Maltodextrins Based Solid Membranes for the Enantioanalysis of L-Cysteine

Authors

  • Raluca-Ioana Stefan-van Staden Laboratory of Electrochemistry and PATLAB Bucharest, National Institute of Research for Electrochemistry and Condensed Matter, 202 Splaiul Independentei Str., 060021, Bucharest, Romania
  • Luxolo Holo Laboratory of Electrochemistry and PATLAB Bucharest, National Institute of Research for Electrochemistry and Condensed Matter, 202 Splaiul Independentei Str., 060021, Bucharest, Romania

DOI:

https://doi.org/10.6000/1929-6037.2014.03.02.3

Keywords:

L-cysteine, solid enantioselective membrane, maltodextrin, enantioselective, potentiometric membrane electrode.

Abstract

Three enantioselective membranes based on maltodextrins with different values of dextrose equivalent (DE) were proposed for the enantioanalysis of L-cysteine. The membranes were used for the design of potentiometric sensors. The slopes of the sensors were near-Nernstian (higher than 58.00mV/decade of concentration) with limits of detection of magnitude order of 10-11 and 10-12 mol/L. The surfaces of the membranes were stable for more than 6 months of continuous use. They can be renewed by polishing on alumina paper.

References

Voet D, Voet JG, Biochemistry, 2nd ed., New York: Wiley 1995, p. 1263.

Kulys J, Drungiliene A, Chemically modified electrodes for the determination of sulphydryl compounds. Anal. Chim. Acta 1991; 243: 287-92. http://dx.doi.org/10.1016/S0003-2670(00)82572-6

Townshend A Ed., Encyclopedia of Analytical Science, Vol. 3, London: Academic Press 1995, p. 1735.

Filanovsky B, Electrochemical response of new carbon electrodes bulk modified with cobalt phthalocyanine to some thiols in the presence of heptane or human urine. Anal Chim Acta 1999; 394: 91-100. http://dx.doi.org/10.1016/S0003-2670(99)00035-5

Nagasawa HT, Elberling JA, Roberts JC, Beta-substituted cysteines as sequestering agents for ethanol-derived acetaldehyde in vivo. J Med Chem 1987; 30: 1373-8. http://dx.doi.org/10.1021/jm00391a018

Persson B, A Chemically modified graphite electrode for electrocatalytic oxidation of reduced nicotinamide adenine dinucleotide based on a phenothiazine derivative, 3--naphthoyl-toulidine blue. J Electroanal Chem 1990; 287: 61-80. http://dx.doi.org/10.1016/0022-0728(90)87160-L

Ke B. The polarographic behaviour of -lipoic acid. Biochem Biophys Acta 1957; 25: 650-1. http://dx.doi.org/10.1016/0006-3002(57)90544-9

Zagal JH, Metallophthalocyanines as catalyst in electrochemical reactions. Coord Chem Rev 1992; 119: 89-136. http://dx.doi.org/10.1016/0010-8545(92)80031-L

Arrigan DWM, Bihan LL. A study of L-cysteine adsorption on gold via electrochemical desorption and copper (II) ion complexation. Analyst 1999; 124: 1645-9. http://dx.doi.org/10.1039/a905370k

Chen SM. Electrocatalytic reaction, catalytic autoxidation, and supported catalytic autoxidation of sulfur oxoanions by FeTSPP and Mn(4-TMPyP). J Electroanal Chem 1996; 407: 123-30. http://dx.doi.org/10.1016/0022-0728(95)04464-7

Zagal JH, Aguirre MJ, Parodi CG, Sturm J, Electrocatalytic activity of vitamin B12 adsorbed on graphite electrode for the oxidation of cysteine and glutathione and the reduction of cysteine. J Electroanal Chem 1994; 374: 215-22. http://dx.doi.org/10.1016/0022-0728(94)03365-X

Sugawara K, Hoshi S, Akatsuka K, Shimazu K, Electrochemical behaviour of cysteine at a Nafioncobalt(II) modified electrode. J Electroanal Chem 1996; 414: 253-6.

Sugarawa K, Tanaka S, Taga M. Voltametric behaviour of cysteine by a carbon-paste electrode containing cobalt(II) cyclohexylbutyrate. Bioelectrochem Bioenerg 1991; 26: 469-74. http://dx.doi.org/10.1016/0302-4598(91)85008-P

Halbert MK, Baldwin RP. Electrocatalytic and analytical response of cobalt phthalocyanine containing carbon paste electrodes toward sulfhydryl compounds. Anal Chem 1985; 57: 591-5. http://dx.doi.org/10.1021/ac00280a007

Mafatle TJ, Nyokong T. Electrocatalytic oxidation of cysteine by molybdenum (V) phthalocyanine complexes. J Electroanal Chem 1996; 408: 213-8. http://dx.doi.org/10.1016/0022-0728(95)04519-8

Pang DW, Wang ZL, Electrocatalysis of metalloporphyrins: Part 13. Electrocatalysis of several water-soluble porphyrins for the oxidation of some small molecules. J Electroanal Chem 1993; 358: 235-46. http://dx.doi.org/10.1016/0022-0728(93)80441-J

Huang S, Xiao Q, Li R, Guan HL, Liu J, Liu XR, He ZK, Liu Y, A simple and sensitive method for l-cysteine detection based on the fluorescence intensity increment of quantum dots. Anal Chim Acta 2009; 645: 73-8. http://dx.doi.org/10.1016/j.aca.2009.04.034

Aboul-Enein HY, Wainer IW. The Impact of Stereochemistry on Drug Development and Use, New York: Wiley 1997.

Stefan RI, van Staden JF, Aboul-Enein HY, Electrochemical Sensors in Bioanalysis, New York: Marcel Dekker 2001.

Soini M, Stefansson M, Riekkola ML, Novotny NV. Maltooligosaccharides as chiral selectors for the separation of pharmaceuticals by capillary electrophoresis. Anal Chem 1994; 66: 3477-84. http://dx.doi.org/10.1021/ac00092a028

Huslt AD, Verbeke N, Separation of the enantiomers of coumarinic anticoagulant drugs by capillary electrophoresis using maltodextrins as chiral modifiers. Chirality 1994; 6: 225-9.

Huslt AD, Verbeke N. Chiral analysis of basic drugs by oligosaccharide mediated capillary electrophoresis. J Chromatogr A 1996; 735: 283-93. http://dx.doi.org/10.1016/0021-9673(95)01356-3

Altshul AM, Low caloric foods-a scientific status summary by the Institute of Food Technologies expert panel of food safety and nutrition. Food Technol 1989; 43: 113-20.

Chronakis IS, On the molecular characteristics, compositional properties and and structural-functional mechanism of the maltodextrins: a review, Crit Rev Food Sci. 1998; 38: 599-637. http://dx.doi.org/10.1080/10408699891274327

Huslt AD, Verbeke N. Chiral separation by capillary electrophoresis with oligosaccharides. J Chromatogr 1992; 608: 275-87. http://dx.doi.org/10.1016/0021-9673(92)87134-T

Huslt AD, Verbeke N. Quantitation in chiral capillary electrophoresis; theoretical and practical consideration. Electrophoresis 1994; 15: 854-63. http://dx.doi.org/10.1002/elps.11501501121

Huslt AD, Verbeke N, Carbohydrates as chiral selectors for capillary electrophoresis. Enantiomer 1997; 2: 69-79.

Watanabe T, Takahasi K, Horiuchi M, Kato K, Nakazawa H, Sugimoto T, Kanazawa H, Chiral separation and quantitation of pentazocine enantiomers by Capillary zone electrophoresis using maltodextrins. J Pharm Biomed Analysis 1999; 21: 75-81. http://dx.doi.org/10.1016/S0731-7085(99)00114-4

Quang C, Khaledi MG. Direct separation of enantiomers of beta-blockers by cyclodextrin-mediated capillary zone electrophoresis. J High Resolut Chromatogr 1994; 17: 609-12. http://dx.doi.org/10.1002/jhrc.1240170810

Ozoemena KI, Stefan RI, van Staden JF, Aboul-Enein HY, Utilization of maltodextrin based enantioselective, potentiometric membrane electrodes for the enantioselective assay of S-perindopril. Talanta 2004; 62: 681-5. http://dx.doi.org/10.1016/j.talanta.2003.08.035

Nejem RM, Stefan RI, van Staden JF, Aboul-Enein HY, Enantioanalysis of L-hydroxyglutaric acid in urine samples using enantioselective, potentiometric membrane electrodes based on maltodextrins. Talanta 2005 65: 437–0. http://dx.doi.org/10.1016/j.talanta.2004.06.040

Stefan RI, Nejem RM, Enantioanalysis of glyceric acid in urine samples using enantioselective, potentiometric membrane electrodes based on maltodextrins. Sens Actuators B 2005 106: 736-0. http://dx.doi.org/10.1016/j.snb.2004.09.031

Stefan-van Staden RI, Bokretsion RG, van Staden JF, Aboul-Enein HY, Enantioanalysis of butaclamol using enantioselective, potentiometric electrodes. Anal Lett 2009 42: 1111-8. http://dx.doi.org/10.1080/00032710902890462

Wootton IDP. Micro-analysis in Medical Biochemistry (4th Edition), London: J.A. Chuchill Ltd. 1964.

Downloads

Published

2014-06-02

How to Cite

Staden, R.-I. S.- van, & Holo, L. (2014). Maltodextrins Based Solid Membranes for the Enantioanalysis of L-Cysteine. Journal of Membrane and Separation Technology, 3(2), 86–90. https://doi.org/10.6000/1929-6037.2014.03.02.3

Issue

Section

Articles