Influence of a Microwave Irradiation on the Swelling and Permeation Properties of a Nafion Membrane

Authors

  • V.M. Barragán Department of Applied Physics I, Faculty of Physics, University Complutense of Madrid, 28040 Madrid, Spain
  • S. Muñoz Department of Applied Physics III, Faculty of Physics, University Complutense of Madrid, 28040 Madrid, Spain

DOI:

https://doi.org/10.6000/1929-6037.2015.04.02.1

Keywords:

Nafion membrane, microwave, hydraulic permeability, swelling, liquid uptake, water, methanol.

Abstract

The effect of a microwave irradiation at 2450 MHz on the swelling and permeation properties of a Nafion membrane in water and methanol media has been studied. The influence of the irradiation power and the exposure time has been analyzed. The results found show that the irradiation hardly affects the membrane liquid uptake, but it affects the expansion properties of the membrane. The hydraulic permeability coefficient of the unmodified and the irradiated membranes has been experimentally determined. Higher hydraulic permeability has been obtained for the irradiated membranes in both water and methanol, but the degree of increment in permeability coefficient with microwave depends on kinds of permeation liquid. The results have been discussed considering the degradation effect occurring on the membrane hydrophobic matrix, which affects to the membrane elastic properties.

References

Mauritz KA, Moore RB. State of understanding of Nafion. Chem Rev 2004; 104: 4535-4585. http://dx.doi.org/10.1021/cr0207123

Rivin D, Kendrick CE, Gibson PW, Schneider NS. Solubility and transport behavior of water and alcohols in Nafion. Polymer 2001; 42: 623-635. http://dx.doi.org/10.1016/S0032-3861(00)00350-5

Randová A, Hovorka S, Izák P, Bartovská L. Swelling of Nafion in methanol-water-inorganic salt ternary mixtures. J Electroanal Chem 2008; 616: 117-121. http://dx.doi.org/10.1016/j.jelechem.2007.12.018

Affoune AM, Yamada A, Umeda M. Surface observation of solvent-impregnated Nafion membrane with atomic force microscopy. Langmuir 2004; 20: 6965-6968. http://dx.doi.org/10.1021/la036329q

Saarinen V, Kreuer KD, Schuster M, Merkle R, Maier J. On the swelling properties of proton conducting membranes for direct methanol fuel cells. Solid State Ionics 2007; 178: 533-537. http://dx.doi.org/10.1016/j.ssi.2006.12.001

García-Nieto D, Barragán VM. A comparative study of the electro-osmotic behavior of cation and anion exchange membranes in alcohol-water media. Electrochim Acta 2015; 154: 166-176. http://dx.doi.org/10.1016/j.electacta.2014.12.070

Heinzel A, Barragán VM. A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. J Power Sources 1999; 84: 70-74. http://dx.doi.org/10.1016/S0378-7753(99)00302-X

Young SK, Trevino SF, Beck Tan NC. Investigation of the morphological changes in Nafion membranes induced by swelling with various solvents. Army Research Laboratory ARL-TR-2647 2002: 1-29.

Choi P, Jalani NH, Datta R. Swelling in Nafion perfluorinated membrane: Effect of equivalent weight (EW) and polymer elasticity. The Electrochemical Society, Inc. 205th Meeting 2004; Abs. 376.

Villaluenga JPG, Barragán VM, Izquierdo-Gil MA, Godino MP, Seoane B, Ruiz-Bauzá C. Comparative study of liquid uptake and permeation characteristics of sulfonated cation-exchange membranes in water and methanol. J Membrane Sci 2008; 323: 421-427. http://dx.doi.org/10.1016/j.memsci.2008.06.049

Barragán VM, Villaluenga JPG, Godino MP, Izquierdo-Gil MA, Ruiz-Bauzá C, Seoane B. Experimental estimation of equilibrium and transport properties of sulfonated cation-exchange membranes with different morphologies. J Colloid Interf Sci 2009; 333: 497-502. http://dx.doi.org/10.1016/j.jcis.2009.02.015

Peron J, Mani A, Zhao X, et al. Properties of Nafion NR-211 membranes for PEMFCs. J Membrane Sci 2010; 356: 44-51. http://dx.doi.org/10.1016/j.memsci.2010.03.025

Azher H, Scholes CA, Stevens GW, Kentish SE. Water permeation and sorption properties of Nafion 115 at elevated temperatures. J Membrane Sci 2014; 459: 104-113. http://dx.doi.org/10.1016/j.memsci.2014.01.049

Kusoglu A, Karlsson AM, Santare MH. Structure-property relationship in ionomer membranes. Polymer 2010; 51: 1457-1464. http://dx.doi.org/10.1016/j.polymer.2010.01.046

Duan Q, Wang H, Benziger J. Transport of liquid water through Nafion membranes. J Membrane Sci 2012; 392-393: 88-94. http://dx.doi.org/10.1016/j.memsci.2011.12.004

Choi WC, Kim JD, Woo SI. Modification of proton conducting membrane for reducing methanol crossover in a direct-methanol fuel cell. J Power Sources 2001; 96: 411-414. http://dx.doi.org/10.1016/S0378-7753(00)00602-9

Hobson LJ, Ozu H, Yamaguchi M, Hayase S. Modified Nafion 117 as an improved polymer electrolyte membrane for direct methanol fuel cells. J Electrochem Soc 2001; 148: A1185-A1190. http://dx.doi.org/10.1149/1.1402980

Liu X, Suo C, Zhang Y, Wang X, Sun C, Li L, Zhang L. Novel modification of Nafion 117 for a MEMS-based micro direct methanol fuel cell (DMFC). J Micromech Microeng 2006; 16: S226-S232. http://dx.doi.org/10.1088/0960-1317/16/9/S09

Wang X, Li X, Fu X, Chen R, Gao B. Effect of ultrasound irradiation on polymeric microfiltration membranes. Desalination 2005; 175: 187-196. http://dx.doi.org/10.1016/j.desal.2004.08.044

Liu L, Ding Z, Chang L, Ma R, Yang Z. Ultrasonic enhancement of membrane-based deoxygenation and simultaneous influence on polymeric hollow fiber membrane. Sep Purif Technol 2007; 56: 133-142. http://dx.doi.org/10.1016/j.seppur.2007.01.023

Kaeselev B, Kingshott P, Jonsson G. Influence of the surface structure on the filtration performance of UV-modified PES membranes. Desalination 2002; 146: 265-271. http://dx.doi.org/10.1016/S0011-9164(02)00485-X

Pieracci J, Crivello JV, Belfort G. Increasing membrana permeaiblity of UV-modified poly(ether sulfone) ultrafiltration membranas. J Membrane Sci 2002; 202: 1-16. http://dx.doi.org/10.1016/S0376-7388(01)00624-X

Ilconich JB, Xu X, Coleman M, Simpson PJ. Impact of ion beam irradiation on microstructure and gas permeance of polysulfone asymmetric membranes. J Membrane Sci. 2003; 214: 143-156. http://dx.doi.org/10.1016/S0376-7388(02)00543-4

Choi Y, Kang M, Kim S, Cho J, Moon S. Characterization of LDPE/polystyrene cation exchange membranes prepared by monomer sorption and UV radiation polymerisation. J Membrane Sci 2003; 223: 201-215. http://dx.doi.org/10.1016/S0376-7388(03)00339-9

Vázquez MI, Galán P, Casado J, Ariza MJ, Benavente J. Effect of radiation and thermal treatment on structural and transport parameters for cellulose regenerated membranes. Appl Surf Sci 2004; 238: 415-422. http://dx.doi.org/10.1016/j.apsusc.2004.05.161

Sionkowska A, Wisniewski M, Skopinska J, et al. Thermal and mechanical properties of UV irradiated collagen/chitosan thin films. Polym Degrad Stabil 2006; 91: 3026-3032. http://dx.doi.org/10.1016/j.polymdegradstab.2006.08.009

Nagata S, Konishi Y, Tsuchiya B, Toh K, et al. Ion beam effects on electrical characteristics of proton conductive polymer. Nucl Instrum Meth 2007; B 257: 519-522.

Bykov YV, Egorov SV, Eremeev AG, Rybakov KI, Semenov VE, Sorokin AA, Evidence for microwave enhanced mass transport in the annealing of nanoporous alumina membranes. J Mater Sci 2001; 36: 131-136. http://dx.doi.org/10.1023/A:1004893104413

Nakai Y, Yoshimizu H, Tsujita Y. Enhanced gas permeability of cellulose acetate membranes under microwave irradiation. J Membrane Sci 2005; 256: 72-77. http://dx.doi.org/10.1016/j.memsci.2005.02.008

Nakai Y, Tsujita Y, Yoshimizu H. Control of gas permeability for cellulose acetate membrane by microwave irradiation. Desalination 2002; 145: 375-377. http://dx.doi.org/10.1016/S0011-9164(02)00439-3

Metaxas RC, Meredith RJ. Industrial Microwave Heating. Peter Pereginus Ltd: London; 1983.

Tian ZQ, Wang XL, Zhang HM, Yi BL, Jiang SP. Microwave-assisted synthesis of PTFE/C nanocomposite for polymer

electrolyte fuel cells. Electrochem Commun 2006; 8: 1158-1162. http://dx.doi.org/10.1016/j.elecom.2006.05.011

Barragán VM, Ruiz-Bauzá C. Streaming potential and hydraulic permeation through cation-exchange membranes. J Non-Equil Thermody 1997; 22: 374-385. http://dx.doi.org/10.1515/jnet.1997.22.4.374

Skou E, Kauranen P, Hentschel J. Water and methanol uptake in proton conducting Nafion (R) membranes. Solid State Ionics 1997; 97: 333-337. http://dx.doi.org/10.1016/S0167-2738(97)00033-7

Dimitrova P, Friedrich KA, Vogt B, Stimming U. Transport properties of ionomer composite membranes for direct methanol fuel cells. J Electroanal Chem 2002; 532: 75-83. http://dx.doi.org/10.1016/S0022-0728(02)01006-9

Chaabane L, Dammak L, Grande D, et al. Sweelling and permeability of Nafion 117 in water-methanol solutions: An experimental and modeling investigation. J Membrane Sci 2011; 377: 54-74. http://dx.doi.org/10.1016/j.memsci.2011.03.037

Morris DR, Sun X. Water-sortion and transport properties of Nafion 117 H. J Appl Polym Sci 1993; 50: 1445-1452. http://dx.doi.org/10.1002/app.1993.070500816

Chaabane L, Dammak L, Nikonenko VV, Bulvestre G, Auclair B. The influence of absorbed methanol on the conductivity and the microstructure of ion-exchange membranes. J Membrane Sci 2007; 298: 126-135. http://dx.doi.org/10.1016/j.memsci.2007.04.010

Plazanet M, Sacchetti F, Petrillo C, Demé B, Bartolini P, Torre R. Water in a polymeric electrolyte membrane: Sorption/desorption and freezing phenomena. J Membrane Sci 2014; 453: 419-424. http://dx.doi.org/10.1016/j.memsci.2013.11.026

Koter S. Transport of simple electrolyte solutions through ion-exchange membranes: the capillary model. J Membrane Sci 2002; 206: 201-215. http://dx.doi.org/10.1016/S0376-7388(01)00763-3

Majsztrik P, Bocarsly A, Benziger J. Water permeation through Nafion membranes: The role of water activity. J Phys Chem B 2008; 112: 16280-16289. http://dx.doi.org/10.1021/jp804197x

Evans CE, Noble RD, Nazeri-Thompson S, Nazeri B, Koval CA. Role of conditioning on water uptake and hydraulic permeability of Nafion membranes. J Membrane Sci 2006; 279: 521-528. http://dx.doi.org/10.1016/j.memsci.2005.12.046

Meier F, Eigenberger G. Transport parameters for the modelling of water transport in ionomer membranes for PEM-fuel cells. Electrochim Acta 2004; 49: 1731-1742. http://dx.doi.org/10.1016/j.electacta.2003.12.004

Majsztrik, PW, Bocarsly AB, Benziger JB. Viscoelastic response of Nafion. Effect of temperature and hydration on tensile creep. Macromolecules 2008; 41: 9849-9862. http://dx.doi.org/10.1021/ma801811m

Barragán VM, Pastuschuk E. Viscoelastic deformation of sulfonated polymeric cation-exchange membranes exposed to a pressure gradient. Mater Chem Phys 2014; 146: 65-72. http://dx.doi.org/10.1016/j.matchemphys.2014.02.043

Adachi M, Navessin T, Xie Z, Li FH, Tanaka S, Holdcroft S. Thickness dependence of water permeation through proton exchange membranes. J Membrane Sci 2010; 364: 183-193. http://dx.doi.org/10.1016/j.memsci.2010.08.011

Downloads

Published

2015-06-08

How to Cite

Barragán, V., & Muñoz, S. (2015). Influence of a Microwave Irradiation on the Swelling and Permeation Properties of a Nafion Membrane. Journal of Membrane and Separation Technology, 4(2), 32–39. https://doi.org/10.6000/1929-6037.2015.04.02.1

Issue

Section

Articles