Highly Hydrophilic Electrospun Polyacrylonitrile/ Polyvinypyrro-lidone Nanofibers Incorporated with Gentamicin as Filter Medium for Dam Water and Wastewater Treatment

Authors

  • Abdulaziz R. Alharbi Department of Mechanical Engineering, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260, USA
  • Ibrahim M. Alarifi Department of Mechanical Engineering, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260, USA
  • Waseem S. Khan Department of Mechanical and Industrial Engineering, Majmaah University, Al- Majmaah 11952, P.O. Box. 66, Kingdom of Saudi Arabia
  • Ramazan Asmatulu Department of Mechanical and Industrial Engineering, Majmaah University, Al- Majmaah 11952, P.O. Box. 66, Kingdom of Saudi Arabia

DOI:

https://doi.org/10.6000/1929-6037.2016.05.02.1

Keywords:

Nanotechnology, Electrospinning, Water Treatment, Total Coliform, E. coli, Turbidity, Total Suspended Solids (TSS)

Abstract

The need for advancement in filtration technology has spurred attention to advanced materials, such as electrospun nanofiber membranes, for providing clean water at a low cost with minimum initial investment. Polymer nanofibers can be fabricated by using different techniques, such as template synthesis, self-assembly, drawing, phase separation, and electrospinning. Due to its distinctive properties, electrospinning has become a method of choice for fabricating nanofiber membranes quickly with minimal investment. In this study, polyacrylonitrile (PAN) was dissolved in dimethylformamide (DMF), and different weight percentages of polyvinylpyrrolidone (PVP) and gentamicin sulfate powder were added to the solution to fabricate nanomembranes via the electrospinning process. Gentamicin was added to remove bacteria and viruses and prevent fouling, while PVP was added to make the surface of the membrane hydrophilic for enhancing the filtration rate and efficiency. Two water samples were chosen for the filtration processes: dam water and city wastewater. For the dam water sample, PH, turbidity, TDS, Ca++, Mg++, sulfates, nitrates, fluoride, chloride, alkalinity and silica were reduced to +3.64%, 89.6%, 6.52%, 10.5%, 9.96%, 5.16%, 17%, 19.5%, 6.63%, 1.43% and 63.5% respectively. The total coliforms and E. coli content were reduced to 4.1 MPN/100ml and 0 MPN/100ml, respectively with PAN containing 10 wt. % PVP and 5 wt. % Gentamicin. For wastewater sample, PH, turbidity, TDS, TSS, BODs, phosphate, ammonia, oil-greases and DO were reduced to + 3.62%, 79%, 6.33%, 84%, 68%, 1.70%, 15.8%, 0% and 6% respectively. The total coliforms and E. coli content were also lowered to 980 MPN/100ml and 1119.9 MPN/100ml, respectively with PAN containing 10 wt. % PVP and 5 wt. % Gentamicin. The morphology and dimensions of the nanofibers were observed using a scanning electron microscope (SEM). Both SEM and microscopic images of the nanomembrane before and after filtration proved that electrospun PAN nanofibers have superior water filtration performance.

References

Wendorff JH, Agarwal S, Greiner A. Electrospinning: materials, processing, and applications. John Wiley & Sons; 2012. Available from: http://wiley.com/

Colvin VL. The potential environmental impact of engineered nanomaterials. Nature 2003; 21: 1166-70. http://dx.doi.org/10.1038/nbt875

Dolez PI, Bodila N, Lara J, Truchon G. Personal protective equipment against nanoparticles. Int J Nanotechnol 2009; 7: 99-117. http://dx.doi.org/10.1504/IJNT.2010.02955

Asmatulu R, Muppalla H, Veisi Z, Khan WS, Asaduzzaman A, Nuraje N. Study of hydrophilic electrospun nanofiber membranes for filtration of micro and nanosize suspended particles. Membranes 2013; 3: 375-88. http://dx.doi.org/10.3390/membranes3040375

Fennessey SF, Farris RJ. Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns. Polymer 2004; 45: 4217-25. http://dx.doi.org/10.1016/j.polymer.2004.04.001

Hammel E, Tang X, Trampert M, Schmitt T, Mauthner K, Eder A, Pötschke P. Carbon nanofibers for composite applications. Carbon 2004; 42: 1153-8. http://dx.doi.org/10.1016/j.carbon.2003.12.043

Alexiou AA. Improved filtration membranes through self-organizing amphiphilic comb copolymers (Doctoral dissertation, Massachusetts Institute of Technology). Available from: https://www.researchgate.net/profile/Ayse_ Asatekin/

Muppalla H. Highly hydrophilic electrospun fibers for the filtration of micro and nanosize particles treated with coagulants. Master thesis, Wichita State University 2011. Available from: http://soar.wichita.edu:8080/

Greiner A, Wendorff JH. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 2007; 46: 5670-703. http://dx.doi.org/10.1002/anie.200604646

Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel? Adv Mater 2004; 16: 1151-70. http://dx.doi.org/10.1002/adma.200400719

Luo CJ, Stoyanov SD, Stride E, Pelan E, Edirisinghe M. Electrospinning versus fibre production methods: from specifics to technological convergence. Chem Soc Rev 2012; 41: 4708-35.

Makaremi M, De Silva RT, Pasbakhsh P. Electrospun nanofibrous membranes of polyacrylonitrile/halloysite with superior water filtration ability. J Phys Chem C 2015; 119: 7949-58. http://dx.doi.org/10.1021/acs.jpcc.5b00662

El Saliby IJ, Shon H, Kandasamy J, Vigneswaran S. Nanotechnology for wastewater treatment: in brief. Encyclopedia of Life Support System (EOLSS). 2008. http://www.eolss.net/Sample-Chapters/C07/E6-144-23.pdf

Sutherland K. Developments in filtration: What is nanofiltration? Filtr Sep 2008; 45: 32-5. http://dx.doi.org/10.1016/S0015-1882(08)70298-2

Eriksson P. Nanofiltration extends the range of membrane filtration. Environ Prog 1988; 7: 58-62. http://dx.doi.org/10.1002/ep.3300070116

Ventresque C, Gisclon V, Bablon G, Chagneau G. An outstanding feat of modern technology: the Mery-sur-Oise nanofiltration treatment plant (340,000 m3/d). Desalination 2000; 131: 1-6. http://dx.doi.org/10.1016/S0011-9164(00)90001-8

Faccini M, Borja G, Boerrigter M, Martín DM, Crespiera SM, Vázquez-Campos S, Aubouy L, Amantia D. Electrospun carbon nanofiber membranes for filtration of nanoparticles from water. J Nanomater 2015; 2015: 2. http://dx.doi.org/10.1155/2015/247471

Mittal KL, Lee KW, editors. Polymer surfaces and interfaces: characterization, modification and application. Vsp 1997. Avialble from: https://books.google.com/

Kim H, Abdala AA, Macosko CW. Graphene/polymer nanocomposites. Macromol 2010; 43: 6515-30. http://dx.doi.org/10.1021/ma100572e

KAUR S. Surface modification of electrospun poly (vinylidene fluoride) nanofibrous microfiltration membrane. Master Thesis, National University of Singapore 2007. http://scholarbank.nus.edu.sg/handle/10635/13336

Khan WS, Asmatulu R, Eltabey MM. Electrical and thermal characterization of electrospun PVP nanocomposite fibers. J Nanomater 2013; 2013. http://dx.doi.org/10.1155/2013/160931

Wang T, Kumar S. Electrospinning of polyacrylonitrile nanofibers. J Appl Polym Sci 2006; 102: 1023-1029. http://dx.doi.org/10.1002/app.24123

Prahsarn C, Klinsukhon W, Roungpaisan N. Electrospinning of PAN/DMF/H2O containing TiO2 and photocatalytic activity of their webs. Mater Lett 2011; 65: 2498-501. http://dx.doi.org/10.1016/j.matlet.2011.05.018

Yu X, Xiang H, Long Y, Zhao N, Zhang X, Xu J. Preparation of porous polyacrylonitrile fibers by electrospinning a ternary system of PAN/DMF/H2O. Mater Lett 2010; 64: 2407-9. http://dx.doi.org/10.1016/j.matlet.2010.08.006

Qiang J, Wan YQ, Yang LN, Cao QQ. Effect of ultrasonic vibration on structure and performance of electrospun PAN fibrous membrane. J Nano Res 2013; 23: 96-103. http://dx.doi.org/10.4028/www.scientific.net/JNanoR.23.96

Jalili R, Morshed M, Ravandi SA. Fundamental parameters affecting electrospinning of PAN nanofibers as uniaxially aligned fibers. J Appl Polym Sci 2006; 101: 4350-7. http://dx.doi.org/10.1002/app.24290

Zhang C, Yang Q, Zhan N, Sun L, Wang H, Song Y, Li Y. Silver nanoparticles grown on the surface of PAN nanofiber: Preparation, characterization and catalytic performance. Colloids Surf A 2010; 362: 58-64. http://dx.doi.org/10.1016/j.colsurfa.2010.03.038

Chen HM, Yu DG. An elevated temperature electrospinning process for preparing acyclovir-loaded PAN ultrafine fibers. J Mater Process Technol 2010; 210: 1551-5. http://dx.doi.org/10.1016/j.jmatprotec.2010.05.001

Nuraje N, Khan WS, Lei Y, Ceylan M, Asmatulu R. Superhydrophobic electrospun nanofibers. J Mater Chem A 2013; 1: 1929-46. http://dx.doi.org/10.1039/C2TA00189F

Asmatulu R, Ceylan M, Nuraje N. Study of superhydrophobic electrospun nanocomposite fibers for energy systems. Langmuir 2010; 27: 504-7. http://dx.doi.org/10.1021/la103661c

Nuraje N, Asmatulu R, Cohen RE, Rubner MF. Mechanically durable and permanent anti-fog films via layer-by-layer approach. Langmuir 2011; 27: 782-91. http://dx.doi.org/10.1021/la103661

Asmatulu R, Yoon RH. Effects of surface forces on dewatering of fine particles. Separation Technologies for Minerals, Coal and Earth Resources 2012. Available from: https://books.google.com/

Yoshikawa M, Yoshioka T, Fujime J, Murakami A. Pervaporation separation of MeOH/MTBE with hydrophilic polymer/agarose blended membranes. Membrane 2001; 26: 259-64.

http://doi.org/10.5360/membrane.26.259

Yang Q, Li Z, Hong Y, Zhao Y, Qiu S, Wang CE, Wei Y. Influence of solvents on the formation of ultrathin uniform poly (vinyl pyrrolidone) nanofibers with electrospinning. J Polym Sci 2004; 42: 3721-6. http://dx.doi.org/10.1002/polb.20222

Alharbi A, Alarifi IM, Khan WS, Asmatulu R. Electrospun strontium titanata nanofibers incorporated with nickel oxide nanoparticles for improved photocatalytic activities. InSPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring 2015; (pp. 94390F-94390F). International Society for Optics and Photonics. http://dx.doi.org/10.1117/12.2180357

Li D, Wang Y, Xia Y. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano lett 2003; 3: 1167-71. http://dx.doi.org/10.1021/nl0344256

Xie J, Li X, Xia Y. Putting electrospun nanofibers to work for biomedical research. Macromol Rapid Commun 2008; 29: 1775-92. http://dx.doi.org/10.1002/marc.200800381

Ignatova M, Manolova N, Rashkov I. Novel antibacterial fibers of quaternized chitosan and poly (vinyl pyrrolidone) prepared by electrospinning. Eur Polym J 2007; 43: 1112-22. http://dx.doi.org/10.1016/j.eurpolymj.2007.01.012

Li L, Jiang Z, Pan Q, Fang T. Producing polymer fibers by electrospinning in supercritical fluids. J Chem 2013; 2013. http://dx.doi.org/10.1155/2013/508905

Asmatulu R, Patrick S, Ceylan M, Ahmed I, Yang SY, Nuraje N. Antibacterial polycaprolactone/natural hydroxyapatite nanocomposite fibers for bone scaffoldings. J Bionanosci 2015; 9: 120-6. http://dx.doi.org/10.1166/jbns.2015.1286

Parwez K, Budihal SV. Carbon nanotubes reinforced hydroxyapatite composite for biomedical application. J Bionanosci 2014; 8: 61-5. http://dx.doi.org/10.1166/jbns.2014.1194

Takechi M, Miyamoto Y, Ishikawa K, Nagayama M, Kon M, Asaoka K, Suzuki K. Effects of added antibiotics on the basic properties of anti‐washout‐type fast‐setting calcium phosphate cement. J Biomed Mater Res 1998; 39: 308-16. http://dx.doi.org/10.1002/(SICI)1097-4636(199802)39:2<308::AID-JBM19>3.0.CO;2-8

Ghorani B, Tucker N, Yoshikawa M. Approaches for the assembly of molecularly imprinted electrospun nanofibre membranes and consequent use in selected target recognition. Food Res Int 2015; 78: 448-64. http://dx.doi.org/10.1016/j.foodres.2015.11.014

Isezaki J, Yoshikawa M. Molecularly imprinted nanofiber membranes: localization of molecular recognition sites on the surface of nanofiber. J Membr Sep Technol 2014; 3: 119. http://dx.doi.org/10.6000/1929-6037.2014.03.03.2

Alarifi IM, Alharbi A, Khan W, Asmatulu R. Carbonized electrospun polyacrylonitrile nanofibers as highly sensitive sensors in structural health monitoring of composite structures. J Appl Polym Sci 2016; 133. http://dx.doi.org/10.1002/app.43235

Alarifi IM, Alharbi A, Khan WS, Swindle A, Asmatulu R. Thermal, electrical and surface hydrophobic properties of electrospun polyacrylonitrile nanofibers for structural health monitoring. Mater 2015; 8: 7017-31. http://dx.doi.org/10.3390/ma8105356

Missimer TM, Maliva RG, Ghaffour N, Leiknes T, Amy GL. Managed aquifer recharge (MAR) economics for wastewater reuse in low population wadi communities, kingdom of Saudi Arabia. Water 2014; 6: 2322-38. http://dx.doi.org/10.3390/w6082322

Angelakis AN, Snyder SA. Wastewater Treatment and Reuse: Past, Present, and Future. Water 2015; 7: 4887-95. http://dx.doi.org/10.3390/w7094887

Bilad MR, Al Marzooqi FA, Arafat HA. New concept for dual-layer hydrophilic/hydrophobic composite membrane for mem-brane distillation. J Membr Sep Technol 2015; 4: 122-33. http://dx.doi.org/10.6000/1929-6037.2015.04.03.4

Zhang Y, Li Y, Zhang H, Ye H, Chen Y, Li Y. Preparation and characterization of superhydrophobic modification of polyvinylidene fluoride membrane by dip-coating. J Membr and Sep Technol 2014; 3: 91. http://dx.doi.org/10.6000/1929-6037.2014.03.02.4

Jie Y, Dandan Z, Shuren Y, Hong Y, Ziwei D, Biaoming L, Zhou Y, Zhongwei W, van Agtmaal S, Chunhui F, Bangjun H. Pervaporation process with PDMS/PVDF hollow fiber composite membrane to recycle phenol from coal chemical wastewater. J Membr Sep Technol 2013; 2: 163. http://dx.doi.org/10.6000/1929-6037.2013.02.03.1

Farsani RE, Raissi S, Shokuhfar A, Sedghi A. FT-IR study of stabilized PAN fibers for fabrication of carbon fibers. World Acad Sci 2009; 50: 430-3. http://citeseerx.ist.psu.edu/ viewdoc/download?doi=10.1.1.193.2593&rep=rep1&type=pdf

Sutasinpromprae J, Jitjaicham S, Nithitanakul M, Meechaisue C, Supaphol P. Preparation and characterization of ultrafine electrospun polyacrylonitrile fibers and their subsequent pyrolysis to carbon fibers. Polym Int 2006; 55: 825-33. http://dx.doi.org/10.1002/pi.2040

Sivaiah K, Kumar KN, Naresh V, Buddhudu S. Structural and optical properties of Li+: PVP & Ag+: PVP polymer films. Mater Sci Appli 2011; 2: 1688. http://dx.doi.org/10.4236/msa.2011.211225

Sivaiah K, Rudremadevi BH, Bubbhudu S, Kumar GB, Varadarajulu A. Structural, thermal and optical properties of Cu2+ and Co2+: PVP polymer films. Ind J Pure Appl Phys 2010; 48: 658-2. http://nopr.niscair.res.in/handle/123456789/ 10157

Abbasi M, Sebzari MR. Investigation of best operating conditions for treatment of oily wastewaters with hollow fiber ultrafiltartion membranes. J Membr Sep Technol 2014; 3: 267. http://dx.doi.org/10.6000/1929-6037.2014.03.04.9

Roig FJ, Sanjuán E, Llorens A, Amaro C. pilF polymorphism-based PCR to distinguish Vibrio vulnificus strains potentially dangerous to public health. Appli Environ microbiol 2010; 76: 1328-33. http://dx.doi.org/10.1128/AEM.01042-09

Dash P, Silwal S, Ikenga JO, Pinckney JL, Arslan Z, Lizotte RE. Water quality of four major lakes in Mississippi, USA: Impacts on human and aquatic ecosystem health. Water 2015; 7: 4999-5030. http://dx.doi.org/10.3390/w7094999

Humphrey C, O'Driscoll M, Harris J. Spatial distribution of fecal indicator bacteria in groundwater beneath two large on-site wastewater treatment systems. Water 2014; 6: 602-19. http://dx.doi.org/10.3390/w6030602

Lev J, Holba M, Kalhotka L, Mikula P, Kimmer D. Improvements in the structure of electrospun polyurethane nanofibrous materials used for bacterial removal from wastewater. Int J Theor Appli Nanotechnol 2012; 1248. http://dx.doi.org/10.11159/ijtan.2012.003

Downloads

Published

2016-07-27

How to Cite

R. Alharbi, A., M. Alarifi, I., S. Khan, W., & Asmatulu, R. (2016). Highly Hydrophilic Electrospun Polyacrylonitrile/ Polyvinypyrro-lidone Nanofibers Incorporated with Gentamicin as Filter Medium for Dam Water and Wastewater Treatment. Journal of Membrane and Separation Technology, 5(2), 38–56. https://doi.org/10.6000/1929-6037.2016.05.02.1

Issue

Section

Articles