CO2 Permeation Behavior through Carbon Membranes: A Short Review of the Progress during the Last Decade

Authors

  • Evangelos P. Favvas Membranes and Materials for Environmental Separations Laboratory, Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, Aghia Paraskevi, Attica 153 41, Greece

DOI:

https://doi.org/10.6000/1929-6037.2016.05.01.1

Keywords:

CO2 permeation, CO2 selectivity, inorganic membranes, carbon membranes, gas separation

Abstract

Although carbon dioxide is not classified as a toxic or harmful gas the necessity for its capture is enforced not only by scientists but also by governments worldwide. In this attempt the technologies which are proposed to attend this role are various. Contrary to the traditional thermal methods (distillation, adsorption, cryogenic), which require high energy sources, the membrane technology seems to be the prevalent solution mainly thanks to its low operation cost. To this aim, both polymeric and inorganic membranes are reported as good candidates for CO2 separation–capture. The main advantages of the inorganic membranes, in terms of the polymeric, are their higher selectivity factors and the better stability at both high temperatures and chemical environments. The preparation of the carbon membranes takes place mainly by the controlled pyrolysis of different thermosetting polymeric materials and the final configuration can be divided into the following configurations: i) flat sheet membranes, ii) supported on tube membranes, iii) capillary membranes and iv) hollow fiber membranes. During the last fifty years, more attention has been devoted, not only for the simultaneous increase of both permeability and selectivity factors but also for the large–scale production of crack free carbon membranes. The reproductivity is also one critical point which has to be achieved if we really aim for the industrial application of the carbon gas selective membranes. Therefore, carbon membranes have the potential to be the materials of the future for many gas separation processes including the one of carbon dioxide separation–capture. This paper is reviewing the development and the achievements of the carbon membranes in the direction of the CO2 separation giving emphasis on the last 10 years.

References

Dongfei L, Dual-layer asymmetric hollow fiber for gas separation, PhD Thesis, National University of Singapore, 2004.

Fick A, On Liquid Diffusion. Phil Mag 1855; 10: 30-39.

Graham T, On the absorption and dialytic separation of gases by colloid septa. Part 1: Action of a septum of caoutchouc. Phil Mag 1866; 32: 401-420.

van’t Hoff JH, Osmotic pressure and chemical equilibrium. Nobel Prize in Chemistry 1901.

Loeb S, Sourirajan S, Sea water demineralization by means of an osmotic membrane. Advan Chem Ser 1962; 38: 117-132. http://dx.doi.org/10.1021/ba-1963-0038.ch009

Lin H, Changes in Atmospheric Carbon Dioxide in Global Environmental Change Handbook of Global Environmental Pollution, Freedman B (ed.), Springer Science & Business Media Dordrecht, 2014; 1: 61-67.

Etheridge DM, Steele LP, Langenfelds RL, Francey RJ, Barnola JM, Morgan VI, Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J Geophys Res Atmos 1996; 101: 4115−4128. http://dx.doi.org/10.1029/95JD03410

Ballantyne AP, Alden CB, Miller JB, Tans PP, White JWC, Increase in observed net carbon dioxide uptake by land and oceans during the last 50 years. Nature 2012; 488: 70-72. http://dx.doi.org/10.1038/nature11299

Byrne RH, Measuring Ocean Acidification: New Technology for a New Era of Ocean Chemistry. Environ Sci Technol 2014; 48: 5352-5360. http://dx.doi.org/10.1021/es405819p

Lackner KS, Brennan S, Matter JM, Park A-H, Wright A, van der Zwaan B, The urgency of the development of CO2 capture from ambient air. PNAS 2012; 109: 13156-13162. http://dx.doi.org/10.1073/pnas.1108765109

Gomes CDN, Jacquet O, Villiers C, Thuéry P, Ephritikhine M, Cantat T, A Diagonal Approach to Chemical Recycling of Carbon Dioxide: Organocatalytic Transformation for the Reductive Functionalization of CO2. Angew Chem Int Ed 2012; 51: 187-190. http://dx.doi.org/10.1002/anie.201105516

Kerry FG, Industrial Gas Handbook: Gas Separation and Purification, ISBN 9780849390050, February 2007, Taylor and Francis Group, CRC Press.

Bernardo P, Drioli E, Golemme G, Membrane Gas Separation: A Review/State of the Art. Ind Eng Chem Res 2009; 48: 4638-4663. http://dx.doi.org/10.1021/ie8019032

Kao MB, Sircar S, Nanoporous carbon membranes for separation of gas mixtures by selective surface flow. J Membr Sci 1993; 85: 253-264. http://dx.doi.org/10.1016/0376-7388(93)85279-6

Robeson LM, Polymer membranes for gas separation. Curr Opin Solid St M 1999; 4: 549-552. http://dx.doi.org/10.1016/S1359-0286(00)00014-0

Merten U, Gantzel PK, Method and Apparatus for Gas Separation by Diffusion. US Patent 3,415,038. (1968) Dec.

Ismail AF, David LIB, A review on the latest development of carbon membranes for gas separation. J Membr Sci 2001; 193: 1-18. http://dx.doi.org/10.1016/S0376-7388(01)00510-5

Alefeld G, Völkl J, (editors) Hydrogen in Metals I: Basic Properties. Springer-Verlag: Germany (1978). http://dx.doi.org/10.1007/3-540-08705-2

Smart S, Lin CXC, Ding L, Thambimuthu K, Diniz da Costa JC, Ceramic membranes for gas processing in coal gasification. Energy Environ Sci 2010; 3: 268-278. http://dx.doi.org/10.1039/b924327e

Caro J, Noack M, Zeolite membranes - Recent developments and progress. Microp Mesopor Mater 2008; 115: 215-233. http://dx.doi.org/10.1016/j.micromeso.2008.03.008

Song C, Wang T, Wang X, Qiu J, Cao Y, Preparation and gas separation properties of poly(furfuryl alcohol)-based C/CMS composite membranes. Separ Purif Techn 2008; 58: 412-418. http://dx.doi.org/10.1016/j.seppur.2007.05.019

Favvas EP, Nitodas SF, Stefopoulos A, Stefanopoulos KL, Papageorgiou SK, Mitropoulos ACh, High Purity Multi-Walled Carbon Nanotubes: Preparation, Characterization and Performance as Filler Materials in co-polyimide Hollow Fiber Membranes. Separ Purif Technol 2014; 122: 262-269. http://dx.doi.org/10.1016/j.seppur.2013.11.015

Favvas EP, Stefanopoulos KL,. Nolan JW, Papageorgiou SK, Mitropoulos ACh, Lairez D, Mixed Matrix Hollow Fiber Membranes with enhanced gas permeation properties. Separ Purif Technol 2014; 132: 336-345. http://dx.doi.org/10.1016/j.seppur.2014.05.013

Hesieh HP, Inorganic membranes. AIChE Symp Series 1988; 84: 1-18.

Gallucci F, Fernandez E, Corengia P, van Sint AM, Recent advances on membranes and membrane reactors for hydrogen production. Chem Engin Sci 2013; 92: 40-66. http://dx.doi.org/10.1016/j.ces.2013.01.008

Soria R, Overview on industrial membranes. Catal Today 1995; 25: 285-290. http://dx.doi.org/10.1016/0920-5861(95)00080-Y

Keizer K, Verweij H, Progress in inorganic membranes. Chemtech 1996; 26: 37-41.

Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I, Progress in carbon dioxide separation and capture: A review. J Envir Sci 2008; 20: 14-27. http://dx.doi.org/10.1016/S1001-0742(08)60002-9

Bounaceur R, Lape N, Roizard D, Vallieres C, Favre E, Membrane processes for post-combustion carbon dioxide capture: a parametric study. Energy 2006; 31: 2556-2570. http://dx.doi.org/10.1016/j.energy.2005.10.038

Davison J, Thambimuthu K, Technologies for capture of carbon dioxide. Proceedings of the Seventh Greenhouse Gas Technology Conference, Vancouver, Canada. International Energy Association (IEA), Greenhouse Gas R&D Progamme, 2004 (www.ghght7.ca).

van der Sluis JP, Hendriks CA, Blok K, Feasability of polymer membranes for carbon dioxide recovery from flue gases. Ener Conver Manage 1992; 33: 429-436. http://dx.doi.org/10.1016/0196-8904(92)90040-4

Kaldis SP, Skrodas G, Sakellaropoulos GP, Energy and capital cost analysis of CO2 capture in coal IGCC processes via gas separation membranes. Fuel Process Technol 2004; 85: 337-346. http://dx.doi.org/10.1016/S0378-3820(03)00204-2

Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I, Progress in carbon dioxide separation and capture: A review. J Environ Sci 2008; 20: 14-27. http://dx.doi.org/10.1016/S1001-0742(08)60002-9

Brunetti A, Scura F, Barbieri G, Drioli E, Membrane technologies for CO2 separation. J Membr Sci 2010; 359: 115-125. http://dx.doi.org/10.1016/j.memsci.2009.11.040

Damle AS, Dorchak TP, Recovery of carbon dioxide in advanced fossil energy conversion processes using a membrane reactor. J Energy Environ Research 2001; 1: 77-89.

Xu Z, Wang J, Chen W, Xu Y, Separation and fixation of carbon dioxide using polymeric membrane. In Proceedings of 1st National Conference on Carbon Sequestration (2001) Washington, DC.

Zou J, Ho WSW, CO2-selective polymeric membranes containing amines in crosslinked poly(vinyl alcohol). J Membr Sci 2006; 286: 310-321. http://dx.doi.org/10.1016/j.memsci.2006.10.013

Lin H, Van Wagner E, Freeman BD, Toy LG, Gupta RP, Plasticization-Enhanced Hydrogen Purification Using Polymeric Membranes. Science 2006; 311: 639-642. http://dx.doi.org/10.1126/science.1118079

Powell CE, Qiao GG, Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Membr Sci 2006; 279: 1-49. http://dx.doi.org/10.1016/j.memsci.2005.12.062

Favvas EP, Papageorgiou SK, Stefanopoulos KL, Nolan JW, Mitropoulos ACh, Effect of air gap on gas permeance/selectivity performance of BTDA-TDI/MDI co-polyimide hollow fiber membranes. J Appl Polym Sci 2013; 130: 4490-4499. http://dx.doi.org/10.1002/app.39677

Nakata M, Kumazawa H, Gas permeability and permselectivity of plasmatreated polyethylene membranes. J Appl Polym Sci 2006; 101: 383-387. http://dx.doi.org/10.1002/app.23850

Liu L, Chakma A, Feng X, CO2/N2 Separation by Poly(Ether Block Amide) Thin Film Hollow Fiber Composite Membranes. Ind Eng Chem Res 2005; 44: 6874-6882. http://dx.doi.org/10.1021/ie050306k

Chent YD, Yang RT, Preparation of Carbon Molecular Sieve Membrane and Diffusion of Binary Mixtures in the Membrane. Ind Eng Chem Res 1994; 33: 3146-3153. http://dx.doi.org/10.1021/ie00036a033

Shusen W, Meiyun Z, Zhizhong W, Asymmetric molecular sieve carbon membranes. J Membr Sci 1996; 109: 267-270. http://dx.doi.org/10.1016/0376-7388(95)00205-7

Kita H, Yoshino M, Tanaka K, Okamoto K, Gas permselectivity of carbonized polypyrrolone membrane. Chem Commun 1997; 1051-1052. http://dx.doi.org/10.1039/a700048k

Kusuki Y, Shimazaki H, Tanihara N, Nakanishi S, Yoshinaga T, Gas permeation properties and characterization of asymmetric carbon membranes prepared by pyrolyzing asymmetric polyimide hollow fiber membrane. J Membr Sci 1997; 134: 245-253. http://dx.doi.org/10.1016/S0376-7388(97)00118-X

Fuertes AB, Centeno TA, Carbon molecular sieve membranes from polyetherimide. Micropor Mesopor Mater 1998; 26: 23-26. http://dx.doi.org/10.1016/S1387-1811(98)00204-2

Fuertes AB, Centeno TA, Preparation of supported asymmetric carbon molecular sieve membranes. J Membr Sci 1998; 144: 105-111. http://dx.doi.org/10.1016/S0376-7388(98)00037-4

Kusakabe K, Yamamoto M, Morooka S, Gas permeation and micropore structure of carbon molecular sieving membranes modified by oxidation. J Membr Sci 1998; 149: 59-67. http://dx.doi.org/10.1016/S0376-7388(98)00156-2

Fuertes AB, Nevskaia DM, Centeno TA, Carbon composite membranes from Matrimid® and Kapton® polyimides for gas separation. Micropor Mesopor Mater 1999; 33: 115-125. http://dx.doi.org/10.1016/S1387-1811(99)00129-8

Shekhawat D, Luebke DR, Pennline HW, A review of carbon dioxide selective membranes-A topical teport. National Energy Technology Laboratory (2003), United States Department of Energy. http://dx.doi.org/10.2172/819990

Jones CW, Koros WJ, Characterization of ultramicroporous carbon membranes with humidified feeds. Ind Eng Chem Res 1995; 34: 158-163. http://dx.doi.org/10.1021/ie00040a014

Favvas EP, Heliopoulos NS, Papageorgiou SK, Mitropoulos ACh, Kapantaidakis GC, Kanellopoulos NK, Helium and hydrogen selective carbon hollow fiber membranes: the effect of pyrolysis isothermal time. Separ Purif Technol 2015; 142: 176-181. http://dx.doi.org/10.1016/j.seppur.2014.12.048

Favvas EP, Romanos GE, Papageorgiou SK, Katsaros FK, Mitropoulos ACh, Kanellopoulos NK, A Methodology for the morphological and physicochemical characterisation of asymmetric carbon hollow fiber membranes. J Membr Sci 2011; 375: 113-123. http://dx.doi.org/10.1016/j.memsci.2011.03.028

Rallabandi PS, Ford DM, Entropic and energetic selectivity in air separation with microporous materials. AIChE J 2000; 46: 99-109. http://dx.doi.org/10.1002/aic.690460113

Vu DQ, Koros WJ, Miller SJ, High Pressure CO2/CH4 Separation Using Carbon Molecular Sieve Hollow Fiber Membranes. Ind Eng Chem Res 2002; 41: 367-380. http://dx.doi.org/10.1021/ie010119w

Gallucci F, Fernandez E, Corengia P, Van Sint Annaland M, Recent advances on membranes and membrane reactors for hydrogen production. Chem Engin Sci 2013; 92: 40-66. http://dx.doi.org/10.1016/j.ces.2013.01.008

Chung SJ, Park JH, Li D, Ida JI, Kumakiri I, Lin JYS, Dual-Phase Metal-Carbonate Membrane for High-Temperature Carbon Dioxide Separation. Ind Eng Chem Res 2005: 44: 7999-8006. http://dx.doi.org/10.1021/ie0503141

Kim YK, Park HB, Lee YM, Gas separation properties of carbon molecular sieve membranes derived from polyimide/polyvinylpyrrolidone blends: effect of the molecular

weight of polyvinylpyrrolidone. J Membr Sci 2005; 251:

-167. http://dx.doi.org/10.1016/j.memsci.2004.11.011

Skoulidas AI, Sholl DS, Johnson JK, Adsorption and diffusion of carbon dioxide and nitrogen through single-walled carbon nanotube membranes. J Chem Phys 2006; 124: 054708-7. http://dx.doi.org/10.1063/1.2151173

Ruia Z, Anderson M, Lin YS, Li Y, Modeling and analysis of carbon dioxide permeation through ceramic-carbonate dual-phase membranes. J Membr Sci 2009; 345: 110-118. http://dx.doi.org/10.1016/j.memsci.2009.08.034

Cong H, Zhang J, Radosz M, Shen Y, Carbon nanotube composite membranes of brominated poly(2,6-diphenyl-1,4-phenylene oxide) for gas separation. J Membr Sci 2007; 294: 178-185. http://dx.doi.org/10.1016/j.memsci.2007.02.035

Hosseinia SS, Chung TS, Carbon membranes from blends of PBI and polyimides for N2/CH4 and CO2/CH4 separation and hydrogen purification. J Membr Sci 2009; 328: 174-185. http://dx.doi.org/10.1016/j.memsci.2008.12.005

Anderson M, Lin YS, Carbonate-ceramic dual-phase membrane for carbon dioxide separation. J Membr Sci 2010; 357: 122-129. http://dx.doi.org/10.1016/j.memsci.2010.04.009

Favvas EP, Kapantaidakis GC, Nolan JW, Mitropoulos ACh, Kanellopoulos NK, Preparation, characterization and gas permeation properties of carbon hollow fiber membranes based on Matrimid® 5218 precursor. J Mater Proc Tech 2007; 186: 102-110. http://dx.doi.org/10.1016/j.jmatprotec.2006.12.024

Favvas EP, Kouvelos EP, Romanos GE, Pilatos GΙ, Mitropoulos ACh, Kanellopoulos NK, Characterization of highly selective microporous carbon hollow fiber membranes prepared from a commercial co-polyimide precursor. J Porous Mater 2008; 15: 625-633. http://dx.doi.org/10.1007/s10934-007-9142-2

Favvas EP, Carbon dioxide permeation study through carbon hollow fiber membranes at pressures up to 55 bar. Separ Purif Technol 2014; 134: 158-162. http://dx.doi.org/10.1016/j.seppur.2014.07.041

He X, Hägg M-B, Hollow fiber carbon membranes: From material to application. Chem Engin J 2013; 215: 440-448. http://dx.doi.org/10.1016/j.cej.2012.10.051

Robeson LM, Correlation of separation factor versus permeability for polymeric membranes. J. Membr Sci 1991; 62: 165-185. http://dx.doi.org/10.1016/0376-7388(91)80060-J

Robeson LM, The upper bound revisited. J Membr Sci 2008; 320: 390-400. http://dx.doi.org/10.1016/j.memsci.2008.04.030

Salleh WNW, Ismail AF, Matsuura T, Abdullah MS, Precursor selection and process conditions in the preparation of carbon membrane for gas separation: A review. Separ Purif Reviews 2011; 40: 261-311. http://dx.doi.org/10.1080/15422119.2011.555648

He X, Hagg MB, Hollow fiber carbon membranes: Investigations for CO2 capture. J Membr Sci 2011; 378: 1-9. http://dx.doi.org/10.1016/j.memsci.2010.10.070

Salleh WNW, Ismail AF, Carbon membranes for gas separation processes: Recent progress and future perspective. J Membr Sci Research 2015; 1: 2-15.

Rao MB, Sircar S, Nanoporous carbon membranes for separation of gas mixtures by selective surface flow. J Membr Sci 1993; 85: 253-264. http://dx.doi.org/10.1016/0376-7388(93)85279-6

Suda H, Haraya K, Alkene/alkane permselectivities of a carbon molecular sieve membrane. Chem Commun 1997; 93-94. http://dx.doi.org/10.1039/a606385c

Okamoto K, Kawamura S, Yoshino M, Kita H, Hirayama Y, Tanihara N, Kusuki Y, Olefin/paraffin separation through carbonized membranes derived from an asymmetric polyimide hollow fiber membrane. Ind Eng Chem Res 1999; 38: 4424-4432. http://dx.doi.org/10.1021/ie990209p

Hashim SM, Mohamed AR, Bhatia S, Catalytic inorganic membrane reactors: present research and future prospects. Rev Chem Engin 2011; 27: 157-178. http://dx.doi.org/10.1515/REVCE.2011.005

Downloads

Published

2016-04-06

How to Cite

Favvas, E. P. (2016). CO2 Permeation Behavior through Carbon Membranes: A Short Review of the Progress during the Last Decade . Journal of Membrane and Separation Technology, 5(1), 3–15. https://doi.org/10.6000/1929-6037.2016.05.01.1

Issue

Section

Special Issue : Membranes for Carbon Dioxide Separation / Capture Applications