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Abstract: System identification with different input-output structures, for a membrane biological reactor (MBR), was 
performed using artificial neural networks (ANN) black-box modeling. The ANN models were able to capture the dynamic 

flux experimental literature data. Sensitivity analyses were applied on the ANN models to quantify the effects of variation 
in the process inputs (backwash pressure, vacuum pressure, backwash and vacuum time) on the process output (flux 
rate. Sensitivity analysis was applied on the developed NN in order to find the optimum backwash scheduling. The 

maximum flux was attained at around 165 (L/m
2

day) that corresponded to an optimum vacuum-to-backwash time ratio 
of 10 minutes vacuum to 2 minutes backwash. Advanced control strategy using neuro-model predictive control (NN-
MPC) methodology was applied to control the MBR system. The NN-MPC parameters were tuned to attain an optimum 

performance. The NN-MPC was efficient in tracking the flux set-point changes by adjusting vacuum-to-backwash time 
ratio within the operation constraints.  

Keywords: Backwash, flux, optimization, sensitivity analysis, fouling control, wastewater treatment, neuro-model 

predictive control. 

INTRODUCTION 

The high efficiency of MBRs in producing a high-

quality effluent makes it an attractive alternative for 

municipal and industrial wastewater treatment. 

However, the presence of microorganisms and 

membrane fouling contributes to the instability of such 

systems. Stability of any dynamic multivariable system 

is a challenging problem due to the complexity of 

interactions and nonlinearity.  

The main source of nonlinearity is attributed to the 

nonlinear interactions between the biomass, substrate, 

and membrane. The high nonlinear interactions 

facilitate membrane fouling [1-5]. Fouling affects the 

net permeate production rate due to the rapid permeate 

flux decline. Backwashing is one of the techniques 

utilized to clean and regenerate the membrane; 

nevertheless, switching operation modes between 

vacuum and backwash leads to unstable permeate 

production [6, 7]. To maintain a stable permeate flow, 

the MBR is operated at the instantaneous flux. The 

instantaneous flux is the maximum flux attained during 

the process start-up when the membrane is clean and 

no fouling is observed. Operating at this flux requires 

frequent backwashing which increases the operation 

cost and may rupture the membrane and/or pump.  

Artificial Neural Networks (ANN) has been widely 

used during the last decade for modeling process  
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dynamics. It has also spread over diverse branches of 

membrane technology. Many researchers are utilizing 

ANNs in modeling, predicting, simulating, or controlling 

various membrane separation/purification processes, 

such as microfiltration (MF) [8], ultrafiltration (UF) [9], 

nanofiltration [10], zeolite membrane [11], reverse 

osmosis (RO) [12], membrane bioreactor, and 

submerged membrane bioreactor [13]. The widespread 

application of ANN analysis to membrane processes is 

due to its ease in implementation, accuracy in 

understanding the process nonlinear dynamics (i.e., 

fouling) and an effective computing tool in membrane 

modeling [14, 15]. 

Many attempts were made to control MBRs [16-23]. 

The challenge of MBRs control arises from the high 

nonlinearity and complexity of the process as 

mentioned above.  

Thus, poor control performance may lead to 

unstable operations and insufficient permeate 

production. Primarily, implementing a conventional 

linear PID controller to a nonlinear process gives 

unsatisfactory servo and regulatory performance 

responses to any change in the process operating 

parameters [24]. Hence, tuning a linear PID controller 

with a nonlinear process at one operating condition 

may destabilize it at other operating conditions; such 

behavior is referred to as bifurcation [25, 26], in which 

the system may be stable at a certain operation point 

but a slight change may result in a jump to an unstable 

operation region. Bifurcation in some nonlinear 

systems depends on a range of one parameter to be 

stable. If the parameter deviates from its range, the 
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system becomes either unstable or reaches a new 

equilibrium point which lies above or below the 

acceptable operating ranges within a plant. An example 

on bifurcation behavior in a bioreactor is the 

biodegradations of dissimilar substrates due to the 

variation of the dilution rate [27].  

Therefore, an advanced control strategy is essential 

to stabilize the MBR and optimize its performance. 

Model predictive control (MPC) is a viable option for 

controlling nonlinear processes due to its unique 

features in tracking the set-point and overcoming the 

plant model mismatch [28]. However, MPC mandates 

that system dynamic model is explicitly used in 

calculating control moves necessary to achieve the 

target set-point. Such requirement poses a great 

challenge in applying MPC on complex processes, 

such as MBRs, since their dynamic models are very 

complex and computationally expensive. Therefore, 

artificial intelligent techniques such as neural network, 

fuzzy logic, and genetic algorithms were proposed to 

tackle such dynamic systems. 

Artificial intelligent techniques were investigated by 

several researchers to control membrane fouling. A 

type 2-fuzzy logic controller was implemented by 

Galluzzo et al. [27] to stabilize the MBR. Afterwards, 

the MBR performance using fuzzy logic was compared 

with that of a conventional linear PID controller. Type 2-

fuzzy logic demonstrated a better performance; 

however, some oscillations occurred and Neural 

Network was recommended as an alternative. Artificial 

Neural Networks (ANN) has been widely used during 

the last decade for modeling process dynamics. It has 

 

Figure 1: A schematic diagram of MBR [29]. 
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also spread over diverse branches of membrane 

technology.  

The objective of this work is to present an ANN 

modeling scenarios for different input-output structures 

of the MBR. In the second part, the developed ANN 

models will be augmented in an NN-MPC control 

algorithm for continuous output prediction and inversion 

of process dynamic matrix. This control strategy 

calculates the necessary control moves in order to 

attain a target flux of the membrane for the purpose of 

optimizing its performance and control membrane 

fouling. The performance of this proposed advanced 

artificial control algorithm will be demonstrated. 

PROCESS DESCRIPTION  

A schematic diagram of the process is shown in 

Figure 1. The bioreactor is made of acrylic plate with 

dimensions (L  W  H) of 15  3  30 cm. It employs a 

flat-sheet-type ceramic membrane with a pore size 

of0.2 μm and a total size area of 0.048 m
2
 (from all 

sides). A full description of the feed composition, 

materials, process operation and basic controls can be 

found in Alnaizy et al., [29]. 

ARTIFICIAL NEURAL NETWORK (ANN) 

Artificial Neural Network (ANN) is used in biological 

processes as a modeling tool for information 

processing. It is a parallel mathematical computational 

model comprises compactly of interconnected adaptive 

processing units. The adaptive nature of this network 

makes it appropriate for learning the behavior of both 

static and dynamic systems. This feature makes such 

computational models very appealing in the application 

domains where there is incomplete understanding of 

the process to be solved while a large set of training 

data is available. The ANN model is trained by 

adjusting the connection weights of the network and is 

validated. The ANN architecture may be classified 

according to either the number of layers (Single or 

multilayer) or the way the neurons are connected (Feed 

forward or recurrent). Multilayer neural network is used 

as a function approximator in a continuous 

multivariable system with definite structure and 

parameters. The neuron is the basic building block of 

the ANN. It consists of connecting weights, 

summation/multiplication operations, bias, and 

activation functions. The weights are adjusted by a 

training algorithm through minimizing the error between 

the predicted and target variable. The bias is used to 

shift the activation function allowing a better network 

training. The activation function is used to introduce 

nonlinearity into the network, and also to limit the 

amplitude of the neuron output. Back propagation is the 

most common training algorithm. Its basic network 

architecture consists of a two layer network with a 

sigmoid function in the first layer and linear function in 

the second. 

MODEL PREDICTIVE CONTROL (MPC) 

The MPC calculates the control moves through 

manipulation of predetermined variables based on the 

response of the controlled variables in the course of an 

explicit dynamic model. The control moves force the 

controlled variables to follow a predefined trajectory to 

 

Figure 2: Basic MPC structure [28]. 
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track the target or set-point. The controller moves are 

performed by the current measurements and future 

predictions. The basic structure of MPC is shown in 

Figure 2. More details are available in [28].  

The MPC formulation is based on minimizing the 

following cost functions: 

min u Prediction setpoint( )
2

i=1

P

+ Control effort( )
2

l=1

M

  (1) 

min u J = Ei
TQEi + ui

T R ui( )
i=1

N

         (2) 

Where: M is the control horizon 

N is the model horizon 

P is the prediction horizon 

Q is the weighting matrix for predicted errors (Q> 0) 

R is the weighting matrix for control moves (R> 0) 

The first term in Equation (2) represents the set-

point tracking through minimizing the error (E) between 

the set-point and process output, while the second term 

is defined in terms of input control moves, u. This 

optimization problem is solved using sequential 

quadratic programming, which produces a solution 

constrained within the process input operating ranges. 

Tuning parameters for MPC are selected based on the 

Model Horizon (N), sampling time ( t), Control Horizon 

(M), Prediction Horizon (P), and Weighting matrices (Q 

and R). The model horizon and sampling period are 

selected between 30 and 120 or according to the 

following correlation. 

N t open loop settling time          (3) 

A typical range of the control horizon is set between 

3 and 20. However, the MPC implements the first 

control move out of the M calculated moves. The 

prediction horizon is designed to be greater than the 

process output time delay, in order to provide enough 

time for future output prediction and smoother control. 

Moreover, a sufficient large prediction horizon is 

selected to minimize the aggressiveness of the 

controller action. In other words, increasing P results in 

less aggressive controller action. As a result, the 

prediction horizon is set to equal model horizon plus 

control horizon. More emphasis is placed on the 

outputs by further increasing the diagonal elements. It 

follows from Equation (2), if minimizing the error or the 

output scaling is more important, larger Q diagonal 

elements are selected. Conversely, if input scaling is 

more important, larger R diagonal elements are 

selected. If the variables are in the same range, the 

weighting matrices are set to the identity matrix [14]. 

NEURO MODEL PREDICTIVE CONTROL (NN-MPC) 

The NN-MPC is a subclass of model predictive 

controllers. It is an advanced control strategy based on 

a nonlinear neural network model for prediction. NN-

MPC implementations require a large data set and 

tuning several controller parameters. Prior to simulating 

the NN-MPC, plant identification is performed and the 

controller parameters are tuned. Plant identification is 

achieved by identifying the structure of the nonlinear 

neural network, the plant model, and the input/output 

data set. The input/output data set may be either 

imported if a large data set is available or generated 

through the predefined plant model. After accepting the 

data, the neural network is trained, validated, and 

tested according to the selected learning algorithm. 

Subsequently, the best NN training performance is 

chosen based on the regression plots. The NN-MPC 

 

Figure 3: MBR process variables diagram. 
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block diagram is readily available in MATLAB NN 

Predictive Control, Neural Network Toolbox, 2011 [30]. 

RESULTS AND DISCUSSION 

The selection of process variables is based on 

selecting the variables that may be measured 

experimentally and gives a direct indicator on 

membrane fouling. Figure 3 depicts the process block 

diagram with the selected input/output variables. 

Extension to an earlier work done by Aidan et al., 

[15], artificial neural network modeling is performed 

here by different ANN modeling scenarios connecting 

the multi inputs to achieve the single output. The 

different ANN models are trained, validated, and 

tested. Consequently, results are compared by the 

regression plot between the ANN model output and 

experimental output variable. 

ANN Scenario 1 

The objective is to obtain an ANN model between: 

1) Ratio and backwash pressure, ANN1  

2) Ratio and vacuum pressure, ANN2 

3) Both backwash pressure, vacuum pressure and 

flux, ANN3 

The predicted backwash pressure from the ANN1 

model (shown in Figure 4) is validated with that 

obtained experimentally, see Figure 7. The overall 

regression between the ANN1 predicted output and 

target is verified with training, validation, and testing 

regressions of 0.961, 0.955, and 0.955, respectively. 

ANN2 trains the vacuum-to-backwash time ratio 

(input variable) to predict the vacuum pressure Pvac 

(output variable). The training is performed by 

minimizing the error between the predicted Pvac from 

ANN2 and the experimental Pvac (target variable). 

ANN2 training is stopped utilizing 692 epochs. The 

predicted vacuum pressure from ANN2 model is 

validated with that obtained experimentally as shown in 

Figure 6. Also, the overall regression between the 

 

Figure 4: ANN model structure for scenario 1. 

 

 

Figure 5: ANN predicted and experimental Pbw of ANN1 – scenario 1. 
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ANN2 predicted output and target is verified with 

training, validation, and testing regressions of 0.961, 

0.955, and 0.955, respectively. 

ANN3 trains two predicted outputs from ANN1 and 

ANN2 (Pbw, Pvac) to predict the flux. Therefore, ANN3 

utilizes two inputs to predict a single output. The 

training is performed by minimizing the error between 

the predicted flux from ANN3 and the experimental flux 

(target variable). ANN3 training is stopped utilizing 54 

epochs. The predicted flux from ANN3 model is 

validated with that obtained experimentally in Figure 7. 

The overall regression between the ANN3 predicted 

output and target is verified with training, validation, 

and testing regressions of 0.988, 0.989, and 0.989, 

respectively. Clearly, the ANN models were able to 

capture most of the data points and gives good match 

with actual process dynamics for backwash pressure 

 

Figure 6: ANN predicted and experimental Pvac of ANN2 – scenario 1. 

 

 

Figure 7: ANN predicted and experimental flux of ANN3 – scenario 1. 
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(Figure 5), vacuum pressure (Figure 6) and flux  

(Figure 7). 

ANN Scenario 2 

The objective is to obtain an ANN model between 

the ratio and flux (Single Input-Single Output, SISO). 

ANN trains the vacuum-to-backwash time ratio (input 

variable) to directly predict the flux (output variable), 

see Figure 8. The training is performed by minimizing 

the error between the predicted flux from ANN and the 

experimental flux (target variable). ANN training is 

stopped utilizing 74 epochs. The predicted flux from 

ANN model is validated with that obtained 

experimentally in Figure 9. The overall regression 

between the ANN predicted output and target is found 

with training, validation, and testing regressions of 

0.921, 0.924, and 0.924, respectively. As shown in 

Figure 9, the ANN model for scenario two was able to 

capture most of the data points and gives reasonable 

match with actual process dynamics but not as good as 

scenario one ANN model predictions shown in  

Figure 7. 

ANN Scenario 3 

The objective is to obtain an ANN model between 

all the three input variables: 

- Inputs 

1) Ratio  

2) Backwash pressure, Pbw 

3) Vacuum pressure, Pvac 

- Output: flux  

As a result a multi-input-single-output (MISO) ANN 

is performed as shown in Figure 10. ANN trains all 

three inputs to predict the flux (output variable). The 

training is performed by minimizing the error between 

the predicted flux from ANN and the experimental flux 

(target variable). ANN training is stopped utilizing 40 

epochs. The predicted flux from ANN model is 

validated with that obtained experimentally as shown in 

Figure 11. The overall regression between the ANN 

predicted output and target with training, validation, and 

 

Figure 8: ANN model diagram for SISO system – scenario 2. 

 

 

Figure 9: ANN predicted and experimental flux – scenario 2. 
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testing regressions of 0.991, 0.990, and 0.990, 

respectively. As all three inputs were considered in this 

structure, the ANN model predictions were more 

accurate than previous scenario 2 and gives 

comparable match with scenario 1. Therefore, the ANN 

model in scenario 3will be considered in the dynamic 

sensitivity analysis. However, scenario 2 ANN model 

structure will be re-identified and used in the NN-MPC 

control system design as it has a SISO structure. 

Sensitivity analysis was performed to determine the 

effects of variations in the process inputs on the 

process output. The ANN model developed above was 

used to study the flux response to step changes in 

each process input. The sensitivity analysis was 

performed by changing one of the input variables while 

maintaining the other input variables constant. There 

after, we observed and recorded the ANN model 

prediction of the output variable response. 

Furthermore, the input variables step change was 

performed within a specific range of each input. The 

range was set within the upper and lower limits of the 

experimental data that were used to train the ANN 

model. Figure 12 shows the SIMULNK block diagram 

of the sensitivity analysis applied to the ANN model 

developed above for the MBR. The response of the flux 

was studied by applying a step change on the three 

process inputs including the backwash pressure, 

vacuum pressure, and vacuum-to-backwash time ratio. 

First the flux response was studied with respect to 

changes in the backwash pressure. The backwash 

pressure range was between 90 – 96 kPa and was 

obtained from Aidan et al. [15]. The vacuum pressure 

was maintained at 50 kPa and the ratio was maintained 

at 10 minutes vacuum time to 2 minutes backwash 

time. Figure 13 shows the variation of the flux with 

respect to changes in backwash pressure at a constant 

vacuum pressure and vacuum-to-backwash-time ratio. 

A similar procedure was followed for both the 

vacuum pressure and the ratio of vacuum-to-backwash 

time. The vacuum pressure range was set between 

50.0 – 58.0 kPa, while the backwash pressure was 

upheld at 92.4 kPa.Theratio was maintained at 10 

 

Figure 10: ANN model diagram for the MISO system – scenario 3. 

 

 

Figure 11: ANN predicted and experimental flux – scenario 3. 
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Figure 12: SIMULINK ANN block diagram for sensitivity analysis. 

 

 

Figure 13: ANN predicted flux response due to backwash pressure step change. 

minutes vacuum to 2 minutes backwash. The ratio 

range was set between 4.7 – 33, while the backwash 

pressure was maintained at 92.4 kPa, and the vacuum 

pressure was sustainedat 50 kPa. Figures 14 and 15 

demonstrate the flux behavior as a result of changes in 

the vacuum pressure and ratio, respectively. Figure 13 

indicates that as the backwash pressure increases, the 

flux increases to a maximum point and then decreases. 

The maximum flux was observed at 175 (L/m
2
·day) 

corresponding to a backwash pressure of 92.4 kPa. 

This behavior may be explained as follows: as the 

backwash pressure increases, a better fouling removal 

is attained and enhances the flux behavior. However, 

further increases of the backwash pressure may 

rupture the membrane and inversely affect the 

membrane filtration performance. Figure 14 

demonstrates the flux behavior versus vacuum 

pressure changes. The maximum flux was obtained at 

the lowest vacuum pressure. The lowest vacuum 

pressure occurred at the highest filtration or operation 

pressure. The maximum flux was obtained at 175 

(L/m
2

day) and corresponded to a vacuum pressure 

range between 50 – 51 kPa. Beyond this range, a 

sharp flux decline was observed with increasing the 

vacuum pressure. Similarly, the maximum flux was 

obtained at the lowest vacuum-to-backwash time ratio, 
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as demonstrated in Figure 15. The low ratio indicated 

operating with a long, but less frequent, backwash 

time. The maximum flux was 175 (L/m
2

day) and 

corresponded to a vacuum-to-backwash time ratio 

range between 4.7 and 5.1. 

The backwash scheduling (vacuum-to-backwash 

time ratio) was further investigated using SIMULINK. 

Specifically, we investigated the flux response 

corresponding to step changes in vacuum time and 

backwash time. Each input variable was manipulated 

while the other input variable was fixed. The flux 

behavior exhibiteda sharp increase to a maximum 

followed by a gradual decline as the ratio increased, 

Figure 16. Increasing the ratio indicated longer 

operation or vacuum duration as opposed to less 

 

Figure 14: ANN predicted flux response due to vacuum pressure step change. 

 

 

Figure 15: ANN predicted flux response due to ratio of vacuum-to-backwash time step change. 
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frequent backwash. The maximum flux was attained at 

around 165 (L/m
2

day) that corresponded to an 

optimum vacuum-to-backwash time ratio of 10 minutes 

vacuum to 2 minutes backwash. The results are 

consistent with the ones shown in Figure 14 and hence 

verified the optimum backwash scheduling. 

The behavior of the flux shown in Figure 16 may be 

attributed to the backwash duration. The left region of 

the figure shows a comparable backwash to vacuum 

duration. In contrast, the right region shows a higher 

vacuum to backwash duration. For example, at a ratio 

of one, the backwash is equal to the vacuum duration. 

Thus, an unstable process operation is attained due to 

the frequent switching of operation between vacuum 

and backwash. As a result, a rapid flux decline is 

observed indicating severe membrane fouling. On the 

other hand, the right region represents a prolonged 

vacuum duration as opposed to backwash durations; 

therefore, membrane fouling is represented by the 

gradual flux decline. 

A new and larger set of data was generated using 

the ANN model developed in scenario 2 outlined 

above. The generated data were trained using 

Levenberg-Marquardt learning algorithm with 200 

epochs. A summary of the ANN model architecture and 

data set is given in Table 1. The ratio (manipulated 

input variable) was constrained between the minimum 

and maximum value obtained from the experimental 

data; corresponding to a minimum ratio of 10 minutes 

vacuum to 2 minutes backwash and a maximum ration 

of 30 minutes vacuum to 1 minute backwash.  

Once the neural network is trained, plant 

identification is completed and the next step is to tune 

the controller parameters. The NN-MPC parameters 

define the aggressiveness of the controller; 

nevertheless, a more aggressive controller 

performance is a trade-off between stability and 

computational speed. As such, a more stable controller 

performance is attained at longer horizons. Yet, this 

requires more computational time and hence, slower 

controller response (i.e. less aggressive controller). 

Tuning of the controller parameters was performed 

following the above mentioned guidelines. Thereafter, 

the NN-MPC parameters were further adjusted by 

performing several simulations to attain the optimum 

set-point tracking. The optimum NN-MPC parameters 

are summarized in Table 2. The set-point was provided 

by the NN-MPC MATLAB/SIMULINK signal builder 

block. The signal range was set between 50 and 120 

(L/m
2

days) with pulse duration of 200 sampling time. 

The controlled variable (i.e. flux) response in tracking 

 

Figure 16: Optimum backwash scheduling. 

Table 1: ANN Model Structure Specifications 

ANN type Multi-layer feed forward 

Number of layers 

(input, hidden, output)  
3 

Number of Neurons in: 

Input layer 

Hidden layer 

Output layer 

 

1 

20 

1
 

Activation function in: 

Input layer 

Hidden layer 

Output layer 

 

Tan sigmoid 

Tan sigmoid 

Pure line 

Learning Algorithm Levenberg-Marquardt 

Training, validation, testing sets  50 % each 
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the set-point changes is shown in Figure 17. The 

manipulated variable (i.e. vacuum-to-backwash time 

ratio) changes within the constrained range are 

depicted in Figure 18. The results indicated that a 

reliable controller performance was achieved in terms 

of set-point tracking with no oscillations. The controller 

was able to drive the process variable to track the set-

point pulse changes in both directions 

(increasing/decreasing). Furthermore, a fast process 

variable response in tracking the set-point was 

observed. Yet, a slower response was observed at the 

highest flux (i.e. 120 L/m
2

days), but ultimately the set-

point was achieved with no overshoot. Nevertheless, 

the maximum flux (i.e. 175 L/m
2
·day) was not achieved 

due to the NN-MPC constraints. As illustrated in Figure 

18, the input reached saturation range at the 

corresponding flux of 120 (L/m
2
·day). 

CONCLUSIONS 

The ANN was able to capture the dynamic behavior 

of the MBR process and provided an accurate 

Table 2: NN-MPC Parameters 

Prediction Horizon 8 

Control Horizon 4 

Control weighting factor 0.1 

Search factor 0.1 

 

Figure 17: Flux output response with NN-MPC for tracking flux set-point changes. 

 

 

Figure 18: Variation of vacuum-to-backwash time ratio (control input moves) in response to flux set-point changes with NN-
MPC. 
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prediction of the process output flux in less 

computational time. Sensitivity analysis revealed the 

effect of the backwash pressure, vacuum pressure, and 

ratio of vacuum-to-backwash time on membrane 

fouling in MBR. The maximum flux was observed at 

175 (L/m
2
·day) corresponding to a backwash pressure 

of 92.4 kPa and a vacuum pressure range between 50 

– 51 kPa. An optimum ratio of 10 minutes vacuum to 2 

minutes backwash was obtained for scheduling the 

MBR operation. Such operation resulted in slower flux 

decline due to efficient removal of foulants as it has 

been verified experimentally in a previous work.  

The ANN model was successfully employed in the 

advanced neuro-model predictive control (NN-MPC). 

The NN-MPC control mechanism demonstrated 

excellent servo response characteristics in tracking 

pulse set-point changes of flux subject to constrains in 

the manipulated variable (vacuum-to-backwash time 

ratio). The adaptive structure of the NN-MPC rendered 

implementation of fouling control via backwash 

scheduling in MBR process to be feasible. 
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