon 2014; 45: 1700-1704. DOI:

Hosmer DW, Lemeshow S. Applied logistic regression. New York, USA: Wiley 2000. book/10.1002/0471722146 DOI:

Wang B, Zheng Y, Irimata KM. Bootstrap ICC estimators in analysis of small clustered binary data. Comput Stat 2000; 34: 1765-1778. DOI:

Zahari SM, Ramli NM, Mokhtar B. Bootstrapped parameter estimation in ridge regression with multicollinearity and multiple outliers. J App Environ Biol Sci 2014; 4: 150-156. DOI:

Yamagata T. The small sample performance of the Wald test in the sample selection model under the multicollinearity problem. Econ Lett 2006; 93(1): 75-81. DOI:

Efron B, Robert T. An introduction to the Bootstrap. New York, USA: Chapman & Hall 1994. wpcontent/uploads/sites/25/2019/03/501_02_Efron_Introduction-to-the-Bootstrap.pdf DOI:

Kumar S, Attri SD, Singh KK. Comparison of Lasso and stepwise regression technique for wheat yield prediction. J. Agrometerol. 2019; 21(2): 188-192. https://www. regression-technique-for-wheat-yield-prediction DOI:

Melkumova LE, Shatskikh SY. Comparing Ridge and Lasso estimator for data analysis. Procedia Eng 2017; 201: 746-755. DOI:

Ahlin K, Granlund NOJ. Relating road roughness and vehicle speeds to human whole-body vibration and exposure limits. Int J Pavement Eng 2002; 3(4): 207-216. DOI:

Morillo P, Fernandez F, Fuentes-Cantillana JL. Analysis of vibration exposure in open pit mobile equipment. Influence of the measuring methodology. In: Foster P, editor. Proceedings of the 35th International Conference of Safety in Mines Research Institutes (ICSMRI). London (UK): IOM3 Publications; 2013; 367-76. view/UQ:314510

ISO: Standard 2631-1. 1997. Mechanical Vibration and Shock-Evaluation of Human Exposure to Whole-Body Vibration—Part 1: General Requirements. International Organization for Standardization, Geneva.

ISO: Standard 2631-1. 2010. Mechanical Vibration and Shock-Evaluation of Human Exposure to Whole-Body Vibration—Part 1: General Requirements. International Organization for Standardization, Geneva.

Zimmerman CL, Cook TM. Effects of vibration frequency and postural changes on human responses to seated whole-body vibration exposure. Int Arch Occup Environ Health 1997; 69: 165-179. DOI:

Wilder D, Magnusson ML, Fenwick JM. The effect of posture and seat suspension design on discomfort and back muscle fatigue during simulated truck driving. App Ergon 1994; 25: 66-76. DOI:

Hinz B, Seidel H, Menzel G, Bluthner R. Effects related to random whole-body vibration and posture on a suspended seat with and without backrest. J Sound Vib 2002; 253: 265-282. DOI:

Global source of software and instrumentation for Ergonomics, Biomechanics and Medicine [Internet]. Quebec: NexGen Ergonomics Inc.; c1997-2020. 2015 Jul 15 Available from: html.

Tso GKF, Yau KKW. A study of domestic energy usage pattern in Hong Kong. Energy 2003; 28: 1671-82. 10.1016/S0360-5442(03)00153-1 DOI:

Shalev-Shwartz S, Ben-David S. Understanding machine learining: From theory to algorithms. Cambridge university press 2014. MachineLearning/ DOI:

Salmoni A, Cann A, Gillin K. Exposure to whole-body vibration and seat transmissibility in a large sample of earth scrapers. Work 2010; 35: 63-75. DOI:

Mayton AG, Ducarme JP, Jobes CC, Matty JT. Laboratory testing of seat suspension performance during vibration testing. National Institute for Occupational Safety and Health, Pittsburgh Research Laboratory. ASME 2006 International Mechanical Engineering Congress and Exposition-IMECE-Chicago, Illinois 2006. DOI:

Patil MK, Palanlchamy MS. A mathematical model of tractor-occupant system with a new seat suspension for minimization of vibration response. Applied Math Model 1988; 12 (1): 63-71. DOI:



How to Cite

Prib, H. A. ., & Bondar, S. S. . (2021). The Communication Barriers in a Ukrainian Family: Adultery and Socio-Psychological Aspects. Journal of Intellectual Disability - Diagnosis and Treatment, 9(1), 71–81.



General Articles