Experimental Investigation of Pervaporation Membranes for Biobutanol Separation

Authors

  • S. Heitmann TU Dortmund University, Department of Biochemical and Chemical Engineering, Laboratory of Fluid Separations, Emil-Figge-Str. 70, 44227 Dortmund, Germany
  • V. Krüger TU Dortmund University, Department of Biochemical and Chemical Engineering, Laboratory of Fluid Separations, Emil-Figge-Str. 70, 44227 Dortmund, Germany
  • D. Welz TU Dortmund University, Department of Biochemical and Chemical Engineering, Laboratory of Fluid Separations, Emil-Figge-Str. 70, 44227 Dortmund, Germany
  • P. Lutze TU Dortmund University, Department of Biochemical and Chemical Engineering, Laboratory of Fluid Separations, Emil-Figge-Str. 70, 44227 Dortmund, Germany

DOI:

https://doi.org/10.6000/1929-6037.2013.02.04.5

Keywords:

Polydimethylsiloxane (PDMS), PervapTM, poly(ether block amide) (PEBA), swelling, organic acid, Hansen Solubility Parameter

Abstract

Biotechnological production of chemical building blocks is one important step towards a more sustainable production. Unfortunately, the products to be separated are often highly diluted. Pervaporation has received increasing attention for the separation of small amounts of organic compounds from aqueous solutions, especially in the separation of butanol from water or from fermentation broth. To evaluate the potential of pervaporation for biobutanol recovery a consistent database is required, describing the dependency of permeate fluxes and selectivities on process variables like temperature, permeate pressure as well as feed concentrations and compositions. Therefore, within this work we investigated the separation behaviour of a commercially available polydimethylsiloxane (PDMS) membrane and membranes based on poly(ether block amide) (PEBA) fabricated in our own laboratory. The membranes were tested under varying operating conditions. Fermentation by-products or impurities may affect the pervaporation separation performance. Therefore, in addition, the permeate fluxes and the influence of acetone, ethanol, acetic and butyric acid and 1,3-propanediol have been investigated in detail as well. Several differences in the permeability and selectivity of PDMS and PEBA were observed during the experimental study. Swelling experiments were applied to further analyse the separation behaviour of PDMS and PEBA more in detail. Finally the influence of the observed separation performances on the overall butanol pervaporation process is discussed. It was found that especially well permeating by-products like acetone can drastically influence the subsequent downstreaming process.

References

Niesbach A, Kuhlmann H, Keller T, Lutze P, Górak A. Optimisation of industrial-scale n-butyl acrylate production using reactive distillation. Chem Eng Sci 2013; 100: 360-372. http://dx.doi.org/10.1016/j.ces.2013.01.035

United Nations Environment Programme. SIDS Initial assessment report: n-butyl alcohol 2004.

Cascone R. Biobutanol - A replacement for bioethanol? Chem Eng Prog 2008; 104: 4-9.

Dürre P. Biobutanol: An attractive biofuel. Biotechnol J 2007; 2: 1525-1534. http://dx.doi.org/10.1002/biot.200700168

Zverlov VV, Berezina O, Velikodvorskaya GA, Schwarz WH. Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery. Appl Microbiol Biotechnol 2006; 71: 587-597. http://dx.doi.org/10.1007/s00253-006-0445-z

Jurgens G, Survase S, Berezina O, Sklavounos E, Linnekoski J, Kurkijärvi A, Väkevä M, van Heiningen A, Granström T. Butanol production from lignocelluloics. Biotechnol Lett 2012; 34 (8): 1415-1434. http://dx.doi.org/10.1007/s10529-012-0926-3

Jiang Y, Xu C, Dong F, Yang Y, Jiang W, Yang S. Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. Metab Eng 2009; 11: 284-291. http://dx.doi.org/10.1016/j.ymben.2009.06.002

Branduardi P, Longo V, Berterame NM, Rossi G, Porro D. A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae. Biotechnol Biofuels 2013; 6 (1): A68. http://dx.doi.org/10.1186/1754-6834-6-68

Qureshi N, Ezeji TC. Butanol, 'a superior biofuel' production from agricultural residues (renewable biomass): Recent progress in technology. Biofuels Bioprod Biorefin 2008; 2: 319-330. http://dx.doi.org/10.1002/bbb.85

Jin C, Yao M, Liu H, Lee CF, Ji J. Progress in the production and application of n-butanol as a biofuel. Renew Sust Energ Rev 2011; 15: 4080-4106. http://dx.doi.org/10.1016/j.rser.2011.06.001

Oudshoorn A, van der Wielen LAM, Straathof AJJ. Assessment of options for selective 1-butanol recovery from aqueous solution. Ind Eng Chem Res 2009; 48: 7325-7336. http://dx.doi.org/10.1021/ie900537w

Kumar M, Gayen K. Developments in biobutanol production: New insights. Appl Energy 2011; 88: 1999-2012. http://dx.doi.org/10.1016/j.apenergy.2010.12.055

Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS. Fermentative butanol production by clostridia. Biotechnol Bioeng 2008; 101: 209-228. http://dx.doi.org/10.1002/bit.22003

Stoffers M, Heitmann S, Lutze P, Górak A. Integrated processing for the separation of biobutanol. Part A: experimental investigation and process modelling. Green Process and Synth 2013; 2: 101-120. http://dx.doi.org/10.1515/gps-2013-0009

Qureshi N, Maddox IS, Friedl A. Application of continuous substrate feeding to the ABE fermentation: relief of product inhibition using extraction, perstraction, stripping, and pervaporation. Biotechnol Prog 1992; 8: 382-390. http://dx.doi.org/10.1021/bp00017a002

Groot WJ, van der Lans RGJM, Luyben KCAM. Technologies for butanol recovery integrated with fermentations. Process Biochem 1992; 27: 61-75. http://dx.doi.org/10.1016/0032-9592(92)80012-R

Setlhaku M, Heitmann S, Górak A, Wichmann R. Investigation of gas stripping and pervaporation for improved feasibility of two-stage butanol production process. Bioresour Technol 2013; 136: 103-108. http://dx.doi.org/10.1016/j.biortech.2013.02.046

Heitmann S, Stoffers M, Lutze P. Integrated processing for the separation of biobutanol. Part B: model-based process analysis. Green Process Synth 2013; 2: 121-141. http://dx.doi.org/10.1515/gps-2013-0021

Cai D, Zhang T, Zheng J, Chang Z, Wang Z, Qin P, Tan T. Biobutanol from sweet sorghum bagasse hydrolysate by a hybrid pervaporation process. Bioresour Technol 2013; 145: 97-102. http://dx.doi.org/10.1016/j.biortech.2013.02.094

van Hecke W, Vandezande P, Claes S, Vangeel S, Beckers H, Diels L, de Wever H. Integrated bioprocess for long-term continuous cultivation of Clostridium acetobutylicum coupled to pervaporation with PDMS composite membranes. Bioresour Technol 2012; 111: 368-377. http://dx.doi.org/10.1016/j.biortech.2012.02.043

Chen C, Xiao Z, Tang X, Cui H, Zhang J, Li W, Ying C. Acetone-butanol-ethanol fermentation in a continuous and closed-circulating fermentation system with PDMS membrane bioreactor. Bioresour Technol 2013; 128: 246-251. http://dx.doi.org/10.1016/j.biortech.2012.10.077

Beltran AB, Nisola GM, Vivas EL, Cho W, Chung W. Poly(octylmethylsiloxane)/oleyl alcohol supported liquid membrane for the pervaporative recovery of 1-butanol from aqueous and ABE model solutions. J Ind Eng Chem 2013; 19: 182-189. http://dx.doi.org/10.1016/j.jiec.2012.07.022

Vane LM. A review of pervaporation for product recovery from biomass fermentation processes. J Chem Technol Biotechnol 2005; 80: 603-629. http://dx.doi.org/10.1002/jctb.1265

Wijmans JG, Baker RW. The solution-diffusion model: a review. J Membr Sci 1995; 107: 1-21. http://dx.doi.org/10.1016/0376-7388(95)00102-I

Niemistö J, Kujawski W, Keiski RL. Pervaporation performance of composite poly(dimethyl siloxane) membrane for butanol recovery from model solutions. J Membr Sci 2013; 434: 55-64. http://dx.doi.org/10.1016/j.memsci.2013.01.047

Qureshi N, Blaschek HP. Fouling studies of a pervaporation membrane with commercial fermentation media and fermentation broth of hyper-butanol-producing Clostridium beijerinckii BA101. Sep Sci Technol 1999; 34: 2803-2815. http://dx.doi.org/10.1081/SS-100100806

Liu G, Wei W, Wu H, Dong X, Jiang M, Jin W. Pervaporation performance of PDMS/ceramic composite membrane in acetone butanol ethanol (ABE) fermentation-PV coupled process. J Membr Sci 2011; 373: 121-129. http://dx.doi.org/10.1016/j.memsci.2011.02.042

Boddeker KW, Bengtson G, Pingel H. Pervaporation of isomeric butanols. J Membr Sci 1990; 54: 1-12. http://dx.doi.org/10.1016/S0376-7388(00)82066-9

Fouad EA, Feng X. Use of pervaporation to separate butanol from dilute aqueous solutions: Effects of operating conditions and concentration polarization. J Membr Sci 2008; 323: 428-435. http://dx.doi.org/10.1016/j.memsci.2008.06.054

Yen H, Lin S, Yang I. Use of poly(ether-block-amide) in pervaporation coupling with a fermentor to enhance butanol production in the cultivation of Clostridium acetobutylicum. J Biosci Bioeng 2012; 113: 372-377. http://dx.doi.org/10.1016/j.jbiosc.2011.10.025

Heitmann S, Krings J, Kreis P, Lennert A, Pitner WR, Górak A, Schulte MM. Recovery of n-butanol using ionic liquid-based pervaporation membranes. Sep Purif Technol 2012; 97: 108-114. http://dx.doi.org/10.1016/j.seppur.2011.12.033

Claes S, Vandezande P, Mullens S, de Sitter K, Peeters R, van Bael MK. Preparation and benchmarking of thin film supported PTMSP-silica pervaporation membranes. J Membr Sci 2012; 389: 265-271. http://dx.doi.org/10.1016/j.memsci.2011.10.035

Marszalek J, Kaminski W. Concentration of butanol-ethanol-acetone-water using pervaporation. Proceedings of ECOpole 2012; 2012: 31-36.

Ezeji TC, Qureshi N, Blaschek HP. Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol 2007; 18: 220-227. http://dx.doi.org/10.1016/j.copbio.2007.04.002

Favre E, Schaetzel P, Nguygen QT, Clément R, Néel J. Sorption, diffusion and vapor permeation of various penetrants through dense poly(dimethylsiloxane) membranes: a transport analysis. J Membr Sci 1994; 92: 169-184. http://dx.doi.org/10.1016/0376-7388(94)00060-3

Liu F, Liu L, Feng X. Separation of acetone-butanol-ethanol (ABE) from dilute aqueous solutions by pervaporation. Sep Purif Technol 2005; 42: 273-282. http://dx.doi.org/10.1016/j.seppur.2004.08.005

Smallwood I. Handbook of organic solvent properties. London: Arnold 1996.

Melin T, Rautenbach R. Membranverfahren - Grundlagen der Modul- und Anlagenauslegung. 3rd ed. Springer Verlag 2007.

Poling B, Prausnitz J, O´Connell J. The properties of gases and liquids. 5th ed. McGraw-Hill 2001.

Fakirov S. Handbook of condensation Thermoplastic elastomers. Weinheim: WILEY-VCH Verlag 2005.

Holtbruegge J, Wierschem M, Steinruecken S, Voss D, Parhomenko L, Lutze P. Experimental investigation, modeling and scale-up of hydrophilic vapor permeation membranes: Separation of azeotropic dimethyl carbonate/methanol mixtures. Sep Purif Technol 2013; 118: 862-878. http://dx.doi.org/10.1016/j.seppur.2013.08.025

Kujawski W, Ostrowska-Gumkowska B. Preparation and properties of organophilic membranes for pervaporation of water-organic mixtures. Separ Sci Technol 2003; 38 (15): 3669-3687. http://dx.doi.org/10.1081/SS-120024223

Hansen C. Hansen solubility parameters: A user´s handbook. 2nd ed. Boca Raton: Taylor & Francis 2007.

Utracki LA. Polymers blends handbook. Dordrecht: Kluwer Academic Publishers 2003. http://dx.doi.org/10.1007/0-306-48244-4

Perry R. Chemical engineer´s handbook. New York: McGraw-Hill 2001.

Stephen H, Stephen T. Solubilities of inorganic and organic compounds - Volume 1: Binary systems. Pergamon Press 1979.

Santos FS, D’Ávila SG, Aznar M. Salt effect on liquid-liquid equilibrium of water+1-butanol+acetone system: Experimental determination and thermodynamic modelling. Fluid Phase Equilib 2001; 187-188: 265-274. http://dx.doi.org/10.1016/S0378-3812(01)00541-6

Published

2013-11-30

How to Cite

Heitmann, S., Krüger, V., Welz, D., & Lutze, P. (2013). Experimental Investigation of Pervaporation Membranes for Biobutanol Separation. Journal of Membrane and Separation Technology, 2(4), 245–262. https://doi.org/10.6000/1929-6037.2013.02.04.5

Issue

Section

Articles