Capacitive Deionization for Selective Extraction of Lithium from Aqueous Solutions

Authors

  • M. Bryjak Department of Polymer and Carbon Materials, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
  • A. Siekierka Department of Polymer and Carbon Materials, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
  • J. Kujawski Department of Polymer and Carbon Materials, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
  • K. Smolinska-Kempisty Department of Polymer and Carbon Materials, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
  • W. Kujawski Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarina str., 87-100 Torun, Poland

DOI:

https://doi.org/10.6000/1929-6037.2015.04.03.2

Keywords:

Capacitive electrode, lithium selective membrane, lithium recovery, pore-filled membranes

Abstract

The paper deals with extraction of lithium by means of two capacitive deionization systems: one composed of lithium selective electrode and second with electrode wrapped with Li-selective membrane. In the case of the first system, hybrid electrodes where obtained by mixing λ-MnO2sorbent with activated carbon .The best Li-capacity was determined for electrode with 20 wt.-% of manganese oxide. For larger amounts of λ-MnO2 the electrode capacity decreased significantly. The second system was composed of carbon electrodes wrapped with ion-exchange membranes. The lithium selective membranes were synthesized by plasma induced interpolymerization of (meth)acrylic monomersinpores of Celgard 2400 support. Two functional monomers, poly(di(ethylene glycol)methyl ether methacrylate) and poly(glycidylmethacylate modified with hydroxymethyl-12-crown-4) were copolymerized with acrylic acid. It was found that the extraction of lithium chloride was the best for membrane caring copolymers of acrylic acid and glycidyl methacrylate modified with crown ether, andit was better than for membranes with sole poly(acrylic acid).

References

Liu Y, Nie Ch, Liu X, Xu X, Sun Z, Pan L. Review on carbon-based composite materials for capacitive deionization. RSC Adv 2015; 5: 15205-15225. http://dx.doi.org/10.1039/C4RA14447C

Porada S, Zhao R, van der Wal A, Presser V, Biesheuvel PM. Review on the science and technology of water, desalination by capacitive deionization. Prog Mater Sci 2013; 58: 1388-1442. http://dx.doi.org/10.1016/j.pmatsci.2013.03.005

Porada S, Weinstein L, Dash R, van der Wal A, Bryjak M, Gogotsi Y, Biesheuvel PM. Water desalination using capacitive deionization with microporous carbon electrodes. ACS Appl Mater Interfaces 2012; 4: 1194-1199. http://dx.doi.org/10.1021/am201683j

Porada S, Borchardt L, Oschatz M, Bryjak M, Atchison JS, Keesman KJ, Kaskel S, Biesheuvel PM, Presser V. Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization. Energy Environ Sci 2013; 6: 3700-3712. http://dx.doi.org/10.1039/c3ee42209g

Anderson MA, Cudero AL, Palma J. Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochim Acta 2010; 55: 3845-3856. http://dx.doi.org/10.1016/j.electacta.2010.02.012

Oren Y. Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review). Desalination 2008; 228: 10-29. http://dx.doi.org/10.1016/j.desal.2007.08.005

Ryu T, Lee DH, Ryu JC, Shin J, Chung KS, Kim YH. Lithium recovery system using electrostatic field assistance. Hydrometallurgy 2015; 151: 78-83. http://dx.doi.org/10.1016/j.hydromet.2014.11.005

Ryu T, Ryu JC, Shin J, Lee DH, Kim YH, Chung KS. Recovery of lithium by an electrostatic field-assisted desorption process. Ind Eng Chem Res 2013; 52: 13738-13742. http://dx.doi.org/10.1021/ie401977s

Kim S, Lee J, Kang JS, Jo K, Kim S, Sung YE, Yoon J. Lithium recovery from brine using a MnO2/activated carbon hybrid supercapacitor system. Chemosphere 2015; 125: 50-56. http://dx.doi.org/10.1016/j.chemosphere.2015.01.024

Prior T, Wager PA, Stamp A, Widmer R, Giurco D. Sustainable governance of scarce metals: The case of lithium. Sci Total Environ 2013; 461-462: 785-791. http://dx.doi.org/10.1016/j.scitotenv.2013.05.042

Gruber PW, Medina PA, Keoleian GA, Kesler SE, Everson MP, Wallington TJ. Global lithium availability: A constraint for electric vehicles? J Ind Ecol 2011; 15: 760-774. http://dx.doi.org/10.1111/j.1530-9290.2011.00359.x

Vikstrom H, Davidsson S, Hook M. Lithium availability and future production outlooks. Appl Energy 2013; 110: 252-266. http://dx.doi.org/10.1016/j.apenergy.2013.04.005

Ma LW, Chen BZ, Chen Y, Shi XC. Preparation, characterization and adsorptive properties of foam-type lithium adsorbent. Micropor Mesopor Mater 2011; 142: 147-153. http://dx.doi.org/10.1016/j.micromeso.2010.11.028

Miyai Y, Ooi K, Katoh S. Recovery of lithium from seawater using a new type of ion-sieve adsorbent based on MgMn2O4. Sep Sci Technol 1988; 23: 179-191. http://dx.doi.org/10.1080/01496398808057641

Wang L, Ma W, Liu R, Li HY, Meng CG. Correlation between Li+ adsorptioncapacity and the preparation conditions of spinel lithium manganese precursor. Solid State Ionics 2006; 177: 1421-1428. http://dx.doi.org/10.1016/j.ssi.2006.07.019

Park J, Sato H, Nishihama S, Yoshizuka K. Lithium recovery from geothermal water by combined adsorption methods. Solvent Extr Ion Exch 2012; 30: 398-404. http://dx.doi.org/10.1080/07366299.2012.687165

Kim JS, Kim CS, Shin HS, Rhim JW. Application of synthesized anion and cation exchange polymers to membrane capacitive deionization (MCDI). Macromol Res 2015; 23: 360-366. http://dx.doi.org/10.1007/s13233-015-3049-6

Kim YJ, Choi JH. Selective removal of nitrate ion using a novel composite carbon electrode in capacitive deionization. Water Res 2012; 46: 6033-6039. http://dx.doi.org/10.1016/j.watres.2012.08.031

Smolińska-Kempisty K, Bryjak M, Wolska J, Kujawski W. pH-sensitive membranes for lithium separation. Mater Chem Phys 2014; 148: 548-553. http://dx.doi.org/10.1016/j.matchemphys.2014.08.003

Smolińska-Kempisty K, Bryjak M. Stimuli response polypropylene membranes as selective separators for alkaline ions. Desalination 2012; 300: 64-69. http://dx.doi.org/10.1016/j.desal.2012.06.006

Kuraray Chemical Co., Web page: Available from: http://www.kuraraychemical.com/products/sc/capacitor.htm

Park J, Sato H, Nishihama S, Yoshizuka K. Separation and recovery of lithium from geothermal water by sequential adsorption process with MnO2and TiO2. Ion Exch Lett 2012; 5: 1-5.

Borsod Chem LTD. Web page, Available from: http://www.borsodchem-pvc.comdefault.aspx

Suss ME, Porada S, Sun X, Biesheuvel PM, Yoon J, Presser V. Water desalination via capacitive deionization: what is it and what can we expect from it? Energy Environ Sci 2015; 8: 2296-2319. http://dx.doi.org/10.1039/C5EE00519A

Bryjak M, Smolinska-Kempisty K, Kujawski J. Separation of lithium by membrane enhanced capacitive deionization, Proceedings of Intl Conference on Ion Exchange, Okinawa 9-12 November 2014.

Omosebi A, Gao X, Landon J, Liu K. Asymmetric electrode configuration for enhanced membrane capacitive deionization. ACS Appl Mater Interfaces 2014; 6: 12640-12649. http://dx.doi.org/10.1021/am5026209

Downloads

Published

2015-09-14

How to Cite

Bryjak, M., Siekierka, A., Kujawski, J., Smolinska-Kempisty, K. ., & Kujawski, W. (2015). Capacitive Deionization for Selective Extraction of Lithium from Aqueous Solutions. Journal of Membrane and Separation Technology, 4(3), 110–115. https://doi.org/10.6000/1929-6037.2015.04.03.2

Issue

Section

Articles