A Novel Approach to Synthesize Helix Wave Hollow Fiber Membranes for Separation Applications

Authors

  • Sung Ryul Park Korea Research Institute of Chemical Technology (KRICT), Center for Membranes, 141 Gajeong-Ro, Yuseong-Gu, Daejeon 305-600, Korea
  • Jeonghoon Kim Korea Research Institute of Chemical Technology (KRICT), Center for Membranes, 141 Gajeong-Ro, Yuseong-Gu, Daejeon 305-600, Korea
  • Aamer Ali National Research Council - Institute on Membrane Technology (ITM–CNR), Via Pietro BUCCI, c/o The University of Calabria, cubo 17C, 87036 Rende CS, Italy
  • Francesca Macedonio National Research Council - Institute on Membrane Technology (ITM–CNR), Via Pietro BUCCI, c/o The University of Calabria, cubo 17C, 87036 Rende CS, Italy
  • Enrico Drioli Hanyang University, WCU Energy Engineering Department, Room 917 9th Floor FTC Bldg., 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 S. Korea

DOI:

https://doi.org/10.6000/1929-6037.2015.04.01.2

Keywords:

Helix wave, hollow fiber membranes, poly (ether sulfone), asymmetric coagulation.

Abstract

Helix wave hollow fiber membranes are promising candidate to mitigate fouling and polarization effects in membrane operations. Current study describes a novel but simple approach to synthesize hollow fiber membranes with helix wave configuration. Poly(ether sulfone) (PES) based helix-waved hollow fiber membranes have been fabricated by dry-wet phase inversion process by using asymmetric coagulation conditions. Frequencies of the wave cycle have been observed approximately 20 and the wave length 7.1-7.6mm under the specifically required operating conditions defined by dope solution extrudate rate of 1g/min through 4cm of air-gap heights with 8.6m/min of winding speeds. On the other hand, simple hollow fibers are formed when the elongation force exerted by the winder is much higher than the surface tension of the external coagulant. The process can be useful for making polymer fibers for other applications as well.

References

Drioli E, Brunetti A, Pro D, Barbieri G. Green Chemistry Process intensi fi cation strategies and membrane engineering. Green Chem 2012; 14: 1561-1572. http://dx.doi.org/10.1039/c2gc16668b

Jaffrin MY. Hydrodynamic Techniques to Enhance Membrane Filtration. Annu Rev Fluid Mech 2012; 44: 77-96. http://www.annualreviews.org/doi/abs/10.1146/annurev-fluid-120710-101112

Scott K, Mahmood AJ, Jachuck RJ, Hu B. Intensified membrane filtration with corrugated membranes. J Memb Sci 2000; 173: 1-16. http://dx.doi.org/10.1016/S0376-7388(00)00327-6

Moulin P, Rouch JC, Serra C, Clifton MJ, Aptel P. Mass transfer improvement by secondary flows: Dean vortices in coiled tubular membranes. J Memb Sci 1996; 114(2): 235-244. http://dx.doi.org/10.1016/0376-7388(95)00323-1

Teoh MM, Bonyadi S, Chung T. Investigation of different hollow fiber module designs for flux enhancement in the membrane distillation process. J Memb Sci 2008; 311: 371-379. http://dx.doi.org/10.1016/j.memsci.2007.12.054

Mallubhotla H, Hoffmann S, Schmidt M, Vente J, Belfort G. “Flux enhancement during dean vortex tubular membrane nano ® ltration. J Memb Sci 1998; 141: 183-195. http://dx.doi.org/10.1016/S0376-7388(97)00302-5

Ali A, Macedonio F, Drioli E, Aljlil S, Alharbi OA. Experimental and theoretical evaluation of temperature polarization phenomenon in direct contact membrane distillation. Chem Eng Res Des 2013; 91(10): 1966-1977. http://dx.doi.org/10.1016/j.cherd.2013.06.030

Mart´ınez JMR-ML. Characterization of membrane distillation modules and analysis of mass flux enhancement by channel spacers. J Memb Sci 2006; 274: 123-137. http://dx.doi.org/10.1016/j.memsci.2005.07.045

Chernyshov MN, Meindersma GW, De Haan AB. Comparison of spacers for temperature polarization reduction in air gap membrane distillation. Desalination 2005; 183: 363-374. http://dx.doi.org/10.1016/j.desal.2005.04.029

Martinez-Diez, Vazquez-Gonzalez, Florido-Diaz. Study of membrane distillation using channel spacers. J Memb Sci 1998; 144: 45-56. http://dx.doi.org/10.1016/S0376-7388(98)00024-6

Phattaranawik J, Jiraratananon R, Fane A. Heat transport and membrane distillation coefficients in direct contact membrane distillation. J Memb Sci 2003; 212(1-2): 177-193. http://dx.doi.org/10.1016/S0376-7388(02)00498-2

Xing Yang AGF, Yu H, Wang R. Optimization of microstructured hollow fiber design for membrane distillation applications using CFD modeling. J Memb Sci 2012; 421-422: 258-270. http://dx.doi.org/10.1016/j.memsci.2012.07.022

Yang X, Wang R, Fane AG. Novel designs for improving the performance of hollow fiber membrane distillation modules. J Memb Sci 2011; 384(1-2): 52-62. http://www.sciencedirect. com/science/article/pii/S0376738811006788

Bikson B, Salvatore G. Methods for gas separation using helically wound hollow fibers permeable membrane cartridge. US Patent 48819551989. http://www.google.com.py/patents/ EP0359175B1?cl=en

G. T. Leypoldt JK, Cheung AK, Agodoa LY, Daugirdas JT and K. PR, “Hemodialyzer mass transfer-area coefficients for urea increase at high dialysate flow rates. The Hemodialysis (HEMO) Study. Kidney Int 1997; 51: 1913-1917. http://www.ncbi.nlm.nih.gov/pubmed/9186896

Ronco C, Brendolan A, Crepaldi C, Rodighiero M, Scabardi M. Blood and Dialysate Flow Distributions in Hollow-Fiber Hemodialyzers Analyzed by Computerized Helical Scanning Technique. J Am Scoiety Nephrol 2002; 13: 53-61. http://www.ncbi.nlm.nih.gov/pubmed/11792763

Akai KIS. Technical Characterization of Dialysis Fluid Flow of Newly Developed Dialyzers Using Mass Transfer Correlation. ASAIO 2009; pp. 231-235. http://www.ncbi.nlm.nih.gov/ pubmed/19357496

Tatebe K, Yamazaki M. Oxygenator using porous hollow fiber membrane. US 54893821996. http://www.google.com/ patents/US6495101

Taniguchi T, Suga N, Otoyo T. United States Patent, Method for purifying aqueous suspension. 6495041 B22002.

Osabe M, Nakamatsu O, Sugaya H. Hollow fiber membranes and hollow fiber membrane modules having the same included therein. 0000936 A12010. http://www.freepatents-online.com/y2010/0000936.html

Akai KIS. Technical Characterization of Dialysis Fluid Flow of Newly Developed Dialyzers Using Mass Transfer Correlation Equations. ASAIO 2009; pp. 231-235. http://www.ncbi.nlm. nih.gov/pubmed/19357496

Yang X, Yu H, Wang R, Fane AG. Optimization of microstructured hollow fiber design for membrane distillation applications using CFD modeling. J Memb Sci 2012; 421-422: 258-270. http://dx.doi.org/10.1016/j.memsci.2012.07.022

Peng N, Widjojo N, Sukitpaneenit P, May M, Lipscomb GG, Chung T, Lai J. Evolution of polymeric hollow fibers as sustainable technologies : Past, present, and future. Prog Polym Sci 2012; 37(10): 1401-1424. http://dx.doi.org/10.1016/j.progpolymsci.2012.01.001

Monisa MD. A Simplified Nonlinear Generalized Maxwell Model for Predicting the Time Dependent Behavior of Viscoelastic Materials. World J Mech 2011; 1: 158-167. http://dx.doi.org/10.4236/wjm.2011.13021

Bonyadi S, Chung TS, Krantz WB. Investigation of corrugation phenomenon in the inner contour of hollow fibers during the non-solvent induced phase-separation process. J Memb Sci 2007; 299: 200-210. http://dx.doi.org/10.1016/j.memsci.2007.04.045

Drioli E, Ali A, Simone S, Macedonio F, AL-Jlil SA, Al Shabonah FS, Al-Romaih HS, Al-Harbi O, Figoli A, Criscuoli A. Novel PVDF hollow fiber membranes for vacuum and direct contact membrane distillation applications. Sep Purif Technol 2013; 115: 27-38. http://dx.doi.org/10.1016/j.seppur.2013.04.040

Christopher C. Crimped melt spun copolymer filaments. US Patent 5,427,8451995. http://www.google.co.in/patents/ US5427845

Andrej Demsar FS. Crimped polypropylene yarns. Kovine, Zlitine, Tehnol 1999; 33(6): 523-526. http://www.worldcat. org/title/curling-phenomenon-of-polypropylene-yarns/oclc/451177654

Downloads

Published

2015-03-13

How to Cite

Park, S. R., Kim, J., Ali, A., Macedonio, F., & Drioli, E. (2015). A Novel Approach to Synthesize Helix Wave Hollow Fiber Membranes for Separation Applications. Journal of Membrane and Separation Technology, 4(1), 8–14. https://doi.org/10.6000/1929-6037.2015.04.01.2

Issue

Section

Articles